CN110787772B - 一种磁性焦糖化碳纳米材料及其制备方法与应用 - Google Patents

一种磁性焦糖化碳纳米材料及其制备方法与应用 Download PDF

Info

Publication number
CN110787772B
CN110787772B CN201911112507.5A CN201911112507A CN110787772B CN 110787772 B CN110787772 B CN 110787772B CN 201911112507 A CN201911112507 A CN 201911112507A CN 110787772 B CN110787772 B CN 110787772B
Authority
CN
China
Prior art keywords
magnetic
gamma
caramelized
cnms
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911112507.5A
Other languages
English (en)
Other versions
CN110787772A (zh
Inventor
陈静
占金华
李念露
宋寅爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201911112507.5A priority Critical patent/CN110787772B/zh
Publication of CN110787772A publication Critical patent/CN110787772A/zh
Application granted granted Critical
Publication of CN110787772B publication Critical patent/CN110787772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及一种磁性焦糖化碳纳米材料及其制备方法与应用,所述的磁性焦糖化碳纳米材料为γ‑Fe2O3@CNMs,制备方法为将γ‑Fe2O3纳米球、氢氧化钠水溶液、乙二醇、葡萄糖混合均匀后超声,然后将混合液密封后在150‑200℃油浴加热条件下,高速搅拌反应60‑120min,得到磁性焦糖化碳纳米材料γ‑Fe2O3@CNMs。本发明将混合液密封后高速搅拌反应,在高速搅拌条件下焦糖化碳材料成功的包覆在磁性纳米颗粒表面,包覆均匀完整,得到的磁性焦糖化碳纳米材料γ‑Fe2O3@CNMs平均粒径为20nm,比表面积为181.9m2/g,饱和磁化强度为56.85emu/g,材料表面具有丰富的官能团,材料分散性好,比较面积大,吸附位点多,饱和磁化强度高,能够实现物质的快速吸附和洗脱。

Description

一种磁性焦糖化碳纳米材料及其制备方法与应用
技术领域:
本发明涉及一种磁性焦糖化碳纳米材料及其制备方法与应用,属于分析技术和碳纳米材料领域。
背景技术:
1999年,Safariková等人(Journal of Magnetism and Magnetic Materials,1999,194,108–112)开展了以磁性材料作为吸附剂的磁性固相萃取技术,该方法将磁性吸附剂和分析物溶液充分混合,使分析物被磁性吸附剂吸附,然后通过外加磁场实现分析物与基质溶液的分离,通过合适的洗脱剂对分析物进行富集吸脱。
碳纳米材料大多具备化学和热力学稳定性、表面性质可控,被广泛应用到气体存储、催化和物质的分离吸附。碳纳米管、石墨烯、氧化石墨烯等碳纳米材料具有大的比表面积,含有较多的π-π键,有助于吸附含双键的小分子。焦糖化的碳纳米材料(Carbon,2016,110,321-329)在低于200摄氏度下合成,材料表面具有丰富的官能团,非常适合用于物质的分离吸附;但是,由于材料为粉末状,在水相和有机相呈高度分散状态,收集困难。
孔雀石绿和结晶紫都属于三苯甲烷类染料,主要用于水生动物真菌病和水霉病的防治,但是有文献报道孔雀石绿或结晶紫对环境生态危害较大。已有文献报道孔雀石绿或结晶紫的检测,但通常分析灵敏度或分析效率不高。因此,亟需开发一种新材料,该材料该可以实现对孔雀石绿和结晶紫的快速高效富集。
发明内容:
针对现有技术的不足,本发明提供一种磁性焦糖化碳纳米材料及其制备方法与应用,该材料该可以实现对孔雀石绿和结晶紫的快速高效富集,并且回收方便,材料本身分散性好,比较面积大,吸附位点多,磁性强,能够实现物质的快速吸附和洗脱。
本发明是通过如下技术方案实现的:
一种磁性焦糖化碳纳米材料,所述的磁性焦糖化碳纳米材料为γ-Fe2O3@CNMs,该材料以磁性纳米颗粒为内核,焦糖化碳材料包覆在磁性纳米颗粒表面,磁性焦糖化纳米颗粒的粒径为15-25nm,包覆的焦糖化碳材料的厚度<3nm。
根据本发明优选的,焦糖化碳材料是以葡萄糖为原料进行焦糖化反应并原位地包覆在磁性纳米颗粒表面。
本发明还提供一种磁性焦糖化碳纳米材料的制备方法。
一种磁性焦糖化碳纳米材料的制备方法,包括步骤如下:
将粒径为12-22nm的γ-Fe2O3纳米球、氢氧化钠水溶液、乙二醇、葡萄糖混合均匀后超声60-100min,然后将混合液密封后在150-200℃油浴加热条件下,高速搅拌反应60-120min,反应完成后利用磁性吸附收集反应得到的磁性固体微粒,高纯水、乙醇交替清洗三遍,收集固体真空干燥,得到磁性焦糖化碳纳米材料γ-Fe2O3@CNMs。
根据本发明优选的,氢氧化钠水溶液的浓度为0.001-0.1mol/L。
根据本发明优选的,γ-Fe2O3纳米球与氢氧化钠水溶液的质量体积比为:(10-30):(60-90),单位:mg/mL。
根据本发明优选的,氢氧化钠水溶液与乙二醇的体积比为:(60-90):(5-20)。
根据本发明优选的,葡萄糖与与乙二醇的的质量体积比为:(1-5):(5-20),单位:g/mL。
根据本发明优选的,高速搅拌转速为10000-20000r/min。
根据本发明优选的,真空干燥温度为60℃。
根据本发明优选的,γ-Fe2O3纳米球是按如下方法制备得到:
将79.4mg四水合氯化亚铁、151.4mg六水合氯化铁、80mL超纯水加入容器中,通氮气30min,搅拌下逐滴加入3mL氨水,利用磁性吸附收集得到的磁性固体微粒,高纯水、乙醇交替清洗三遍,收集固体,在60℃下真空干燥得到γ-Fe2O3纳米球。
磁性焦糖化碳纳米材料的应用,作为磁性固相萃取吸附剂使用,将所述磁性的焦糖化碳纳米材料γ-Fe2O3@CNMs加入到含有孔雀石绿和/或结晶紫的液体基质中,对孔雀石绿和/或结晶紫进行吸附和富集,焦糖化碳纳米材料γ-Fe2O3@CNMs的加入量为0.5-2mg。
根据本发明优选的,所述液体基质为泉水。
本发明具有如下优点及效果:
1、本发明制备得到的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs平均粒径为20nm,比表面积为181.9m2/g,饱和磁化强度为56.85emu/g,材料分散性好,比较面积大,吸附位点多,饱和磁化强度高,能够实现物质的快速吸附和洗脱。
2、本发明将混合液密封后高速搅拌反应,在高速搅拌条件下焦糖化碳材料成功的包覆在磁性纳米颗粒表面,包覆均匀完整,材料表面具有丰富的官能团,在水相和有机相中分散性好,非常适合用于物质的吸附分离。
3、本发明的制备方法在氢氧化钠水溶液、乙二醇存在的环境下进行,确保了γ-Fe2O3纳米球磁性不被减弱,得到的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs磁化强度高,分散性好。
附图说明
图1是实施例1制得的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的红外光谱图。
图2是γ-Fe2O3纳米球及实施例1制得的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的透射电镜图,图2a为γ-Fe2O3纳米球,图2b为γ-Fe2O3@CNMs。
图3是实施例1制得的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的磁滞曲线图。
图4是实施例1制得的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的BET曲线。
图5是实施例1制得的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs用于富集分析孔雀石绿(MG)和结晶紫(CV)的超高效液相色谱图,图5a为富集后,图5b为富集前。
图6是实施例2制得的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs用于富集分析孔雀石绿(MG)和结晶紫(CV)的超高效液相色谱-质谱图,图6a为富集前的加标泉水,图6b为用γ-Fe2O3@CNMs富集后的加标泉水。
具体实施方式:
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述,但不仅限于此,本发明未详尽说明的,均按本领域常规技术
实施例1:
合成磁性焦糖化碳纳米材料γ-Fe2O3@CNMs。
(1)称取79.4mg四水合氯化亚铁、151.4mg六水合氯化铁,量取80mL超纯水加入容器中,通氮气30min排尽装置内空气,搅拌下逐滴加入3mL氨水,利用磁性吸附收集得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体,在60℃下真空干燥,得到γ-Fe2O3纳米球。
(2)容器中加入20mg γ-Fe2O3纳米球,80mL浓度为0.001mol/L的氢氧化钠水溶液,10ml乙二醇、3g葡萄糖,溶解后超声90min,将混合液密封后在190℃油浴加热条件下,以15000r/min的转速高速搅拌反应90min,利用磁性吸附收集反应得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体在60℃下真空干燥生成γ-Fe2O3@CNMs。
图1为磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的红外光谱图,在3200cm-1处出现了O-H的伸缩振动峰,说明了该材料有羟基官能团。在1607cm-1有明显的C=O的伸缩振动峰,在1401cm-1处为C-O的面内弯曲振动峰。可以推断材料表面有羟基、羰基等官能团。这些官能团的存在使合成的磁性碳纳米材料具有亲水性,能够较好的分散在水溶液中。
图2是γ-Fe2O3纳米球及实施例1制得的磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的透射电镜图,与图2a γ-Fe2O3纳米球相比,图2b所示的γ-Fe2O3@CNMs表面明显包裹了一层薄膜。由图可知,Fe2O3@CNMs的粒径大概为20nm。
图3是磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的磁滞曲线图,饱和磁化强度为56.85emu/g。
图4是磁性焦糖化碳纳米材料Fe2O3@CNMs的BET曲线,比表面积为181.9m2/g。
应用实验例1:磁性焦糖化碳纳米材料γ-Fe2O3@CNMs富集孔雀石绿和结晶紫。
将1mg磁性焦糖化碳纳米材料γ-Fe2O3@CNMs加入25mL含15μg/L孔雀石绿(MG)和结晶紫(CV)的水溶液,吸附时间为5min。磁性分离后去掉上清,用水洗涤3次,洗脱溶剂为1mL含0.2%甲酸的甲醇,脱附时间为1min。洗脱液直接用超高效液相色谱分析,γ-Fe2O3@CNMs富集MG和CV的超高效液相色谱图如图5所示。
实施例2:
合成磁性焦糖化碳纳米材料γ-Fe2O3@CNMs。
(1)称取79.4mg四水合氯化亚铁、151.4mg六水合氯化铁,量取80mL超纯水加入容器中,通氮气30min排尽装置内空气,搅拌下逐滴加入3mL氨水。利用磁性吸附收集得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体,在60℃下真空干燥得到γ-Fe2O3纳米球。
(2)容器中加入30mg γ-Fe2O3纳米球,100mL浓度为0.01mol/L的氢氧化钠水溶液,10ml乙二醇、5g葡萄糖,溶解后超声90min,将混合液密封后在190℃油浴加热条件下,以18000r/min的转速高速搅拌反应90min,利用磁性吸附收集反应得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体在60℃下真空干燥生成γ-Fe2O3@CNMs。
应用实验例2:磁性焦糖化碳纳米材料γ-Fe2O3@CNMs富集泉水中孔雀石绿和结晶紫。
将采集到的泉水用0.22um的滤膜过滤,存放在棕色瓶中,放置4℃冰箱待用。1mg磁性焦糖化碳纳米材料γ-Fe2O3@CNMs加入25mL泉水,调节pH至中性,吸附时间为5min。磁性分离后去掉上清,用水洗涤3次,洗脱溶剂为1mL含0.2%甲酸的甲醇,脱附时间为1min。洗脱液直接用超高效液相色谱-质谱分析。
配制MG和CV的混合标准液,浓度为20μg/L,16μg/L,12μg/L L,8μg/L,4μg/L,2μg/L,0.8μg/L,0.4μg/L,0.2μg/L,0.04μg/L,0.02μg/L。各取25mL,调节pH至中性,1mg磁性焦糖化碳纳米材料γ-Fe2O3@CNMs,吸附时间为5min。磁性分离后去掉上清,用水洗涤1次,洗脱溶剂为1mL含0.2%甲酸的甲醇,脱附时间为1min。洗脱液直接用超高效液相色谱-质谱分析。表1是MG和CV的定量分析方法表征数据,证明制备的材料γ-Fe2O3@CNMs可以吸附极其微量的MG和CV,在浓度0.02-20μg/L范围内吸附量与分析物浓度呈线性关系。
表1:磁性焦糖化碳纳米材料γ-Fe2O3@CNMs富集孔雀石绿和结晶紫的方法表征
Figure BDA0002273142110000051
图6是γ-Fe2O3@CNMs富集MG和CV的超高效液相色谱-质谱图,图6a为富集后,图6b为富集前,加标浓度为0.003μg/L。可以从图中看出,没有用材料处理时,检测不到痕量的MG和CV,而用材料处理后可以从泉水中检测到CV和MG。
对比例1:
磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的制备方法同实施例1,不同之处在于:
步骤(2)的反应在8000r/min的转速下进行。
对比例2:
磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的制备方法同实施例1,不同之处在于:
步骤(2)的反应在5000r/min的转速下进行。
测试对比例1、对比例2的包覆情况,对比例1、对比例2的焦糖化碳材料未包覆在磁性纳米颗粒表面。

Claims (2)

1.合成磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的方法,步骤如下:
(1)称取79.4 mg四水合氯化亚铁、151.4mg六水合氯化铁,量取80 mL超纯水加入容器中,通氮气30 min排尽装置内空气,搅拌下逐滴加入3 mL 氨水,利用磁性吸附收集得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体,在60 ℃下真空干燥,得到γ-Fe2O3纳米球;
(2)容器中加入20 mgγ-Fe2O3纳米球,80mL浓度为0.001 mol/L的氢氧化钠水溶液,10ml乙二醇、3 g葡萄糖,溶解后超声90 min,将混合液密封后在190℃油浴加热条件下,以15000r/min的转速高速搅拌反应90min,利用磁性吸附收集反应得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体在60 ℃下真空干燥生成γ-Fe2O3@CNMs。
2.合成磁性焦糖化碳纳米材料γ-Fe2O3@CNMs的方法,步骤如下:
(1)称取79.4 mg四水合氯化亚铁、151.4mg六水合氯化铁,量取80 mL超纯水加入容器中,通氮气30 min排尽装置内空气,搅拌下逐滴加入3 mL 氨水;
利用磁性吸附收集得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体,在60℃下真空干燥得到γ-Fe2O3纳米球;
(2)容器中加入30 mgγ-Fe2O3纳米球,100 mL浓度为0.01 mol/L的氢氧化钠水溶液,10ml乙二醇、5 g葡萄糖,溶解后超声90 min,将混合液密封后在190℃油浴加热条件下,以18000r/min的转速高速搅拌反应90 min,利用磁性吸附收集反应得到的磁性固体微粒,高纯水和乙醇交替清洗三遍,收集固体在60 ℃下真空干燥生成γ-Fe2O3@CNMs。
CN201911112507.5A 2019-11-14 2019-11-14 一种磁性焦糖化碳纳米材料及其制备方法与应用 Active CN110787772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911112507.5A CN110787772B (zh) 2019-11-14 2019-11-14 一种磁性焦糖化碳纳米材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911112507.5A CN110787772B (zh) 2019-11-14 2019-11-14 一种磁性焦糖化碳纳米材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110787772A CN110787772A (zh) 2020-02-14
CN110787772B true CN110787772B (zh) 2022-02-18

Family

ID=69444739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911112507.5A Active CN110787772B (zh) 2019-11-14 2019-11-14 一种磁性焦糖化碳纳米材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110787772B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792697B (zh) * 2020-06-10 2021-11-09 山东大学 磁性焦糖化碳纳米材料在去除水体中重金属的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664668A (zh) * 2009-09-29 2010-03-10 中国科学院生态环境研究中心 核壳式Fe3O4/C磁性纳米固相萃取剂的制备及应用
CN102110506A (zh) * 2010-11-17 2011-06-29 安徽工业大学 一种碳基磁性介孔复合微球及其制备方法
CN103537237A (zh) * 2013-09-29 2014-01-29 沈阳理工大学 一种Fe3O4@C@PAM核壳磁性纳米材料的制备方法
CN103908947A (zh) * 2014-04-03 2014-07-09 上海应用技术学院 一种油水分离用磁性多孔碳/氧化铁纳米复合材料的制备方法
CN105327704A (zh) * 2015-11-20 2016-02-17 陕西环珂生物科技有限公司 一种γ-Fe203催化剂的制备方法
CN105536754A (zh) * 2014-10-30 2016-05-04 宝山钢铁股份有限公司 一种C/γ-Fe2O3复合材料循环使用的方法
CN105948132A (zh) * 2016-05-06 2016-09-21 上海应用技术学院 一种三维γ-Fe2O3纳米材料的制备方法及其应用
CN106478084A (zh) * 2016-09-13 2017-03-08 北京三聚环保新材料股份有限公司 一种磁性氧化铁的制备方法
CN109437322A (zh) * 2018-11-05 2019-03-08 浙江工业大学 一种金属氧化物复合碳球及其制备方法
CN109465010A (zh) * 2018-11-23 2019-03-15 甘肃自然能源研究所 一种磁性三氧化二铁-石墨碳纳米复合材料的制备及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664668A (zh) * 2009-09-29 2010-03-10 中国科学院生态环境研究中心 核壳式Fe3O4/C磁性纳米固相萃取剂的制备及应用
CN102110506A (zh) * 2010-11-17 2011-06-29 安徽工业大学 一种碳基磁性介孔复合微球及其制备方法
CN103537237A (zh) * 2013-09-29 2014-01-29 沈阳理工大学 一种Fe3O4@C@PAM核壳磁性纳米材料的制备方法
CN103908947A (zh) * 2014-04-03 2014-07-09 上海应用技术学院 一种油水分离用磁性多孔碳/氧化铁纳米复合材料的制备方法
CN105536754A (zh) * 2014-10-30 2016-05-04 宝山钢铁股份有限公司 一种C/γ-Fe2O3复合材料循环使用的方法
CN105327704A (zh) * 2015-11-20 2016-02-17 陕西环珂生物科技有限公司 一种γ-Fe203催化剂的制备方法
CN105948132A (zh) * 2016-05-06 2016-09-21 上海应用技术学院 一种三维γ-Fe2O3纳米材料的制备方法及其应用
CN106478084A (zh) * 2016-09-13 2017-03-08 北京三聚环保新材料股份有限公司 一种磁性氧化铁的制备方法
CN109437322A (zh) * 2018-11-05 2019-03-08 浙江工业大学 一种金属氧化物复合碳球及其制备方法
CN109465010A (zh) * 2018-11-23 2019-03-15 甘肃自然能源研究所 一种磁性三氧化二铁-石墨碳纳米复合材料的制备及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis and characterization of g-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material;Guanglei Wu et al.;《Journal of Alloys and Compounds》;20150903;第652卷;346-350 *
高稳定性水基γ-Fe2O3超顺磁纳米颗粒制备及其表面改性研究;王昆州等;《云南大学学报(自然科学版)》;20171231;829-830页1.2部分 *

Also Published As

Publication number Publication date
CN110787772A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN108620048B (zh) 聚乙烯亚胺修饰的磁性微球制备方法及应用
Khoddami et al. A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples
CN109180884B (zh) 一种用于脱除展青霉素的纳米材料的合成与应用
Tarigh et al. Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices
Alonso et al. Development of an on-line solid phase extraction method based on new functionalized magnetic nanoparticles. Use in the determination of mercury in biological and sea-water samples
Guo et al. Multi-walled carbon nanotubes modified with iron oxide and manganese dioxide (MWCNTs-Fe3O4− MnO2) as a novel adsorbent for the determination of BPA
CN108732273B (zh) 一种用于分析食品和饮用水中痕量磺胺类抗生素的方法
Chen et al. Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples
CN106883411B (zh) 超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用
CN114409913B (zh) 一种磁性金属有机框架材料及其制备方法和应用
Wu et al. Synthesis of cobalt-based magnetic nanoporous carbon core-shell molecularly imprinted polymers for the solid-phase extraction of phthalate plasticizers in edible oil
CN102989418A (zh) 一种表面氨基化Fe3O4纳米粒子及其制备方法与应用
Banaei et al. Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag (I) from aqueous samples
Yan et al. Restricted accessed nanoparticles for direct magnetic solid phase extraction of trace metal ions from human fluids followed by inductively coupled plasma mass spectrometry detection
Yan et al. Synthesis of 3-fluorobenzoyl chloride functionalized magnetic sorbent for highly efficient enrichment of perfluorinated compounds from river water samples
CN110841612A (zh) 一种磁性NH2-MOFs纳米材料的制备及其应用
CN109351335B (zh) 一种磁性三叠烯-三嗪共价骨架固相萃取剂及其制备方法和应用
CN112495346B (zh) 一种基于金属有机骨架的磁性多孔材料的制备及应用
Zhang et al. Nitrogen-rich carbon nitride as solid-phase microextraction fiber coating for high-efficient pretreatment of polychlorinated biphenyls from environmental samples
Wu et al. Speciation of chromium in water using crosslinked chitosan-bound FeC nanoparticles as solid-phase extractant, and determination by flame atomic absorption spectrometry
Cai et al. Preparation of naphthyl functionalized magnetic nanoparticles for extraction of polycyclic aromatic hydrocarbons from river waters
CN114405479A (zh) 一种磁性共价有机骨架纳米材料、制备方法及应用
CN110787772B (zh) 一种磁性焦糖化碳纳米材料及其制备方法与应用
Liang et al. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples
Yu et al. Room-temperature synthesis of dual-functionalized magnetic microporous organic network for efficient extraction of vanillins in food

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant