CN110795887A - 多应力加速寿命试验分析方法和装置 - Google Patents

多应力加速寿命试验分析方法和装置 Download PDF

Info

Publication number
CN110795887A
CN110795887A CN201911030221.2A CN201911030221A CN110795887A CN 110795887 A CN110795887 A CN 110795887A CN 201911030221 A CN201911030221 A CN 201911030221A CN 110795887 A CN110795887 A CN 110795887A
Authority
CN
China
Prior art keywords
stress
acceleration model
model
parameter
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911030221.2A
Other languages
English (en)
Other versions
CN110795887B (zh
Inventor
刘尧
汪亚顺
范政伟
张书锋
万伏彬
彭兴
陈循
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201911030221.2A priority Critical patent/CN110795887B/zh
Publication of CN110795887A publication Critical patent/CN110795887A/zh
Application granted granted Critical
Publication of CN110795887B publication Critical patent/CN110795887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请涉及一种多应力加速寿命试验分析方法和装置。所述方法包括:获取产品多应力加速寿命试验对应的多个失效应力,根据失效应力的应力类型,得到多个失效应力中的多个应力组合,根据各个应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型,采用粒子群算法,对多应力加速模型中的待估参数进行计算,确定待估参数的参数值,将参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。采用本方法能够减小加速寿命试验分析时的计算量以及提高计算的准确性。

Description

多应力加速寿命试验分析方法和装置
技术领域
本申请涉及加速寿命试验技术领域,特别是涉及一种多应力加速寿命试验分析方法和装置。
背景技术
基于加速试验的寿命预测技术已成为在时间和成本约束下进行产品可靠度计算的必然要求。然而,产品在实际服役时通常同时受到多种应力的作用,包括工作应力(如机械载荷、电流、电压等)和环境应力(如温度、振动、冲击等),故施加单一应力的传统加速试验不能够真实体现产品实际的应力状态,研究多应力综合作用下产品的可靠度评估方法,可以更加全面体现产品的服役工况,使寿命预测更加准确。
多应力加速模型是多应力加速试验可靠性分析的关键。目前,许多学者研究了双应力加速模型并且广泛应用于工程中,然而关于多应力加速模型的理论研究较少。现有的多应力加速模型有以下三种:即广义线性对数加速模型、多项式加速模型和比例风险模型,但这三种模型均有各自的不足之处,如广义线性对数加速模型忽略应力耦合项,多项式加速模型精度较低,比例风险模型是一个非参数模型导致模型表达式复杂化。
待估参数多是多应力加速模型的又一显著特点,也是多应力加速模型工程化的一个难点问题。极大似然函数估计通常被用于求解单应力加速模型的未知参数,然而多应力加速模型中包含多个未知参数,采用一般的数值迭代方法如牛顿法或拟牛顿法求解极大似然方程组,方程组的收敛性和稳定性对参数初始值具有很大的依赖性,初始值选取不当常常导致不收敛或收敛到局部极大(极小)值点。
发明内容
基于此,有必要针对上述技术问题,提供一种能够解决多应力加速寿命试验分析计算量大以及分析结果不准确问题的多应力加速寿命试验分析方法和装置。
一种多应力加速寿命试验分析方法,所述方法包括:
获取产品多应力加速寿命试验对应的多个失效应力,根据所述失效应力的应力类型,得到所述多个失效应力中的多个应力组合;
根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型;
采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值;
将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
在其中一个实施例中,还包括:以所述多应力加速模型中的应力组合为自变量、所述多应力加速模型中的寿命特征为因变量,采用多因素方差进行显著性分析,得到对所述寿命特征产生影响的所述应力组合;根据产生影响的应力组合,对所述多应力加速模型进行更新,得到实际多应力加速模型。
在其中一个实施例中,还包括:将各个所述应力类型对应的反应速率模型进行叠加,得到多个应力组合作用下的反应速率模型;根据所述多个应力组合作用下的反应速率模型,得到多应力加速模型;对所述多个应力组合进行标准化,将标准化后的多个应力组合输入所述多应力加速模型,得到特征寿命服从威布尔分布的多应力加速模型。
在其中一个实施例中,还包括:获取所述每个应力组合下,预设时间内产品失效的对数似然函数;根据所述对数似然函数,得到多个应力组合下失效数据对应的似然函数;根据所述似然函数以及所述多应力加速模型,得到多应力加速寿命试验分析极大似然估计模型。
在其中一个实施例中,还包括:以所述对数似然函数作为所述粒子群算法中待估参数的目标函数,所述对数似然函数的值最大作为所述粒子群算法中待估参数的优化目标进行迭代,得到多应力加速模型中的待估参数的参数值。
在其中一个实施例中,还包括:将所述多应力加速模型中的每一种分布作为一个粒子,在变量的约束空间内初始化所有所述粒子的迭代位置和迭代速度;其中约束条件为所述分布的形状参数大于0,特征寿命小于最大失效寿命且大于0;计算每个所述粒子的目标函数值;对于每个粒子,比较当前所述目标函数值和所有粒子的历史最优目标函数值,选择二者之间较大值更新所述历史最优目标函数值;根据每个粒子的当前位置、当前速度、当前粒子的历史最最优值和所有粒子的历史最优值,计算得到下一次迭代的粒子速度,以及根据下一次迭代的粒子速度和当前位置,计算得到下一次迭代的粒子位置,完成一次迭代;循环多次迭代,直至满足预先设置的收敛精度或达到预先设置的迭代次数。
在其中一个实施例中,还包括:将所述参数值输入所述多应力加速模型,得到产品在多个应力组合下的寿命特征;将所述寿命特征转化至正常应力下,得到正常应力组合下的可靠度函数;根据所述可靠度函数得到产品在多个失效应力条件下的可靠度分布规律。
一种多应力加速寿命试验分析装置,所述装置包括:
应力组合模块,用于获取产品多应力加速寿命试验对应的多个失效应力,根据所述失效应力的应力类型,得到所述多个失效应力中的多个应力组合;
多应力模型建立模块,用于根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型;
参数估计模块,用于采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值;
可靠度分析模块,用于将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取产品多应力加速寿命试验对应的多个失效应力,根据所述失效应力的应力类型,得到所述多个失效应力中的多个应力组合;
根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型;
采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值;
将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取产品多应力加速寿命试验对应的多个失效应力,根据所述失效应力的应力类型,得到所述多个失效应力中的多个应力组合;
根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型;
采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值;
将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
上述多应力加速寿命试验分析方法、装置、计算机设备和存储介质,通过将多个失效应力类型的应力进行耦合,即应力组合,并且推导出包含应力耦合项的多应力加速模型,其中,应力加速模型中包含大量的位置参数,采用传统的极大似然估计方法计算量非常大,因此,提出一种利用粒子群算法的方式,对多应力加速模型中的待估参数进行计算,从而快速计算出多应力加速模型中的参数,进一步可以分析得到多应力条件下产品的可靠度分布规律。本发明实施例中,可以实现快速准确的计算得到多应力条件下产品的可靠度分布规律。
附图说明
图1为一个实施例中多应力加速寿命试验分析方法的流程示意图;
图2为一个实施例中建立多应力加速模型步骤的流程示意图;
图3为一个实施例中迭代过程的流程示意图;
图4为一个实施例中十八组多应力组合下产品寿命的威布尔概率分布的示意图;
图5为一个实施例中目标函数随仿真时迭代次数变化曲线以及所估计的模型参数向量的示意图;
图6为一个实施例中智能电表在不同路径下目标函数随迭代次数变化曲线及所估计的模型参数向量的示意图;
图7为一个实施例中多应力加速寿命试验分析装置的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种多应力加速寿命试验分析方法,包括以下步骤:
步骤102,获取产品多应力加速寿命试验对应的多个失效应力,根据失效应力的应力类型,得到多个失效应力中的多个应力组合。
产品在使用或存储的过程中存在多种应力的影响,从而导致产品失效,失效应力指的还是高于使用条件或者存储条件的应力组合,失效应力可以加速产品的失效过程。应力类型指的是基于同一失效机理的应力,应力组合指的是将不同的应力类型进行组合,得到的结果。
值的说明的是,应力组合可以是单一应力,也可以是几种应力的组合。
步骤104,根据各个应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型。
对于不同应力类型的失效应力,其失效机理是不同的,因此,其反应速率模型是不同,以温度为失效应力为例,在以温度为加速应力的加速试验评估方法中,其反应速率模型为:
Figure BDA0002249937550000051
其中,kB表示Boltzmann常数,为8.6171×10-5eV/℃;T为绝对温度,等于摄氏温度加273.16,α′0表示未知参数,α1表示激活能。
而以湿度为失效应力的加速试验评估方法中,湿度应力可以选择的模型有三个,分别为:指数湿度倒数模型、幂率湿度模型、指数湿度模型,表达式分别为:
L1(RH)=exp(a′/RH)
L2(RH)=a′(RH)-n
L3(RH)=exp(a′·RH)
其中,α′表示湿度加速模型中的系数。
在以应力组合进行加速寿命试验分析时,需要考虑多个失效应力对产品失效的影响,因此,可以分析每种应力的反应速率模型,从而建立多个应力组合对应的应力加速模型。
步骤106,采用粒子群算法,对多应力加速模型中的待估参数进行计算,确定待估参数的参数值。
对于多应力加速模型中参数的计算,传统方法是采用极大似然函数法,需要对待估参数求偏导,运算量大,而且求解精度差,粒子群算法是一种智能算法,通过迭代的方式,实现全局最优求解,收敛速度快,全局性好。
在本算法中,每一组待估参数为粒子群算法中的一个粒子,通过粒子在计算局部最优和全局最优的过程中不断迭代,最终计算出精确的结果。
步骤108,将参数值输入多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
上述多应力加速寿命试验分析方法中,通过将多个失效应力类型的应力进行耦合,即应力组合,并且推导出包含应力耦合项的多应力加速模型,其中,应力加速模型中包含大量的位置参数,采用传统的极大似然估计方法计算量非常大,因此,提出一种利用粒子群算法的方式,对多应力加速模型中的待估参数进行计算,从而快速计算出多应力加速模型中的参数,进一步可以分析得到多应力条件下产品的可靠度分布规律。本发明实施例中,可以实现快速准确的计算得到多应力条件下产品的可靠度分布规律。
在其中一个实施例中,若产品的失效受到S1,S2,…,SN种应力的影响,这N种失效应力的应力水平数分别取L1,L2,…,LN,选择q个加速应力组合ψ12,...,ψq,随机抽样ni个样品在应力组合ψi下进行加速寿命试验,在试验截尾时间tic内有ri个失效样本,有ci=ni-ri个截尾样本,得到加速寿命试验所需的试验数据如下:
Figure BDA0002249937550000071
Figure BDA0002249937550000072
在其中一个实施例中,由于在建立多应力加速试验时,将所有应力均考虑其对产品寿命产生影响,因此,需要对应力组合进行显著性检验,具体如下:以多应力加速模型中的应力组合为自变量、多应力加速模型中的寿命特征为因变量,采用多因素方差进行显著性分析,得到对寿命特征产生影响的应力组合,根据产生影响的应力组合,对多应力加速模型进行更新,得到实际多应力加速模型。
具体的,若加速应力组合中包括有:温度应力、湿度应力以及电流应力,通过显著性检验,电流应力对产品寿命的影响不显著,因此,需要更新多应力加速模型,去除其中电流应力部分,从而得到实际多应力加速模型。
在其中一个实施例中,如图2所示,建立多应力加速模型的步骤包括:
步骤202,将各个应力类型对应的反应速率模型进行叠加,得到多个应力组合作用下的反应速率模型。
步骤204,根据多个应力组合作用下的反应速率模型,得到多应力加速模型。
步骤206,对多个应力组合进行标准化,将标准化后的多个应力组合输入多应力加速模型,得到特征寿命服从威布尔分布的多应力加速模型。
本实施例中,在多个应力同时作用的多应力加速模型中,需要对应力进行标准化,从而得到统一范式的多应力加速模型。
对于步骤202,在另一个实施例中,温度-电压、温度-湿度双应力下产品的反应速率模型为:
Figure BDA0002249937550000073
其中,X2表示任意一种非温度应力,α3X2/kBT表示可能存在的非温度应力X2与温度应力的交互项,α2、α3为未知参数。
将温度应力用X1表示,应力系数项表示为α1,则双应力下产品的反应速率模型可以表示为:
kdouble=α0exp(α1X1)exp(α2X2)·exp(α3X1X2)
类似于上述双应力下产品的反应速率模型,基于Arrhenius模型的N个应力反应速率模型将由单应力、双应力耦合项、三应力耦合项、四应力耦合项.......、N应力耦合项共N项构成,其中m个应力耦合项包含
Figure BDA0002249937550000081
个元素(1≤m≤N),如双应力耦合项将包含3个元素,三应力耦合项包含9个元素。可以得到N应力反应速率模型表达式为:
Figure BDA0002249937550000082
其中,X*代表着不同类型的N种应力,α*为模型未知参数,m<n是为了保证连乘项中不包含相同项,等式右边第一个连乘项代表着N个不同应力无耦合对反应速率的影响,等式右边中第二个连乘项至最后一项代表可能存在的应力耦合项对反应速率的影响。
对于步骤204,在有一个实施例中,得到了多个应力组合作用下的反应速率模型,可以得到多个应力综合作用下的寿命与应力的关系如下:
Figure BDA0002249937550000083
两边取对数可得:
Figure BDA0002249937550000084
对于步骤206,标准化后可得多应力加速模型为:
Figure BDA0002249937550000091
其中,ξi=ξ(Xi)=(Xi-Xi0)/(XiH-Xi0)1≤i≤N。Xi0为正常使用下应力水平,XiH为加速应力水平。
因此,特征寿命服从威布尔分布的多应力加速模型为:
Figure BDA0002249937550000092
其中,η为多应力组合下的威布尔分布的尺度参数。
具体的,当组合应力中包括三个失效应力,则根据服从威布尔分布的多应力加速模型,可以得到三应力综合作用下寿命服从威布尔分布的多应力加速模型为:
lnη(α01,...,α7)=lnα01ξ12ξ23ξ34ξ1ξ25ξ1ξ36ξ2ξ37ξ1ξ2ξ3
在其中一个实施例中,在估计参数之前,还需要获取所述每个应力组合下,预设时间内产品失效的对数似然函数;根据对数似然函数,得到多个应力组合下失效数据对应的似然函数;根据似然函数以及多应力加速模型,得到多应力加速寿命试验分析的极大似然估计模型。
具体的,在多应力组合ψi下,tij时间内产品失效的似然函数和对数似然函数分别为:
Figure BDA0002249937550000093
Figure BDA0002249937550000094
可得所有应力组合下失效数据对应的似然函数为:
Figure BDA0002249937550000101
由于ηi与标准化的应力水平组合ψi之间满足多应力加速模型,因此,可得如下极大似然估计模型:
Figure BDA0002249937550000102
在其中一个实施例中,在计算待估参数的参数值时,具体可以是:以对数似然函数作为粒子群算法中待估参数的目标函数,对数似然函数的值最大作为粒子群算法中待估参数的优化目标进行迭代,得到多应力加速模型中的待估参数的参数值。
具体的,如图3所示,粒子群算法进行迭代的步骤包括:
步骤302,将多应力加速模型中的每一种分布作为一个粒子,在变量的约束空间内初始化所有粒子的迭代位置和迭代速度。
约束条件为分布的形状参数大于0,特征寿命小于最大失效寿命且大于0。
以三应力的多应力加速模型为例,分布为(lnα0,-α1,-α2,-α3,-α4,-α5,-α6,-α7,β),可简写为θ=(a,b,c,d,e,f,g,h,β),其中β为威布尔分布的形状参数。
步骤304,计算每个粒子的目标函数值。
步骤306,对于每个粒子,比较当前目标函数值和所有粒子的历史最优目标函数值,选择二者之间较大值更新历史最优目标函数值。
步骤308,根据每个粒子的当前位置、当前速度、当前粒子的历史最最优值和粒子的历史最优值,计算得到下一次迭代的粒子速度,以及根据下一次迭代的粒子速度和当前位置,计算得到下一次迭代的粒子位置,完成一次迭代。
步骤310,循环多次迭代,直至满足预先设置的收敛精度或达到预先设置的迭代次数。
对于步骤308,在其中一个实施例中,迭代表达式如下:
Figure BDA0002249937550000111
Figure BDA0002249937550000112
其中,分别为第j个粒子在第k次迭代时的速度和位置,r1和r2分别为独立的0到1范围内的随机数,w为惯性系数表示当前速度的相对权重,设置w=0.8。c1和c2为加速度系数分别表示该粒子历史最优值和所有粒子历史最优值的相对权重。在本文中的算法中,经过综合考虑收敛精度和收敛速度,c1和c2均取为2。
在其中一个实施例中,可以将参数值输入多应力加速模型,得到产品在多个应力组合下的寿命特征,将寿命特征转化至正常应力下,得到正常应力组合下的可靠度函数,根据可靠度函数得到产品在多个失效应力条件下的可靠度分布规律。
具体的,可靠度函数的表达式如下:
其中,η0表示威布尔分布的尺度参数。
以下,分别通过仿真案例和以智能电表(SEM)的实际案例,分别对本发明的技术方案进行进一步说明。
仿真案例:
步骤1:获取产品多应力加速寿命试验相关信息和试验数据;
对产品开展恒定多应力加速寿命试验,选择多应力分别为温度、湿度和电流,其中温度和电流应力具有三个应力水平,湿度具有两个应力水平,如表1所示,多应力加速试验采用完全试验,共有3×2×3=18个应力组合,通过Monte Carlo仿真方法对每个应力组合仿真产生200个失效数据。为了避免本发明只能有效估计某一特殊的失效数据,给出3个不同的案例,各个案例仿真参数如表2所示。基于表2参数真值采用Monte Carlo仿真18组多应力组合下的失效数据,各组合应力下产品寿命的威布尔概率分布及其拟合直线如图4所示,表明失效数据基本服从威布尔分布。
表1某产品多应力加速试验条件设置及应力标准化
Figure BDA0002249937550000121
注:ξ1、ξ2、ξ3分别为标准化后的温度、湿度和电流应力表2三组模型参数真值设置
θ a b c d e f g h β
Case1真值 -3 -5 4 10 6 8 7 5 3
Case2真值 8 -5 4 6 8 5 -4 7 5
Case3真值 -9 -7 6 8 5 8 5 6 4
步骤2:建立多应力加速模型。
温度应力通常选用经典的阿伦尼斯模型,电应力通常选择幂率模型。湿度应力可以选用的模型有三个:分别为指数湿度倒数模型、幂率湿度模型、指数湿度模型。
由于幂率湿度模型在工业界被广泛使用,故本文选取幂率湿度模型为湿度应力的加速模型,考虑应力耦合项的三应力(温度、湿度及电流)加速模型表达式为;
Figure BDA0002249937550000131
其中,(a,b,c,d,e,f,g,h)可分别对应参数(lnα0,-α1,-α2,-α3,-α4,-α5,-α6,-α7),ξ1、ξ2、ξ3分别为标准化后的温度、湿度和电流应力,表达式分别为:
ξ1i=ξ(Ti)=[log(1/Ti)-log(1/Ti0)]/[log(1/TiH)-log(1/Ti0)]
ξ2i=ξ(RHi)=(logRHi-logRHi0)/( logRHiH-logRHi0)
ξ3i=ξ(Ii)=(logIi-logIi0)/(logIiH-logIi0)
步骤3,在仿真案例中,由于各个应力耦合项的系数已经得知,其各个耦合项均会对寿命特征产生应力,故多应力加速模型是最一般的情况,即包含所有耦合项,共9个未知参数。
步骤4,建立多应力加速寿命试验统计分析的极大似然估计模型。
步骤5,基于粒子群算法的多应力加速模型多参数估计。
具体的,粒子群算法选取的粒子数越多收敛性越好,但过多的粒子数目将使得一个迭代周期的计算时间较长。迭代次数越多,收敛到最优值得精度越高,但同样需要更多得计算时间。因此折衷计算时间和优化精度,本文选取600个粒子进行400次迭代。对于每一个案例仿真100次,各个参数的均方误差(MSE)如表3所示,均方误差是指参数估计值与参数真值之差平方的期望值,是衡量“平均误差”的一种较方便的方法,可以评价数据的变化程度,MSE的值越小,说明预测结果具有更好的精确度。
Figure BDA0002249937550000133
是真值θ的估计。取100次仿真结果的均值作为各个参数的估计值。
需要说明的是,在各个案例所进行的100次仿真中,每次仿真随机选择六个不同的路径计算目标函数,以6个不同路径所估计得到的均值为该次仿真所得到的参数估计值。以第一次仿真为例,各个计算过程在200次迭代之前,非常容易陷入局部解,而在200次迭代之后不同路径所计算的对数似然函数值均会收敛至最优解,如图5(a)(c)(e)所示。每个案例的第一次仿真中6个不同路径所估计的参数向量如图5(b)(d)(f),不同路径下所估计的参数非常接近,取6个不同路径所计算的均值为第一次仿真所得的参数估计值。重复100次,计算各个参数的MSE,如表3所示,各个案例100次仿真计算得到参数估计值与真值之间的最大均方误差为7.69%,且3个案例中各个参数估计值与真值非常接近。
表3模型参数估计值及相对误差
Figure BDA0002249937550000141
步骤6,根据参数估计值,可以得到产品寿命分布规律,评估产品寿命和可靠性水平。
将参数估计值代入到多应力加速模型中,可得:
Figure BDA0002249937550000142
产品正常工作应力为298K、0.45和10A,代入上式可得正常工作下的寿命特征为:
ln(ηCase1;S0)=-3.0365
ln(ηCase2;S0)=8.0029
ln(ηCase3;S0)=-9.0457
故其在正常应力组合下的可靠度函数为:
Figure BDA0002249937550000151
Figure BDA0002249937550000152
Figure BDA0002249937550000153
实际案例:
步骤1,获取智能电表的多应力加速寿命试验相关信息和试验数据。
步骤2,建立多应力加速模型。
温度应力通常选用经典的阿伦尼斯模型,电应力通常选择幂率模型。湿度应力选取幂率湿度模型,考虑应力耦合项的三应力(温度、湿度及电流)加速模型表达式为:
Figure BDA0002249937550000154
步骤3,对各个应力项及耦合项进行显著性检验。
以多应力组合为自变量,以SEM的伪寿命为因变量,基于Matlab R2014a采用多因素方差(N-way Analysis of Variance,简称N-way ANOVA)进行显著性检验。多因素方差分析不仅能够分析多个因素对观测变量的独立影响,更能够分析多个控制因素的交互作用能否对观测变量的分布产生显著影响,进而最终找到对观测变量影响最显著的因素。SEM的方差分析结果如表4所示,其中各列分别表示平方和、自由度、均方值、F统计量及p值。在这个案例中,可以看出电流应力的p>0.05,其中0.05为置信水平,表明电流应力对SEM寿命特征影响并不显著,这与Yang Z.的结论一致。双应力耦合项及三应力耦合项自由度及F统计特征为0,表明各个应力耦合项对SEM寿命特征无显著影响。因此,对SEM的寿命特征具有显著影响的应力项为温度应力和湿度应力。
表4SEM显著性检验结果
Source Sum Sq. d.f. Mean Sq. F Prob>F
ξ<sub>1</sub> 9.7451 2 4.8725 81.18 0
ξ<sub>2</sub> 20.9218 1 20.9218 348.57 0
ξ<sub>3</sub> 0.0056 1 0.0056 0.09 0.7599
ξ<sub>1</sub>*ξ<sub>2</sub> 0 0 0 0 NaN
ξ<sub>1</sub>*ξ<sub>3</sub> 0 0 0 0 NaN
ξ<sub>2</sub>*ξ<sub>3</sub> 0 0 0 0 NaN
ξ<sub>1</sub>*ξ<sub>2</sub>*ξ<sub>3</sub> 0 0 0 0 NaN
步骤4,建立多应力加速寿命试验统计分析的极大似然估计模型。
可得SEM的多应力加速模型为:
ln(ηSEMi;Si)=a″+b″ξ1i+c″ξ2i
根据多应力加速模型,可以计算极大似然估计模型。
步骤5,基于粒子群算法的多应力加速模型多参数估计。
选取100个粒子进行100次迭代,采用基于粒子群算法的多参数估计方法求解加速模型中的未知参数。随机选择六个不同的路径计算目标函数,如图6(a)所示,各个计算过程在40次迭代之前,非常容易陷入局部解,而在40次迭代之后6个不同路径所计算的对数似然函数值均会收敛至最优解。实际案例中6个不同路径所估计的参数向量如图6(b)所示,不同路径下所估计的参数非常接近,取6个不同路径所计算参数的均值为各个参数的最优值,如表5所示。
表5参数估计结果
θ a b c β
估计值 3.3919 -1.9284 -2.5286 2.5516
步骤6,利用步骤5中的参数估计值,可得产品寿命分布规律,评估产品寿命和可靠性水平。
将所估计的参数代入多应力加速模型中,可得Case1、Case2和Case3的多应力加速模型分别为:
ln(ηSEMi;Si)=3.3919-1.9284ξ1i-2.5286ξ2i
产品正常工作应力为298K、0.45和10A,代入上式可得正常工作下的寿命特征为:
ln(ηSEM;S0)=3.3919
故其在正常应力组合下的可靠度函数为:
Figure BDA0002249937550000171
应该理解的是,虽然图1-3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图7所示,提供了一种多应力加速寿命试验分析装置,包括:应力组合模块702、多应力模型建立模块704、参数估计模块706和可靠度分析模块708,其中:
应力组合模块702,用于获取产品多应力加速寿命试验对应的多个失效应力,根据所述失效应力的应力类型,得到所述多个失效应力中的多个应力组合;
多应力模型建立模块704,用于根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型;
参数估计模块706,用于采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值;
可靠度分析模块708,用于将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
在其中一个实施例中,还包括:显著性检验模块,用于以所述多应力加速模型中的应力组合为自变量、所述多应力加速模型中的寿命特征为因变量,采用多因素方差进行显著性分析,得到对所述寿命特征产生影响的所述应力组合;根据产生影响的应力组合,对所述多应力加速模型进行更新,得到实际多应力加速模型。
在其中一个实施例中,多应力模型建立模块704还用于将各个所述应力类型对应的反应速率模型进行叠加,得到多个应力组合作用下的反应速率模型;根据所述多个应力组合作用下的反应速率模型,得到多应力加速模型;对所述多个应力组合进行标准化,将标准化后的多个应力组合输入所述多应力加速模型,得到特征寿命服从威布尔分布的多应力加速模型。
在其中一个实施例中,还包括:似然估计模块,用于获取所述每个应力组合下,预设时间内产品失效的对数似然函数;根据所述对数似然函数,得到多个应力组合下失效数据对应的似然函数;根据所述似然函数以及所述多应力加速模型,得到多应力加速寿命试验分析极大似然估计模型。
在其中一个实施例中,参数估计模块706还用于以所述对数似然函数作为所述粒子群算法中待估参数的目标函数,所述对数似然函数的值最大作为所述粒子群算法中待估参数的优化目标进行迭代,得到多应力加速模型中的待估参数的参数值。
在其中一个实施例中,参数估计模块706还用于将所述多应力加速模型中的每一种分布作为一个粒子,在变量的约束空间内初始化所有所述粒子的迭代位置和迭代速度;其中约束条件为所述分布的形状参数大于0,特征寿命小于最大失效寿命且大于0;计算每个所述粒子的目标函数值;对于每个粒子,比较当前所述目标函数值和所有粒子的历史最优目标函数值,选择二者之间较大值更新所述历史最优目标函数值;根据每个粒子的当前位置、当前速度、当前粒子的历史最最优值和所有粒子的历史最优值,计算得到下一次迭代的粒子速度,以及根据下一次迭代的粒子速度和当前位置,计算得到下一次迭代的粒子位置,完成一次迭代;循环多次迭代,直至满足预先设置的收敛精度或达到预先设置的迭代次数。
在其中一个实施例中,可靠度分析模块708还用于将所述参数值输入所述多应力加速模型,得到产品在多个应力组合下的寿命特征;将所述寿命特征转化至正常应力下,得到正常应力组合下的可靠度函数;根据所述可靠度函数得到产品在多个失效应力条件下的可靠度分布规律。
关于多应力加速寿命试验分析装置的具体限定可以参见上文中对于多应力加速寿命试验分析方法的限定,在此不再赘述。上述多应力加速寿命试验分析装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种多应力加速寿命试验分析方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现上述实施例中方法的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例中方法的步骤。
领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种多应力加速寿命试验分析方法,所述方法包括:
获取产品多应力加速寿命试验对应的多个失效应力,根据所述失效应力的应力类型,得到所述多个失效应力中的多个应力组合;
根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型;
采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值;
将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
2.根据权利要求1所述的方法,其特征在于,在根据各个所述应力类型对应的加速模型,建立多数应力组合对应的多应力加速模型之后,所述方法还包括:
以所述多应力加速模型中的应力组合为自变量、所述多应力加速模型中的寿命特征为因变量,采用多因素方差进行显著性分析,得到对所述寿命特征产生影响的所述应力组合;
根据产生影响的应力组合,对所述多应力加速模型进行更新,得到实际多应力加速模型。
3.根据权利要求1所述的方法,其特征在于,根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型,包括:
将各个所述应力类型对应的反应速率模型进行叠加,得到多个应力组合作用下的反应速率模型;
根据所述多个应力组合作用下的反应速率模型,得到多应力加速模型;
对所述多个应力组合进行标准化,将标准化后的多个应力组合输入所述多应力加速模型,得到特征寿命服从威布尔分布的多应力加速模型。
4.根据权利要求1至3任一项所述的方法,其特征在于,在采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值之前,还包括:
获取所述每个应力组合下,预设时间内产品失效的对数似然函数;
根据所述对数似然函数,得到多个应力组合下失效数据对应的似然函数;
根据所述似然函数以及所述多应力加速模型,得到多应力加速寿命试验分析极大似然估计模型。
5.根据权利要求4所述的方法,其特征在于,所述采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值,包括:
以所述对数似然函数作为所述粒子群算法中待估参数的目标函数,所述对数似然函数的值最大作为所述粒子群算法中待估参数的优化目标进行迭代,得到多应力加速模型中的待估参数的参数值。
6.根据权利要求5所述的方法,其特征在于,以所述对数似然函数作为所述粒子群算法中待估参数的目标函数,所述对数似然函数的值最大作为所述粒子群算法中待估参数的优化目标进行迭代,包括:
将所述多应力加速模型中的每一种分布作为一个粒子,在变量的约束空间内初始化所有所述粒子的迭代位置和迭代速度;其中约束条件为所述分布的形状参数大于0,特征寿命小于最大失效寿命且大于0;
计算每个所述粒子的目标函数值;
对于每个粒子,比较当前所述目标函数值和所有粒子的历史最优目标函数值,选择二者之间较大值更新所述历史最优目标函数值;
根据每个粒子的当前位置、当前速度、当前粒子的历史最最优值和所有粒子的历史最优值,计算得到下一次迭代的粒子速度,以及根据下一次迭代的粒子速度和当前位置,计算得到下一次迭代的粒子位置,完成一次迭代;
循环多次迭代,直至满足预先设置的收敛精度或达到预先设置的迭代次数。
7.根据权利要求1至3任一项所述的方法,其特征在于,将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律,包括:
将所述参数值输入所述多应力加速模型,得到产品在多个应力组合下的寿命特征;
将所述寿命特征转化至正常应力下,得到正常应力组合下的可靠度函数;
根据所述可靠度函数得到产品在多个失效应力条件下的可靠度分布规律。
8.一种多应力加速寿命试验分析装置,其特征在于,所述装置包括:
应力组合模块,用于获取产品多应力加速寿命试验对应的多个失效应力,根据所述失效应力的应力类型,得到所述多个失效应力中的多个应力组合;
多应力模型建立模块,用于根据各个所述应力类型对应的反应速率模型,建立多个应力组合对应的多应力加速模型;
参数估计模块,用于采用粒子群算法,对所述多应力加速模型中的待估参数进行计算,确定所述待估参数的参数值;
可靠度分析模块,用于将所述参数值输入所述多应力加速模型,得到产品在多个失效应力条件下的可靠度分布规律。
9.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述方法的步骤。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。
CN201911030221.2A 2019-10-28 2019-10-28 多应力加速寿命试验分析方法和装置 Active CN110795887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911030221.2A CN110795887B (zh) 2019-10-28 2019-10-28 多应力加速寿命试验分析方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911030221.2A CN110795887B (zh) 2019-10-28 2019-10-28 多应力加速寿命试验分析方法和装置

Publications (2)

Publication Number Publication Date
CN110795887A true CN110795887A (zh) 2020-02-14
CN110795887B CN110795887B (zh) 2024-08-02

Family

ID=69441479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911030221.2A Active CN110795887B (zh) 2019-10-28 2019-10-28 多应力加速寿命试验分析方法和装置

Country Status (1)

Country Link
CN (1) CN110795887B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782558A (zh) * 2020-12-29 2021-05-11 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 集成电路失效率获取方法
CN112926144A (zh) * 2021-01-22 2021-06-08 北京航空航天大学 一种多应力加速寿命试验耦合效应分析及寿命预测方法
CN114492004A (zh) * 2022-01-14 2022-05-13 中国人民解放军国防科技大学 有失效时成败型产品可靠性评估方法、装置、设备及介质
CN114626248A (zh) * 2022-03-30 2022-06-14 北京航空航天大学 一种基于多应力加速退化数据的螺旋弹簧可靠性评估方法
CN114818348A (zh) * 2022-05-06 2022-07-29 哈尔滨工业大学 考虑多应力耦合作用对产品退化影响的可靠性评估方法
CN114925510A (zh) * 2022-05-06 2022-08-19 哈尔滨工业大学 一种带有自适应交互作用项的多应力加速模型构建方法
CN116467939A (zh) * 2023-04-10 2023-07-21 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 电能表寿命预测方法、装置、计算机设备和存储介质
CN116522674A (zh) * 2023-05-22 2023-08-01 北京理工大学 一种基于多应力综合作用的加速退化建模评估方法
CN117252040A (zh) * 2023-11-16 2023-12-19 杭州中安电子股份有限公司 多应力加速试验分析方法、电子设备和可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270302A (zh) * 2011-07-20 2011-12-07 北京航空航天大学 一种基于灰色支持向量机的多应力加速寿命试验预测方法
WO2016029590A1 (zh) * 2014-08-28 2016-03-03 北京交通大学 一种城轨列车转向架的故障预测与视情维修方法
CN108664690A (zh) * 2018-03-24 2018-10-16 北京工业大学 基于深度信念网络的多应力下长寿命电子器件可靠性寿命评估方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270302A (zh) * 2011-07-20 2011-12-07 北京航空航天大学 一种基于灰色支持向量机的多应力加速寿命试验预测方法
WO2016029590A1 (zh) * 2014-08-28 2016-03-03 北京交通大学 一种城轨列车转向架的故障预测与视情维修方法
CN108664690A (zh) * 2018-03-24 2018-10-16 北京工业大学 基于深度信念网络的多应力下长寿命电子器件可靠性寿命评估方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏高乐;陈志军;: "基于多应力综合加速模型的产品可靠性评估方法", 科学技术与工程, no. 02, 18 January 2016 (2016-01-18), pages 29 - 34 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782558A (zh) * 2020-12-29 2021-05-11 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 集成电路失效率获取方法
CN112926144A (zh) * 2021-01-22 2021-06-08 北京航空航天大学 一种多应力加速寿命试验耦合效应分析及寿命预测方法
CN112926144B (zh) * 2021-01-22 2022-08-16 北京航空航天大学 一种多应力加速寿命试验耦合效应分析及寿命预测方法
CN114492004A (zh) * 2022-01-14 2022-05-13 中国人民解放军国防科技大学 有失效时成败型产品可靠性评估方法、装置、设备及介质
CN114492004B (zh) * 2022-01-14 2024-09-24 中国人民解放军国防科技大学 有失效时成败型产品可靠性评估方法、装置、设备及介质
CN114626248A (zh) * 2022-03-30 2022-06-14 北京航空航天大学 一种基于多应力加速退化数据的螺旋弹簧可靠性评估方法
CN114626248B (zh) * 2022-03-30 2023-04-18 北京航空航天大学 一种基于多应力加速退化数据的螺旋弹簧可靠性评估方法
CN114925510B (zh) * 2022-05-06 2022-11-11 哈尔滨工业大学 一种带有自适应交互作用项的多应力加速模型构建方法
CN114818348B (zh) * 2022-05-06 2022-10-11 哈尔滨工业大学 考虑多应力耦合作用对产品退化影响的可靠性评估方法
CN114925510A (zh) * 2022-05-06 2022-08-19 哈尔滨工业大学 一种带有自适应交互作用项的多应力加速模型构建方法
CN114818348A (zh) * 2022-05-06 2022-07-29 哈尔滨工业大学 考虑多应力耦合作用对产品退化影响的可靠性评估方法
CN116467939A (zh) * 2023-04-10 2023-07-21 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 电能表寿命预测方法、装置、计算机设备和存储介质
CN116522674A (zh) * 2023-05-22 2023-08-01 北京理工大学 一种基于多应力综合作用的加速退化建模评估方法
CN116522674B (zh) * 2023-05-22 2024-10-11 北京理工大学 一种基于多应力综合作用的加速退化建模评估方法
CN117252040A (zh) * 2023-11-16 2023-12-19 杭州中安电子股份有限公司 多应力加速试验分析方法、电子设备和可读存储介质
CN117252040B (zh) * 2023-11-16 2024-02-06 杭州中安电子股份有限公司 多应力加速试验分析方法、电子设备和可读存储介质

Also Published As

Publication number Publication date
CN110795887B (zh) 2024-08-02

Similar Documents

Publication Publication Date Title
CN110795887A (zh) 多应力加速寿命试验分析方法和装置
Zhang et al. An age-and state-dependent nonlinear prognostic model for degrading systems
Cui et al. Data‐driven model reduction for the Bayesian solution of inverse problems
Petra et al. A Bayesian approach for parameter estimation with uncertainty for dynamic power systems
CN107563067A (zh) 基于自适应代理模型的结构可靠性分析方法
US20150039244A1 (en) Failure Rate Estimation From Multiple Failure Mechanisms
Bounceur et al. Estimation of analog parametric test metrics using copulas
Dhople et al. A parametric uncertainty analysis method for Markov reliability and reward models
CN111859658A (zh) 一种产品贮存寿命与可靠性评估方法
Liu et al. Planning sequential constant-stress accelerated life tests with stepwise loaded auxiliary acceleration factor
Ye et al. A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling
CN110990135A (zh) 基于深度迁移学习的Spark作业时间预测方法和装置
Weaver et al. Bayesian methods for planning accelerated repeated measures degradation tests
CN113295399B (zh) 换流阀元件状态评估方法、装置、电子设备和存储介质
Tae-Jin Comparative study on the performance attributes of NHPP software reliability model based on Weibull family distribution
CN109766518A (zh) 考虑样本个体差异的不确定加速退化建模和分析方法
CN107204616B (zh) 基于自适应稀疏伪谱法的电力系统随机状态估计方法
CN111680389B (zh) 设备寿命量化方法、装置、计算机设备和存储介质
CN112926259A (zh) 一种基于rbf神经网络模型预测半导体器件结温的方法
Kerschen et al. Generation of accurate finite element models of nonlinear systems–application to an aeroplane-like structure
CN117454735A (zh) 模型生成方法、可靠性分析方法、系统、设备和介质
CN109492192A (zh) 基于signature向量对Ⅱ型双边删失系统寿命数据的参数估计方法
Stratigopoulos et al. A general method to evaluate RF BIST techniques based on non-parametric density estimation
Hernández et al. On the precision evaluation in non-linear sensor network design
Ihrens et al. Assessing the complexity of dc-system simulations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant