CN110785649A - 样本过滤装置 - Google Patents

样本过滤装置 Download PDF

Info

Publication number
CN110785649A
CN110785649A CN201880042213.7A CN201880042213A CN110785649A CN 110785649 A CN110785649 A CN 110785649A CN 201880042213 A CN201880042213 A CN 201880042213A CN 110785649 A CN110785649 A CN 110785649A
Authority
CN
China
Prior art keywords
sample
filtration device
sample filtration
filter
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880042213.7A
Other languages
English (en)
Inventor
埃斯特万·门多萨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ai SitewanMenduosa
Original Assignee
Ai SitewanMenduosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ai SitewanMenduosa filed Critical Ai SitewanMenduosa
Publication of CN110785649A publication Critical patent/CN110785649A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/492Determining multiple analytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0605Valves, specific forms thereof check valves
    • B01L2400/0616Ball valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices

Abstract

提供了样本过滤装置。该装置可以包括过滤膜,过滤膜被定位在输入基底与输出基底之间并且使用粘合剂层连结。过滤器组件可以与各种样本收集和分配装置一起使用,例如柔性容器、球形移液管、微型移液管等。向过滤器组件施加压力,例如使用柔性容器、球形移液管或微型移液管,可以迫使流体穿过过滤膜并且到达测试条或测试盒上。

Description

样本过滤装置
相关申请的交叉引用
本申请要求2017年6月26日提交的美国临时专利申请第62/525,039号的权益,该美国临时专利申请的全部公开内容据此通过引用并入本文。
通过引用并入
本说明书中提及的所有出版物和专利申请均通过引用以其整体并入本文,其程度如同每个单独的出版物或专利申请被明确地和单独地指出通过引用并入。
领域
本申请涉及用于样本处理的过滤器领域。
背景
样本处理是一个复杂的过程,原因在于其通常由经过培训的专业人员使用特制的装备来执行制备样本所需的所有步骤。通常,用于横向流动免疫测定(lateral flowimmunoassay)的样本处理包括:收集特定体积的血液;将该体积与流动的缓冲溶液混合,从缓冲液和血浆中分离细胞,并且将特定体积的稀释血浆输送至测试条或装置。完成这些任务的典型方案包括使用精密移液管通过静脉穿刺从真空管中收集血液样本,并且将样本沉积到离心管中。随后,将特定量的缓冲溶液与血液样本一起转移(pipet)到离心管中。然后将混合物数次吸入到移液管中直至其均匀。随后,混合物以高转速被离心持续特定量的时间。例如,Eppendorf MiniSpin可以以8000rpm旋转60秒,以分离500uL的全血。随后,特定量的上清液被转移到测试条上。
正如上述程序所表明的,样本处理目前是一个耗时的过程,需要经过培训的专业人员和昂贵的装备来准备样本。存在允许非专业人士在家和在现场执行样本处理的更简单的过程的需要。
本公开的概述
在一个方面中,提供了用于处理样本的样本过滤装置的实施方式。该装置包括:柔性容器;帽(cap),该帽被构造成密封到柔性容器,该帽包括一个或更多个入口孔,该一个或更多个入口孔与柔性容器流体连通;不对称过滤器,该不对称过滤器与一个或更多个入口孔流体连通并且被构造成将样本过滤成滤液;支撑部件,该支撑部件包括一个或更多个通道,该一个或更多个通道与来自不对称过滤器的滤液流体连通;粘合剂层,该粘合剂层被构造为将过滤器连结到帽或支撑部件;和出口,该出口与一个或更多个通道流体连通。
在一些实施方式中,粘合剂层是双面粘合剂层。帽可以经由螺纹连接密封到柔性容器。在一些实施方式中,样本流体包括全血。粘合剂层可以包括切口部分,该切口部分被构造为当粘合剂层被粘附到不对称过滤器时暴露不对称过滤器。在一些实施方式中,一个或更多个通道包括蛇形通道(serpentine channel)或多个通道。出口可以包括喷口(spout)。在一些实施方式中,帽包括聚丙烯、聚碳酸酯、铝和钢中的至少一种。帽的连结粘合剂层的表面可以是大体平坦的。在一些实施方式中,帽的连结粘合剂层的表面包括凸起特征(proud features)。支撑部件的连结粘合剂层的表面可以是大体平坦的。在一些实施方式中,支撑部件的连结粘合剂层的表面包括凸起特征。粘合剂层可以包括基于硅酮(silicone)或丙烯酸的粘合剂。在一些实施方式中,过滤膜的宽度为约15mm。过滤膜的长度可以为约15mm。在一些实施方式中,不对称过滤器包括约0.8μm的孔径。过滤膜可以包括聚碳酸酯、聚砜、聚酯、聚乙烯和聚丙烯中的至少一种。在一些实施方式中,帽包括围绕其周边的脊。支撑部件的尺寸可以被设计成装配在帽的脊的内部。在一些实施方式中,支撑部件包括围绕其周边的脊。帽的尺寸可以被设计成装配在支撑部件的脊的内部。在一些实施方式中,一个或更多个通道贯穿过滤膜的区域延伸。一个或更多个通道可以包括在通道之间约1.5mm的间距。在一些实施方式中,通道的构型基于支撑部件的材料和表面粗糙度来选择。帽的密封部分可以小于帽的周边,以适应大于容器开口尺寸的过滤器尺寸。在一些实施方式中,装置包括拭子(swab),该拭子被连接到帽并且贯穿柔性容器的长度延伸。拭子的端部可以包括底切(undercut),该底切被构造成与帽的切口部分匹配。在一些实施方式中,当帽被附接到拭子时,装置包括穿过围绕拭子的切口的流体路径。粘合剂层可以被构造成将过滤器连结到帽。粘合剂层可以被构造成将过滤器连结到支撑部件。
在另一个方面中,提供了过滤样本的方法的实施方式。该方法包括:提供样本过滤装置,该样本过滤装置包括柔性容器和被构造成密封到柔性容器的帽;将样本流体放置到柔性容器中;挤压柔性容器,从而推动样本流体穿过帽中的一个或更多个入口孔、穿过不对称过滤器以产生滤液,并且推动滤液穿过一个或更多个通道到达出口。
在一些实施方式中,方法包括挤压柔性容器。样本流体可以包括全血。在一些实施方式中,方法包括向柔性容器添加缓冲溶液。方法可以包括在挤压柔性容器之前混合样本流体。在一些实施方式中,方法包括在挤压柔性容器之前翻转柔性容器。挤压容器可以产生约0.25psi-5psi的压力。在一些实施方式中,方法包括在测试或诊断设备中使用滤液。方法可以包括在横向流动免疫测定(LFIA)测试中使用滤液。在一些实施方式中,方法包括使用滤液以用于血液酒精含量、大麻素检测或维生素缺乏的测试。方法可以包括使用滤液以分离在血流中循环的游离(cell free)DNA。在一些实施方式中,方法包括在横向流动免疫测定测试条上使用滤液。
在另一个方面中,提供了制造样本过滤装置的方法的实施方式。该方法包括:提供第一基底,该第一基底包括入口孔;提供不对称过滤器,该不对称过滤器与入口孔流体连通并且被构造成将样本过滤成滤液;提供第二基底,该第二基底包括一个或更多个通道,该一个或更多个通道与来自过滤器的滤液流体连通并且与出口孔流体连通;以及提供粘合剂层,该粘合剂层包括小于不对称过滤器的尺寸的中心切口,该粘合剂层被构造为将不对称过滤器连结到第一基底或第二基底。
在一些实施方式中,方法包括将过滤器组件压紧在一起,以确保粘合剂层结合到邻近表面并且密封过滤膜的周边。第一基底可以是帽。在一些实施方式中,方法包括将柔性连接器附接到第一基底或第二基底。附接柔性连接器可以包括将柔性连接器包覆成型到第一基底上。在一些实施方式中,方法包括附接柔性连接器,附接柔性连接器包括使用机械互锁以将柔性连接器附接到第一基底。柔性连接器可以包括通向管部分的漏斗形状的入口,该管部分与缩小孔流体连通,缩小孔具有小于管部分的直径的直径,其中该缩小孔与第一基底的入口孔流体连通。在一些实施方式中,方法包括在入口孔附近的腔中提供球阀,该球阀被构造成可逆地密封入口孔。方法可以包括使用粘合剂层将不对称过滤器粘附到第一基底。在一些实施方式中,方法包括使用粘合剂层将不对称过滤器粘附到第二基底。方法可以包括围绕第二基底的至少一部分形成脊。在一些实施方式中,第一基底的形状被设计为装配在脊内。方法可以包括围绕第一基底的至少一部分形成脊。在一些实施方式中,第二基底的形状被设计为装配在脊内。
在另一个方面中,提供了一种样本过滤装置。该装置包括:柔性连接器,该柔性连接器包括通向管部分的漏斗形状的开口;输入基底,该输入基底包括入口缩小孔,该入口缩小孔与管部分流体连接;不对称过滤膜,该不对称过滤膜与入口缩小孔流体连通并且被构造成将样本过滤成滤液;粘合剂层,该粘合剂层被构造为连结到不对称过滤膜,该粘合剂层包括中心切口,该中心切口被构造为暴露过滤膜的中心部分;以及输出基底,该输出基底包括一个或更多个通道,该一个或更多个通道与来自不对称过滤器的滤液流体连通,该一个或更多个通道与输出基底的出口流体连通。
在一些实施方式中,样本过滤装置包括球阀,该球阀被构造成可逆地密封入口缩小孔。球可以被定位在入口缩小孔与过滤膜之间的腔中。在一些实施方式中,球阀被构造成防止由激活动作的释放引起的回流。球可以包括橡胶、塑料、陶瓷和金属中的至少一种。在一些实施方式中,球的材料基于过滤器组件的预期的使用取向来选择。低密度材料可以被选择以用于直立取向。高密度材料可以被选择以用于颠倒取向。在一些实施方式中,柔性连接器的开口和管部分的形状被设计为接收微型移液管尖端。柔性连接器的外表面的形状可以被设计为与挤压瓶的开口的内表面匹配并且密封到该内表面。在一些实施方式中,漏斗形状的开口包括约1mm的长度。漏斗形状的开口可以包括约45°的角度。在一些实施方式中,管部分包括约7mm的长度。管部分可以包括约1.5mm的最小内直径。在一些实施方式中,缩小孔具有约0.75mm的直径。过滤膜可以被粘附到输入基底。在一些实施方式中,过滤膜被粘附到输出基底。柔性连接器可以包括TPE、硅酮、橡胶、聚氨酯、LDPE、HDPE、PP和增塑PVC中的至少一种。在一些实施方式中,柔性连接器的壁厚度为约2mm。粘合剂层可以是双面粘合剂层。在一些实施方式中,样本流体包括全血。不对称过滤器的尺寸可以小于粘合剂层的外周边的尺寸。在一些实施方式中,一个或更多个通道包括蛇形通道或多个通道。出口可以包括喷口。在一些实施方式中,输入基底和输出基底中的至少一个基底的邻近过滤膜的表面是平坦的。输入基底和输出基底中的至少一个基底的邻近过滤膜的表面可以包括凸起特征。在一些实施方式中,粘合剂层包括基于硅酮或丙烯酸的粘合剂。过滤膜的宽度可以为约15mm。在一些实施方式中,过滤膜的长度为约15mm。不对称过滤器可以包括约0.8μm的孔径。在一些实施方式中,过滤膜包括聚碳酸酯、聚砜、聚酯、聚乙烯和聚丙烯中的至少一种。输出基底可以包括围绕其周边的脊。在一些实施方式中,输入基底的尺寸被设计为装配在输出基底的脊的内部。输入基底可以包括围绕其周边的脊。在一些实施方式中,输出基底的尺寸被设计为装配在输入基底的脊的内部。一个或更多个通道贯穿过滤膜的区域延伸。在一些实施方式中,一个或更多个通道包括在通道之间约1.5mm的间距。通道的构型可以基于支撑部件的材料和表面粗糙度来选择。在一些实施方式中,入口缩小孔的直径小于管部分的直径。柔性连接器可以使用机械互锁被连接到输入基底。在一些实施方式中,提供了一种诊断系统,该诊断系统包括样本过滤装置和测试盒。测试盒包括对准特征,这些对准特征被构造为将样本过滤装置的出口与测试盒的样本输入区域对准。盒可以包括闩锁件(latches),这些闩锁件被构造为将样本过滤装置固定到测试盒。在一些实施方式中,对准特征是闩锁件。输出基底可以包括粘合剂,该粘合剂被构造为将样本过滤装置粘附到测试盒。在一些实施方式中,输出基底包括结合试剂,该结合试剂被构造为将样本过滤装置粘附到测试盒。管部分的顶部部分可以包括被构造成与倒钩匹配的底切。在一些实施方式中,提供了包括多个样本过滤装置的阵列。阵列可以包括2、3、4、6、8或12个样本过滤装置。
在又另一个方面中,提供了一种过滤样本的方法。该方法包括:提供样本过滤装置,该样本过滤装置包括:柔性连接器,该柔性连接器包括通向管部分的漏斗形状的开口;该管部分与输入基底的入口流体连通,该入口与不对称过滤膜流体连通,该不对称过滤膜被连接到粘合剂层,以及输出基底,该输出基底包括一个或更多个通道并且包括出口,该一个或更多个通道被构造为接收来自过滤膜的滤液;将样本收集或分配装置附接到柔性容器;以及向样本收集或分配装置施加压力,从而推动样本流体穿过不对称过滤器以产生滤液,并且推动滤液穿过一个或更多个通道到达出口。
在一些实施方式中,附接样本收集或分配装置包括将微型移液管尖端插入到漏斗形状的开口中。附接样本收集或分配装置可以包括将柔性连接器插入到柔性容器的开口中。在一些实施方式中,方法包括向柔性容器添加缓冲溶液。方法可以包括挤压柔性容器以将滤液分配在测试条或测试盒上。在一些实施方式中,方法包括在挤压柔性容器之前翻转柔性容器。挤压容器可以产生0.25psi-5psi的压力。在一些实施方式中,附接样本收集或分配装置包括将倒钩插入到漏斗形状的开口中。附接样本收集或分配装置可以包括将凸型连接器插入到漏斗形状的开口中。在一些实施方式中,方法包括将滤液分配到测试条上。样本流体可以包括全血。在一些实施方式中,样本流体包括稀释的血液。方法可以包括向样本收集或分配装置添加缓冲溶液。在一些实施方式中,方法包括混合样本流体和缓冲溶液。方法可以包括在测试或诊断设备中使用滤液。方法可以包括在横向流动免疫测定(LFIA)测试中使用滤液。在一些实施方式中,方法包括使用滤液以用于血液酒精含量、维生素缺乏或大麻素检测的测试。方法可以包括使用滤液以分离在血流中循环的游离DNA。在一些实施方式中,该方法包括在横向流动免疫测定测试条上使用滤液。方法可以包括将样本过滤装置放置在测试盒上。在一些实施方式中,将样本过滤装置放置在测试盒上包括将样本过滤装置闩锁到测试盒。将样本过滤装置放置在测试盒上可以包括将样本过滤装置粘附到测试盒。在一些实施方式中,将样本过滤装置放置在测试盒上包括将样本过滤装置结合到测试盒。
在另一个方面中,提供了一种样本过滤装置。该装置包括:输入基底,该输入基底包括入口孔;不对称过滤膜,该不对称过滤膜与入口孔流体连通并且被构造成将样本过滤成滤液;粘合剂层,该粘合剂层被构造为连结到不对称过滤膜,该粘合剂层包括中心切口,该中心切口被构造为暴露过滤膜的中心部分;以及输出基底,该输出基底包括一个或更多个通道,该一个或更多个通道与来自不对称过滤器的滤液流体连通,该一个或更多个通道与输出基底的出口流体连通。
在一些实施方式中,装置包括柔性连接器,该柔性连接器被附接到入口孔,该柔性连接器包括与管状部分流体连通的漏斗形状的开口,管状部分与入口孔流体连通。柔性连接器的形状可以被设计为与柔性容器、球形移液管、微型移液管和倒钩匹配。在一些实施方式中,输入基底或输出基底中的至少一个包括柔性容器的帽的部分。装置可以包括球阀,该球阀被构造成可逆地密封入口孔。在一些实施方式中,球被定位在入口孔与过滤膜之间的腔中。球阀可以被构造成防止由激活动作的释放引起的回流。在一些实施方式中,球包括橡胶、塑料、陶瓷和金属中的至少一种。球的材料可以基于过滤器组件的预期的使用取向来选择。在一些实施方式中,低密度材料被选择以用于直立取向。在一些实施方式中,高密度材料被选择以用于颠倒取向。过滤膜可以被粘附到输入基底。在一些实施方式中,过滤膜被粘附到输出基底。粘合剂层可以是双面粘合剂层。在一些实施方式中,样本流体包括全血。在一些实施方式中,不对称过滤器的尺寸小于粘合剂层的外周边的尺寸。一个或更多个通道可以包括蛇形通道或多个通道。在一些实施方式中,出口包括喷口。输入基底和输出基底中的至少一个基底的邻近过滤膜的表面可以是大体平坦的。在一些实施方式中,输入基底和输出基底中的至少一个基底的邻近过滤膜的表面包括凸起特征。粘合剂层可以包括基于硅酮或丙烯酸的粘合剂。过滤膜的宽度和/或长度可以为约15mm-17mm。在一些实施方式中,不对称过滤器包括约0.8μm的孔径。过滤膜可以包括聚碳酸酯、聚砜、聚酯、聚乙烯和聚丙烯中的至少一种。在一些实施方式中,输出基底包括围绕其周边的脊。输入基底的尺寸可以被设计为装配在输出基底的脊的内部。在一些实施方式中,输入基底包括围绕其周边的脊。输出基底的尺寸可以被设计为装配在输入基底的脊的内部。在一些实施方式中,一个或更多个通道贯穿过滤膜的区域延伸。一个或更多个通道可以包括在通道之间约1.5mm的间距。在一些实施方式中,通道的构型基于支撑部件的材料和表面粗糙度来选择。输入基底和输出基底中的至少一个包括刚性材料。装置可以包括连接器,该连接器被构造为将装置附接到样本收集和分配装置。
在另一个方面中,提供了一种过滤样本的方法。该方法包括:提供样本过滤装置,该样本过滤装置包括:输入基底,该输入基底包括入口孔;不对称过滤膜,该不对称过滤膜与入口孔流体连通并且被构造成将样本过滤成滤液;粘合剂层,该粘合剂层被构造为连结到不对称过滤膜,该粘合剂层包括中心切口,该中心切口被构造为暴露过滤膜的中心部分;以及输出基底,该输出基底包括一个或更多个通道,该一个或更多个通道与来自不对称过滤器的滤液流体连通,该一个或更多个通道与输出基底的出口流体连通;将样本收集或分配装置连接到入口孔;以及激活样本收集或分配装置以驱动样本穿过过滤膜。
在一些实施方式中,方法包括将柔性连接器连接到过滤装置,该柔性连接器与入口孔流体连通。连接样本收集或分配装置可以包括将微型移液管尖端流体地连接到入口孔。在一些实施方式中,连接样本收集或分配装置包括将柔性连接器流体地连接到入口孔。方法可以包括激活样本收集或分配装置,以驱动样本穿过过滤膜。在一些实施方式中,方法包括将滤液分配到测试条上。样本流体可以包括全血或稀释的血液。方法可以包括向样本收集或分配装置添加缓冲溶液。在一些实施方式中,方法包括混合样本流体和缓冲溶液。方法可以包括在测试或诊断设备中使用滤液。在一些实施方式中,方法包括在横向流动免疫测定(LFIA)测试中使用滤液。方法可以包括使用滤液以用于血液酒精含量、维生素缺乏或大麻素检测的测试。在一些实施方式中,方法包括使用滤液以分离在血流中循环的游离DNA。方法可以包括在横向流动免疫测定测试条上使用滤液。在一些实施方式中,方法包括将样本过滤装置放置在测试盒上。方法可以包括将样本过滤装置放置在测试盒上,将样本过滤装置放置在测试盒上包括将样本过滤装置闩锁到测试盒。
附图简述
本发明的新颖性特征在所附权利要求中具体地陈述。通过参考以下阐述说明性实施方式的详细描述和附图将获得对本发明的特征和优点的更好理解,在这些说明性实施方式中利用了本发明的原理,在附图中:
图1A和图1B示出了样本过滤装置的实施方式的各种视图。
图2A-2C示出了样本过滤装置的实施方式的一部分的侧视图。
图3描绘了样本过滤装置的帽的实施方式。
图4示出了样本过滤装置的帽的另一个实施方式。
图5和图6示出了过滤膜的实施方式。
图7A和图7B描绘了样本过滤装置的制造过程的实施方式。
图8A-8E示出了另一个样本过滤装置的实施方式。
图9A-9B示出了样本过滤装置的实施方式。
图10A-10B描绘了连接到柔性容器的样本过滤装置的实施方式。
图11A-11B示出了被插入到样本过滤装置中的微型移液管的实施方式。
图12A-12G示出了被插入到样本过滤装置中并且被用于推动样本穿过该装置的微型移液管的实施方式。
图13A-13F描绘了与测试盒一起使用的样本过滤装置的实施方式。
图14A-14B示出了可以与本文公开的样本过滤装置一起使用的测试盒的实施方式。
图15示出了包括本文公开的样本过滤装置的阵列的实施方式。
图16A-16C描绘了包括柔性容器和拭子的样本过滤装置的实施方式。
图17示出了使用粘合剂层来调节过滤膜尺寸的实施方式。
详细描述
本文提供了样本过滤装置的实施方式。装置包括简单的结构,该结构包括过滤膜,该过滤膜被定位在两个基底之间并且被附接到邻近的表面并且使用粘合剂层(例如,双面粘合剂层)被密封。包围过滤膜的基底可以包括各种部件。例如,在本文公开的一些实施方式中,基底包括可以与柔性容器一起使用的盖的部分。在其他实施方式中,基底包括可以被连接到柔性连接器的基底。在所有实施方式中,装置的过滤部分包括过滤膜,该过滤膜使用粘合剂层被连结到支撑基底,该粘合剂层具有被构造成暴露过滤膜的切口。在过滤膜与支撑基底相对的一侧上的输出基底可以包括单个或多个通道,该单个或多个通道被构造成接收由过滤膜产生的滤液。过滤装置可以包括被构造成输出滤液的出口。
过滤装置的简单设计可以允许制造的简便性,原因在于使用粘合剂层的粘附可以代替传统样本过滤装置的制造中使用的典型的结合工艺(例如,液体粘合剂、超声波焊接)。制造的简便性可以降低过滤产品的消费者成本。过滤装置还提供非常简单的样本处理过程。过程的简单性可以允许样本(例如,全血)的近乎瞬时的捕获和处理,这一任务通常需要几天到几周才能获得结果。产品的简单性还允许通常在实验室进行的处理在现场和在家中执行。该装置可以与测试和诊断装置(例如,HIV测试、妊娠测试)结合使用,从而允许在家以及在现场的快速的采样、测试和诊断。
图1A和图1B示出了样本过滤装置100的实施方式的俯视透视图和仰视透视图。装置100包括柔性容器102和帽104。柔性容器102被构造成使用螺纹106与帽104匹配。其他的匹配机构也是可能的(例如,卡扣配合等)。柔性容器102可以包括圆柱形的形状,但是其他的形状也是可能的(例如,卵形、球形、方形等)。
帽104包括帽壳体108。过滤机构被定位在帽104的顶部区段处。入口孔110允许样本流体从柔性容器进入过滤机构。挤压柔性容器可以产生压力梯度,以推动样本流体穿过入口孔110。过滤膜112被定位在入口孔110上方。过滤膜112被示出为具有方形形状,但是其它形状也是可能的,只要这些形状装配在帽壳体108的脊114的覆盖区(footprint)内。双面粘合剂层116被定位在过滤膜112上方。粘合剂层116包括切口部分118,该切口部分118被构造成暴露过滤膜112并且允许接近支撑部件120,该支撑部件120包括被定位在粘合剂层116上方的微通道122和出口124。微通道122被定位在支撑部件120的底面上,最靠近过滤膜112。通道中的出口孔126通向出口124。如图1A所示,出口124可以包括喷口特征。
当螺纹(或其他匹配机构)被接合时,帽104和柔性容器102形成流体密封。密封被形成在形成柔性容器的开口的周边130和帽壳体的平坦表面132的过盈处。一旦被密封,帽仅允许流体流动穿过位于帽壳体108上的入口孔110并且进入过滤器组件。在一些实施方式中,帽仅包括一个开口以适当地起作用,然而多个孔提供冗余度(redundancy)以防止由装置内部的固体引起的堵塞。这些固体可能包括凝块、颗粒或由使用者留在柔性容器102内部的物品。壳体108还包括脊114,以便促进组装和自定心。此外,该脊通过阻止接近组装后的粘合剂来防止使用者损坏装置。
帽104可以包括提供足够刚性的材料,该材料包括但不限于热塑性塑料(如聚丙烯或聚碳酸酯)或金属(例如铝或钢)。
与过滤器堆积物相接的面是大体平坦的。也就是说,优选在这些面之间不存在空隙、间距或特征。平坦设计可以提供制造的简便性。在一些实施方式中,在这些面之间放置空隙、间距或凸起特征。这些特征有助于促进流动。在这样的实施方式中,应该注意间距或特征大体上不限制血液和缓冲液的混合物的横向流动。其原因是因为,在过滤器被加压后,由于过滤膜上的压力差,将形成薄凹部(pocket)。
图2A-2C示出了过滤膜202、支撑部件204和双面粘合剂206的详细视图。如图2A中所示,过滤膜202被定位在底部处。双面粘合剂206被定位在过滤膜202上方,并且在其中心具有开口或切口208。如图2A所示,在使用双面粘合剂206密封之前,组件包括间隙210,该间隙在双面粘合剂206与帽壳体214之间并且包围过滤膜202。如图2B所示,密封后,粘合剂206密封到过滤膜202和帽壳体214,从而消除或最小化间隙210。如图2C所示,在加压(例如,挤压柔性容器)之后,在过滤膜202与帽壳体214之间可以形成薄凹部216。
双面粘合剂是压敏粘合剂并且在组装时用于粘附到多个表面。在一侧,该双面粘合剂仅与支撑部件匹配。在另一侧,该双面粘合剂与过滤膜和帽壳体二者均匹配。在一些应用中,可以希望的是,通过颠倒过滤器和双面粘合剂堆叠的顺序来防止加压时过滤膜的偏转(不形成凹部)。在这种颠倒的构型中,在一侧,双面粘合剂与过滤膜和刚性的支撑部件二者均匹配,而在另一侧,双面粘合剂仅与帽壳体匹配。由于该侧与多个表面匹配,因此应该使用比过滤膜的压紧厚度更厚的双面粘合剂来防止支撑结构上过大的残余应力,支撑结构上过大的残余应力导致双面粘合剂的松开。
双面粘合剂包含内部切口,该内部切口具有比过滤膜的周边小的周边。优选地,双面粘合剂的外周边具有比支撑部件的周边小的尺寸;然而,双面粘合剂的外周边可以与支撑部件相同或比支撑部件更大,并且仍然能够适当地起作用。双面粘合剂阻止流体围绕周边绕过过滤膜,从而导致流体流动穿过膜,这确保实现适当的过滤行为。粘合强度可以足够大,使得当使用者通过施加压力来操作装置时,双面粘合剂不会从其所粘附的表面中的任何表面剥离。双面粘合剂的厚度应选择为使得对于过滤膜而言存在足够的余隙,以在加压时允许未经过滤的样本混合物的横向流动。这种横向流动允许整个过滤区域被用于过滤。为了避免使用过厚的压敏粘合剂,可以在每个面上使用具有双面粘合剂的基底聚合物膜来考虑为装置起作用所必要的厚度。考虑必要厚度的另一种技术是在支撑部件上包括隆起表面,该隆起表面考虑用于适当功能所需的必要厚度。
粘合剂可以包括但不限于基于硅酮或丙烯酸的粘合剂。为了确保双面粘合剂适当地结合到所有必要的表面,可以将组件压紧在一起。过滤膜也可以在边缘处压紧、保持夹紧并且被粘合剂密封。密封过滤膜的周边的其他方式包括通过超声波焊接进行压紧。如果过滤材料与帽壳体或支撑部件兼容,那么过滤膜可以直接超声波焊接到壳体或支撑部件的表面。另一种技术可以在支撑部件与帽壳体之间使用超声波结合。这种结合可以施加连续的夹紧应力来密封过滤膜的周边。除了超声波结合之外,可以使用液体粘合剂执行相同类型的结合。
过滤膜是被放置在组件中心的薄部件。过滤膜可以被涂覆有化学物质或干试剂。过滤膜可以被切割成几乎任何尺寸和形状。该过滤膜被对准,使得过滤膜的周边位于双面粘合剂的内部切口的周边的外部,以允许适当的密封。此外,过滤膜的周边应位于双面粘合剂外周边的外周边内(在图2A中最佳示出),以允许双面粘合剂适当地粘附到支撑部件。
在一些实施方式中,过滤器可以是约15mm乘约15mm。其他尺寸也是可能的。例如,过滤器可以具有约12mm-18mm的长度和约12mm-18mm的宽度。在一些实施方式中,过滤器具有约0.8μm的孔径。其他孔径也是可能的(例如,0.2μm、0.45μm、1.0μm、0.5μm等)。在一些实施方式中,使用孔径为0.8μm的15mm×15mm的不对称过滤器可以产生足够的样本,以在1∶10的稀释血液下运行横向流动免疫测定测试。这种浓度可以产生约100μL或2-3滴经处理的样本以执行测定。典型的横向流动免疫测定测试条可以用约50μL或更多的经处理的样本运行。
过滤器的过滤能力与暴露的膜的面积和生物样本混合物的浓度直接相关。因此,可以使用各种形状和尺寸来适应不同的应用。如果过滤膜是不对称过滤器,应小心以确保其取向是正确的。也就是说,不对称过滤器的具有更大孔径的一侧应首先遇到未经过滤的样本。这种取向是重要的,使得液体应通过过滤器并且从包含小孔的一侧离开,并且将生物颗粒捕获在不对称过滤器的基质中。根据应用,这些过滤膜可以具有不同直径的孔径。在一些实施方式中,其他取向是可能的。也可以使用不同材料和样式的不同的过滤膜。这些材料可以包括但不限于聚碳酸酯、聚砜、聚酯、聚乙烯和聚丙烯。
还可以使用复合过滤器。复合过滤器可以包括第二过滤器,该第二过滤器具有略小于前述过滤器的周边,但仍大于双面粘合剂中的切口的周边。较小的过滤器被放置在较大的过滤器与双面粘合剂之间。以这种方式,粘合剂结合到每个过滤膜的周边并且密封每个过滤膜,以确保流体穿过每个过滤器的中心而不是围绕周边流动。这种复合过滤器堆积设计过程可以用更多的过滤器无限地执行,直到堆积物变得过厚或者直到粘合剂膜不再能够密封其所有预期表面。产生复合过滤器的另一种方法是使用过滤膜和双面粘合剂二者串联的附加阵列来串联地堆叠过滤器。该附加阵列被定位在第一过滤膜的输出端与刚性支撑部件之间。这允许产生具有无限数量的串联过滤器的过滤器。这种串联地堆叠过滤器的过程可以潜在地与前面提到的使用略小的过滤器的方法以组合的方式完成,以减少所使用的双面粘合剂的量。
支撑部件包括与粘合剂和过滤膜匹配的薄壁件。该薄壁件的周边的形状被设计为使得该薄壁件的周边装配在位于帽壳体上的脊的内部,以实现适当的对准。支撑部件包括贯穿过滤材料的区域延伸的微通道。微通道的数量和尺寸可以被最小化,以减少经过滤的产品的死体积的量。微通道为滤液行进到被连接到微通道的出口孔提供低阻力路径。可以包含足够的微通道,使得暴露的膜的整个区域可以具有通向出口孔的低阻力路径的通路。虽然最常用的是多个微通道,但是单个蛇形通道可以覆盖与多个通道相同的区域。在一些实施方式中,通道之间的间距为约1.5mm。其它间距也是可能的(例如,1mm-2mm、1mm-3mm、1mm-4mm、1mm、2mm、3mm等)。通道的构型可以基于过滤材料和支撑部件的表面粗糙度来选择,因为不同的过滤材料将为产品行进到最近的通道提供不同水平的阻力。与具有为经过滤的产品行进到通道提供更低的阻力路径的更大的孔的过滤器相比,具有更小的孔的过滤器可以具有在通道之间的更小的间距。
出口孔可以位于连接到微通道的任何位置中。出口孔还可以包括喷口特征。喷口特征被设计成控制流体沉积和收集。该喷口允许将流体精确地分配到各种容纳装置中。喷口特征的形状可以是倒钩、毛细管、锥形喷嘴或简单的管状特征。支撑部件的壁厚度应考虑其抗弯曲性,使得当装置受到压力时,该壁厚度不会提供明显的弯曲。这可以通过材料选择或设计具有合适厚度的部件来实现。用于该部件的材料可以是但不限于热塑性塑料、金属和陶瓷。支撑部件还可以包括保护护套,该保护护套有助于控制与收集装置的接口。当将样本沉积到即时装置(point of care device)中时,这尤其有价值。如图3所示,透明护套304可以被包含在出口302周围,以防止使用者与样本输入区域不对准并且确保形成完整的液滴,而不是有时不希望地倒入到样本输入区域中而不形成完整的液滴。
柔性容器被构造成在流体通过过滤器组件之前容纳流体。当操作者挤压该柔性容器时,该柔性容器还提供压力,该压力随后将驱动流体穿过过滤器组件。驱动流体穿过装置所需的压力可以低至0.25psi并且可以达到直至5psi的压力。在一些实施方式中,如果不需要细胞裂解,则超过5psi的过压不被用于血液样本。过大的驱动压力可以导致细胞破裂并且释放细胞内的内容物,这可能会影响测定结果。柔性容器的设计非常类似于普通的挤压瓶,该柔性容器在顶部处包含螺纹以与帽匹配。制造挤压瓶的材料可以包括但不限于高密度聚乙烯、低密度聚乙烯、聚丙烯和聚酯。
为了操作装置,未经过滤的流体被插入到柔性容器中。容器可以在其开口处具有可移除的密封件,以在储存时在内部容纳预填充量的流体。如果对于应用而言不需要预填充的流体,则操作者可以添加未经过滤的流体。如果需要混合,则操作者需要通过在流体中引入相对运动来混合。这可以通过搅拌、旋转或摇动流体来实现。如果使用任何受污染的工具(例如搅拌棒、棉签或收集装置),那么这些受污染的工具可以被布置在柔性容器中,以防止散落的废弃物。一旦样本被制备,则操作者确保帽被密封,翻转组件并且使喷口特征指向所需位置。操作者挤压柔性容器以提供压力,并且滤液离开组件,直到收集到所需量的滤液。挤压动作驱动流体穿过帽壳体中的孔并且横向地到达过滤膜的整个暴露区域。驱动压力通过将膜向下压靠在刚性支撑部件上在过滤膜与帽壳体之间形成凹部,以防止过滤膜过度拉伸和撕裂。如果使用不对称过滤器,则流体通过大孔进入到膜中,并且滤液通过小孔离开。或者,流体通过对称过滤膜的孔。所有被捕获的颗粒保持由过滤膜捕获。如果使用复合过滤器,则经过滤的样本将穿过下一个过滤膜再次过滤。滤液随后从膜的出口行进至微通道。滤液沿着微通道流向位于支撑部件上的出口孔。最后,滤液穿过喷口特征离开组件,并根据所需的应用进行收集。
如图4中所示,在一些实施方式中,过滤器的尺寸需要显著大于柔性容器的开口。为了使大过滤器402与小柔性容器适应,互补螺纹404的尺寸被重新设计为显著小于帽壳体的整个周边的尺寸。通过这样做,设计者可以制作任何尺寸和形状的过滤器以与任何尺寸和形状的任何柔性容器配合,只要帽壳体和柔性容器上的互补螺纹相匹配。
在一些实施方式中,可能希望放弃使用柔性容器。理论上,该组件可以与任何压力产生装置一起使用。其他压力产生装置包括注射器、泵、重力供给管或类似于气缸的加压蓄能器。因此,附接件不需要包括螺纹。例如,该组件可以被设计成具有输入倒钩以与管匹配。双倒钩组件会产生可用于不同类型应用的在线过滤器(in-line filter)。在另一个应用中,该组件可以包含鲁尔锥形连接器,以附接到装载有待过滤的样本的注射器。在另一个应用中,过滤器可以包含平坦表面以连接到压敏粘合剂。这种设计不限于与柔性容器一起使用;然而,柔性容器的使用证明了过滤器作为易于使用装置的能力。此外,柔性容器的使用允许精确地控制驱动压力,以降低由于过度加压而导致的细胞裂解的风险,使用注射器可能更容易发生过度加压。
在一些实施方式中,在过滤之前,缓冲溶液与未经过滤的流体混合。磷酸盐缓冲盐溶液(PBS)可以被用作缓冲溶液。还可以使用水;然而,当使用水时,渗透压力会驱使过多的流体进入细胞并且导致细胞膜破裂并释放细胞内的内容物。这将包括血红蛋白和被捕获在细胞中的其他细胞内成分,这些成分会不可逆地将混合物染成红色,并且将过量的蛋白质释放到样本混合物中。有时,如果例如需要从细胞中提取DNA或检测细胞内的生物标志物,则裂解是希望的。如果确实发生了裂解,则过滤器可以从滤液中清除细胞碎片,细胞碎片可能导致在测定中的流动问题。在传统的横向流动免疫测定测试中,缓冲液可能包含被混入到PBS中的表面活性剂,以改善沿试纸条向下的流动。所使用的常见的表面活性剂是Tween-20和Triton-X100,然而,TritonX-100可能导致细胞裂解。在一些实施方式中,这些表面活性剂存在于试纸条本身上,使得缓冲液不需要包括该表面活性剂。此外,在一些实施方式中,缓冲溶液可以包含动物蛋白,以防止感兴趣的分析物通过在背景区域中的竞争被结合到背景(background)。缓冲溶液还可以包含抗凝血剂(如EDTA),以防止在混合物中形成血液凝块。
由本文所描述的装置产生的样本可以与任何数量的测试和诊断设备一起使用,原因在于相同的原理可以被用于包括人类在内的所有产生血液的动物物种。如上所述,考虑使用横向流动免疫测定(LFIA)测试进行蛋白质检测。在一些实施方式中,这些装置可以被用于非基于蛋白质的测试。例如,该装置可以被用于执行血液酒精含量测试、针对大麻摄食的血液中的大麻素检测、维生素缺乏的测量或使用该装置以分离在血流中循环的游离DNA。本质上,在细胞间或细胞内的在血流中循环的任何分析物都可以通过使用该装置处理血液来被测试。
使用本文所描述的装置和方法过滤全血样本可以允许使用横向流动免疫测定测试条在家中或现场进行可靠的测试。目前,人们直接在测试条上使用全血来满足这一需要。将全血直接施加在测试条上的问题是,血液样本的红色引入背景干扰(backgroundnoise),该背景干扰干扰在许多横向流动免疫测定诊断测试中使用的胶体金或荧光测试线的检测。从血浆中滤出细胞使测试条免受背景干扰的影响并且允许测试线检测的简便性。在家中可靠的血液测试可以有助于在某些地区可能仍带有耻辱的疾病(例如HIV)的测试。
根据测量的内容,可以使用不同类型的过滤器。例如,为了测量在血浆中在血流中循环的分析物,可以使用单个不对称过滤器。在其他实施方式中,复合过滤器可以被用于选择性地裂解特定的细胞群体。在其他实施方式中,通过检测细菌的细胞内的内容物,可以进行用于识别引起脓毒症的细菌的快速测试。在这样的实施方式中,可以使用两级复合过滤器。第一过滤器可以是不对称的膜过滤器(如图5中所示,Pall MMM系列或Vivid系列或BTS系列),该不对称的膜过滤器被设计为捕获所有大的红细胞和白细胞而不发生裂解。由于细菌通常比血细胞小,所以这些细菌会通过该过滤器,原因在于孔会比细菌大。随后,在第一过滤膜之后的进程可以使用具有非常小的孔的膜过滤器。这种过滤器可以被设计为不仅阻挡细菌细胞,还裂解这些细菌细胞。第二过滤器不是如同第一过滤器那样不对称的以便允许流体围绕着它们流动。替代地,该第二过滤器可以被构造成具有穿透该第二过滤器的孔的膜(Whatman Nuclepore轨迹蚀刻膜,如图6所示),并且驱动压力会使细胞破裂。这种类型的过滤器设计将选择性地裂解细胞群体,同时基于尺寸保持其他群体完整。这种过滤器的另一个应用是检测其他血源性寄生虫,如疟疾。利用这种方法,组件可以通过选择性地裂解小的未成熟的疟疾细胞来潜在地检测这些小的未成熟的疟疾细胞的细胞内的内容物。
用于寻找生物标志物以检测不同状态的研究正在迅速变化和快速改进。如果将已知体积的血液和缓冲液插入到该装置中,则该装置具有针对定性测试和定量测试二者处理样本的能力。
定性测试提供二元的正/负结果。可以与本文的装置一起使用的定性测试的示例包括:检测妊娠的hCG激素;检测HIV抗体和/或HIV感染的表面抗原;检测甲型肝炎/乙型肝炎/丙型肝炎感染或接种的肝炎抗体和/或表面抗原;检测疱疹感染的疱疹抗体;检测马中的马科传染性贫血的EIAV抗体;检测狗/猫中的心蠕虫抗原以用于检测心蠕虫疾病;以及检测血流中合法/非法药物的存在。在一些实施方式中,例如在检测HIV抗体的测试中,本文所述的过滤装置可以比当前基于唾液的测试更早地在家中或现场进行简单的HIV抗体的血液测试。在一些实施方式中,本文所述的过滤装置可以比目前可获得的基于在家的尿液的测试更早地在家中或现场进行简单的hCG的血液测试。
定量测试提供血液中分析物浓度的数值。这种类型的测试大体上更难执行,原因在于确保各个体积被适当地收集和处理是至关重要的。可以与本文所描述的装置和方法一起使用的定量测试的几个示例包括:测量促黄体激素的突然峰值以用于排卵跟踪;测量高浓度幽门螺杆菌(H.Pylori)抗体以用于溃疡诊断;测量PSA浓度以用于前列腺癌筛查;测量甲状旁腺激素浓度以用于检测甲状旁腺腺瘤;测量HDL/LDL浓度以用于监测胆固醇;以及测量肌酐浓度以用于监测肾功能。
在一些实施方式中,采取测试线与控制线的比较的定量测试可以使用被配置为比较线的强度的智能手机应用来增强。在一些实施方式中,定量测试使用被构造为保持约20μL-30μL的拭子。所使用的缓冲溶液可以提供1:10的稀释度,以确保用于定量测试的足够的体积。
图7A和图7B示出了用于本文描述的装置的部件的制造过程的示例。图7A示出了输出基底602、双面粘合剂606、过滤器608和输入基底610的分解侧视图,该输出基底602包括出口604或喷口。制造过程包括将粘合剂606的顶面粘附到输出基底602的底面。粘合剂606的底面被粘附到过滤器608的顶面和输入基底610的内部部分的顶表面。传统地,大多数过滤器使用超声波焊接,因此制造过程时间取决于塑料熔化时间等。在这种情况下,过滤器使用粘合剂来制造,因此制造过程可以更加快速。
上面的图描绘了被组装在柔性容器的盖上的过滤器组件,而下面的图则描绘了与柔性连接器组装在一起的过滤器组件。样本过滤装置的以下实施方式(例如,关于图8A-17描述的实施方式)可以包括关于图1A-7B描述的过滤器的特征。柔性连接器可以被用于将过滤器连接到各种样本收集和分配装置(包括挤压瓶)。柔性连接器可以允许在许多不同的应用类型(包括全血过滤)中使用样本过滤装置。柔性连接器的材料中的柔性可以允许其符合不同类型的附接特征,从而因此使其适用于许多应用。如提到的,所描述的柔性连接器允许使用传统的样本收集和分配装置以与其相接。这些装置包括但不限于球形移液管、微型移液管尖端、毛细管、注射器针头、倒钩、挤压瓶、管、以及具有管状或锥形接口几何形状的其他装置。此外,该装置还可以与非圆形的几何形状和包含制造加工品(如分型线和毛边)的部件(例如,球形移液管,如下所述)相接。
图8A-8C示出了过滤器组件800的一个实施方式的各种视图,该过滤器组件包括可与过滤器(例如,本文描述的过滤器)一起使用的柔性连接器800。图8A示出了附接到过滤器组件的输入基底830的过滤器组件柔性连接器802的透视图。在输入基底830的下方是输出基底832。如图8B的前剖视图所示,过滤膜838和粘合剂层(例如,双面粘合剂层)836被定位在输入基底830与输出基底832之间。在一些实施方式中,粘合剂层836和过滤膜838的顺序相反。例如,过滤膜838位于粘合剂层836的上方或下方,同时确保过滤膜的正确取向得以保持。
在一些实施方式中,过滤膜包括约17mm的长度和约17mm的宽度。其他尺寸也是可能的(例如,约15mm、16mm、17mm、15mm-20mm、10mm-15mm、大于20mm等的宽度和/或长度)。在一些实施方式中,粘合剂层包括双面压敏粘合剂层。粘合剂层可以包括被布置在基底(例如,PET基底)的任一侧上的压敏粘合剂层。每个粘合剂层可以包括约0.005”的厚度。其他尺寸也是可能的(例如,约0.004”-0.006”、约0.003”-0.007”、约0.002”-0.008”、约0.004”、约0.006”等)。基底可以包括约0.005”的厚度。其他尺寸也是可能的(例如,约0.004”-0.006”、约0.003”-0.007”、约0.002”-0.008”、约0.004”、约0.006”等)。具有被定位在0.005”基底的任一侧上的0.005”粘合剂层的粘合剂层包括约0.015”的总厚度。
该厚度与包括尺寸为17mm×17mm的过滤膜留下非常薄的0.002”的间隙,以允许流体横向流动并且润湿整个过滤器。将该间隙最小化可以是重要的,以确保在组件中建立足够的压力来驱动样本穿过过滤器,但仍然足以允许流体横向地流动到达整个暴露的过滤膜。间隙尺寸过大可能导致样本过滤不完全,原因在于通过引入空体积造成的不足的驱动压力。如果存在不足的间隙,那么样本可能会遭遇到达整个暴露的过滤膜的受限的流动路径。该间隙的适当设计允许由加压装置分配小体积的空气,以确保液体样本被完全地过滤。例如,100μL-1000μL微型移液管在分配液体体积后到达柱塞的第二止动部时通常只能分配约250μL的空气。最小化该间隙允许使用小空气体积的分配装置(如微型移液管),以作为压力源被使用,从而适当地驱动样本完全地穿过过滤器组件。其他的间隙尺寸也是可能的(例如,约1mm-3mm、约1mm、约3mm等)。
粘合剂层可以包括约22mm的长度和宽度。其它长度和宽度也是可能的(例如,约21mm、约23mm、约21mm-23mm、约20mm-24mm、约19mm-25mm、约15mm-25mm、大于25mm等)。粘合剂层中的切口可以包括约14mm的长度和宽度。其他长度和宽度也是可能的(例如,约13mm、约15mm、约13mm-15mm、约11mm-17mm、约10mm-20mm等)。
在一些实施方式中,输入基底和输出基底中的一个或两个包括聚碳酸酯。其他材料也是可能的(例如聚丙烯、聚乙烯和聚苯乙烯)。当聚碳酸酯用具有肖氏硬度50A的热塑性弹性体(TPE)包覆成型时,聚碳酸酯可以有利地与柔性连接器材料化学地兼容。这种兼容性可以确保柔性连接器材料保持适当地固定在基底上,并且不会引入泄漏路径。输入基底可以包括约3mm的厚度。其他尺寸也是可能的(例如,约2mm、约4mm、约2mm-4mm、约1mm-5mm等)。输入基底可以包括约22mm的宽度和长度。其他长度和宽度也是可能的(例如,约21mm、约23mm、约21mm-23mm、约20mm-24mm、约19mm-25mm、约15mm-25mm、大于25mm等)。在一些实施方式中,输入基底的表面是平坦的,以粘附到双面粘合剂上。在一些实施方式中,输入基底的表面包括凸起特征或纹理特征。在一些实施方式中,输出基底包括约2mm的厚度。该厚度可以足以防止加压期间的弯曲。其他厚度也是可能的(例如,约1mm、约3mm、约1mm-3mm、约1mm-5mm等)。输出基底可以包括约22.25mm的长度和宽度。这些尺寸可以允许22mm×22mm的输入基底装配在输出基底的区域内,其中粘合剂层和过滤膜被定位在输入基底与输出基底之间。其他长度和宽度也是可能的(例如,约21mm、约23mm、约21mm-23mm、约20mm-24mm、约19mm-25mm、约15mm-25mm、大于25mm等)。
在柔性连接器802的顶部处可以包括漏斗804,以允许容易地附接到连接器。漏斗804将附接特征引导到孔806(在图8C中最佳示出)中。在一些实施方式中,漏斗包括约3.6mm的大直径、约1.6mm的小直径、角度为45°的倒角和约1mm的长度。其它尺寸也是可能的。例如,大直径可以是约3mm-4mm、约3mm、约4mm、约2mm-6mm等。小直径可以是约1mm-2mm、约1mm、约2mm、约0-3mm等。倒角角度可以是约40°-50°、约35°-55°、约30°-60°等。漏斗的长度可以是约0.75mm-1.25mm、约0.5mm-1.5mm、约0.75mm、约1.25mm等。在漏斗804的倒角之后是窄的管或管道808。该管道可以足够长,以使其能够紧夹(grip)并且密封到附接特征(例如移液管尖端的端部)上。管道可以约有7mm高。其他长度也是可能的(例如,约5mm-7mm、约5mm、约6mm、约6mm-8mm、约5mm-9mm、约7mm-8mm、约7mm-9mm等)。管道可以具有约1.5mm的最小内直径。其它的几何形状也是可能的(例如,约1mm、约1mm-2mm、约2mm等)。长度为约7mm且最小内直径为约1.5mm的管道可被构造成既能紧夹又能密封到商用的1000μL的移液管尖端以及许多其它插入的连接特征。
在管道808之后存在缩小孔810,该缩小孔防止进一步插入到组件中。该缩小孔810防止由于连接凸型特征过度插入到柔性连接器中而损坏过滤膜。在一些实施方式中,缩小孔包括约0.75mm的直径。其他直径也是可能的(例如,约0.7mm、约0.8mm、约0.6mm-0.9mm、约0.5mm-1mm等)。缩小孔808的尺寸被设计为小于连接特征(例如移液管)的尖端,使得一旦该连接特征的尖端遇到缩小孔808但在该连接特征的尖端到达过滤膜之前,该连接特征的尖端会突然停止。
柔性连接器可以包括柔性材料,该柔性材料包括但不限于TPE、硅酮、橡胶、聚氨酯和软质热塑性塑料(例如,LDPE、HDPE、PP和增塑PVC)。柔性连接器的壁厚度使得当连接装置附接到柔性连接器时,该壁厚度提供足够的刚性支撑,使得该柔性连接器保持对准,同时仍然允许轻微的未对准。该壁厚度的尺寸也被设计为使得当插入到(例如,在挤压瓶的颈部中的)孔中时,该壁厚度可以提供刚性。在一些实施方式中,壁厚度为2mm。其它厚度也是可能的(例如,1.5mm-2.5mm、约1.75mm-2.25mm、约1mm-3mm、约1m-4mm等)。
在柔性连接器的相对端部上是输出特征812,该输出特征将流体引导到期望的位置中。该特征的尺寸被设计成使得该特征仅略微突出(例如,约2mm、约1mm-3mm、约1mm、约3mm、大于3mm等)。这允许容易地对准和附接到商用的测试盒,这在其他可获得的过滤器设计中可能是一个挑战。输出侧上的平坦表面与平坦的测试盒的表面匹配,使得流体总是垂直地被引导到盒中。当位于测试盒的样本输入特征中时,输出特征的小突起的长度和直径可以提供余隙。输出特征的外直径可以是约1.25mm。其他直径也是可能的(例如,约1mm、约1.5mm、约1mm-1.5mm、约0.5mm-1.5mm、约0.5mm-2mm、约1mm-2mm、约1mm-3mm等)。该特征还可以确保流体不会粘到过滤器组件的壁上并且主要地被引导到测试盒中。
图8C示出了被连接到输入基底830的柔性连接器802的实施方式。柔性连接器包括漏斗部分804、开口806、管道808和缩小孔810。图8C的实施方式不同于图8B中所示的实施方式,因为在缩小孔之外存在更大的腔811,该腔可以被用于容纳球阀,如下面进一步详细描述的。图8D示出了与图8C所示的组件类似的过滤器组件850的实施方式,但是图8D的柔性连接器852包括在管道856的顶部处的底切854。当倒钩被连接到柔性连接器时,该底切854可以提供可听到的喀嚓声。底切854还可以将倒钩保持在连接到过滤器组件的适当位置。
图8E示出了连接到输入基底864的柔性连接器862的另一个实施方式。连接器862和基底864使用机械互锁864连接,该机械互锁可以有助于防止柔性连接器从输入基底分离(例如,剥离)。
在一些实施方式中,过滤器组件被形成为一个件,或者可以被形成为连接在一起的独立的件。在一些实施方式中,聚碳酸酯基底可以被注射成型,并且随后被物理地放置到另一个模具上。随后,柔性连接器材料(例如,弹性TPE)可以包覆成型到基底上,以产生柔性连接器。
如图9A和图9B中所示,在一些实施方式中,过滤器组件900包括球阀。阀特征可以解决当操作者释放激活动作(例如释放挤压瓶或释放微型移液管的柱塞)时引起的回流。如上述实施方式所示,过滤器组件包括柔性连接器902、漏斗904、开口906、管道908和缩小孔910。球914位于腔916中,该腔916提供余隙并且被布置成刚刚经过缩小孔。腔的壁中的一个壁由过滤膜938形成,并且当过滤器不使用时,球靠在该过滤器上。在激活加压动作时,球不会塞住腔;然而,在释放激活动作时,流体将向回流动。这是因为如释放挤压瓶的动作将产生负的相对压力,当挤压瓶试图回到原始形状时,该负的相对压力会吸回流体。因此,在过滤器的设计中包括球将防止回流,原因在于球将在腔中产生密封,从而密封缩小孔910。图9A示出了处于未密封构型的阀,该阀具有从管道908到过滤膜938的围绕球914的流体路径,而图9B示出了处于密封构型的阀,其中球914密封过滤膜938与管道908之间的流体路径。球可以包括不同的材料,该材料包括但不限于橡胶、塑料、陶瓷和金属。此外,使用者可以选择具有如下密度的材料,使得球根据组件被保持的取向将浮动或下沉。例如,聚丙烯(密度约为0.9g/cm3)材料漂浮在水中,从而使其更容易在直立取向中密封。然而,如果过滤器保持颠倒,腈(密度约为1.3g/cm3)橡胶球会下沉,从而使其成为在该取向上更好的密封材料。随后,由加压装置产生的负的相对压力将通过在球的相对侧上产生压力差来保持密封,这密封了输入孔并且防止回流。
图10A-10B示出了如何可以使用柔性连接器以将过滤器组件1000附接到挤压瓶1006。柔性连接器1002可以被插入到瓶的内直径的内部1004并且紧靠该内部密封。瓶1004的内直径一旦被插入就提供了与连接器的过盈,并且允许装置如上(例如,在图1A-1B中)所描述的被操作。
当将微型移液管尖端附接到柔性连接器时,柔性连接器的漏斗特征可以是尤其有用的。微型移液管被保持为远离移液管尖端的端部,因此在不使用如图所示的漏斗特征的情况下,使尖端瞄准到柔性连接器中明显更困难。如上面提到的,具有约7mm高并且最小内直径为1.5mm的管道的过滤器组件可以允许柔性连接器紧夹和密封到商用的1000μL移液管尖端以及许多其他被插入的连接特征。
图11A-11B示出了与过滤器组件1100一起使用的微型移液管的示例。100μL-1000μL的微型移液管1120收集全血样本(例如,100μL)。随后,尖端1122被插入到柔性连接器1102的漏斗1104中。如图11B所示,在插入时,柔性连接器在尖端上产生流体密封。连接器与微型移液管之间的连接还允许整个组件被提起并且被运输到合适的位置以供使用。
图12A-12C示出了被插入到过滤器组件1200中的微型移液管,其中微型移液管的柱塞被按压到各种位置。图12A示出了在按压柱塞1214之前被插入到柔性连接器1202中的微型移液管1210。普通实验室用微型移液管的柱塞具有两个止动部。如图12B所示,将柱塞按压到第一止动部来分配移液管尖端的内容物。如图12C所示,将柱塞按压到第二止动部通过排出空气喷射任何剩余的液体。在图12C中,微型移液管被按压直至第二止动部,从而使用排出的空气作为施加在血液上的压力源,以驱动血液穿过过滤器。一旦已经分配了适当量的血浆,使用者可以释放柱塞以释放组件上的压力。在一些实施方式中,柱塞被保持持续1分钟,但是根据应用可以被保持的更长或更短。在其他应用中,相同的操作模式同样可以被用于过滤稀释的血液。通常,稀释的血液可以更快速地被过滤,因为堵塞过滤器的细胞更少。在一些实施方式中,稀释的血液可以通过保持柱塞持续约5秒被过滤。在其他实施方式中,当过滤稀释的血液时,柱塞可以被按压持续更短或更长的时间。如结合图12A-12C所描述的,普通实验室用微型移液管1210可以容易地适用于过滤除全血之外的稀释的血液,而不需要使用目前应用的过滤器组件进行离心分离。微型移液管的排出的空气和液体体积是精确的量,并且可以被用于在血液上提供可靠的压力以过滤内容物。
此外,如图12D-12G所示,球形移液管1240可以被插入到柔性连接器1242中。柔性连接器的设计可以解决由球形移液管的分型线和毛边在密封到其他材料时引入泄漏路径所带来的挑战。通过使用具有柔性连接器的球形移液管,分型线不再会造成样本泄漏问题。这是因为柔性连接器的柔性特性允许其密封在不理想的表面上。诸如分型线和毛边的模制缺陷引入不理想的密封表面,这些不理想的密封表面通过引入微观泄漏路径造成关于抵着刚性或半刚性材料的密封的问题。柔性连接器的柔性材料能够顺应不规则和不理想的表面以及模制缺陷,以将它们密封并且降低不希望的泄漏的潜在性。
如下图所示,过滤器组件可以被直接放置在盒上,该盒包含闩锁件、或粘合剂或结合特征,从而使得当盒由测试盒制造商包装时,组件被固定在合适的位置中。使用者能够将他们的优选的样本处理装置(微型移液管尖端、球形移液管、具有适当的凸型连接器的挤压瓶等)直接施加在盒上。这种操作模式将去除对准的需要,原因在于在处理装置被固定在合适的位置中后,流体被直接地输送到。此外,组件的设计的平坦性质允许容易地组装和包装。典型地,商用过滤器组件包含长的突出特征,这使得它们难以适配到盒中。在当前设计中,装置的表面是平坦的并且突出特征在其影响方面被最小化,以允许简单地集成到各种应用中。图13A-13B示出了附接到盒1302的过滤器组件1300的实施方式的透视图。图13A示出了在将组件1300放置在盒1302上之前的过滤器组件1300和盒1302。盒1302包括闩锁特征1304。过滤器组件可以使用对准件1305和闩锁特征1306被适当地定位到盒上,并且通过闩锁特征1304的突起1306被卡扣到盒上,从而将过滤器组件固定在合适的位置。对准件1306和闩锁特征将过滤器组件的输出与盒1302的样本输入区域1308适当地对准,如图13B所示。图13C和图13D是过滤器组件1300和盒1302的侧剖视图。过滤器组件的输出特征1312在图13C和图13D的侧视图中可见。图13C示出了在将过滤器组件1300放置在盒1302上之前的过滤器组件1300和盒1302。图13D示出了使用对准件1305(图13D中未示出)和闩锁件1304被放置在盒1310上的过滤器组件1300。图13A-13D示出了卡扣到过滤器组件的输出基底上的闩锁件,但是在一些实施方式中,闩锁件可以卡扣到过滤器组件的输入基底。其他的附接机构也是可能的(例如,压敏粘合剂、液体粘合剂、超声波焊接、挤压肋、挤压销和压配合)。
图13E和图13F示出了与盒1320的另一个实施方式一起使用的过滤器组件1300的透视图。图13E示出了在放置在盒1320上之前的过滤器组件1300。在该实施方式中,盒1320包括对准件1322,但是这些对准件不包括形成闩锁件的突起。如图13F中所示,对准件可以被用于将过滤器组件适当地定位在盒的样本输入区域上。过滤器组件可以与盒对准,滤液被分配并且过滤器组件从盒中被移除,使得过滤器组件和微型移液管尖端与盒分开地布置。在一些实施方式中,如图13E和图13F所示,过滤器组件不需要保持附接到测试盒。这种操作模式允许使用者根据应用需要灵活地保持过滤器组件与盒的附接或分离。例如,如果盒在之后被插入到分析仪中,则过滤器组件可能会在物理上干扰盒的插入。此外,分开地布置过滤器组件降低了污染分析仪的可能性。在一些实施方式中,对准件可以与压敏粘合剂或结合试剂组合使用,以将过滤器组件1300附接到盒1320。
图14A示出了商用测试盒1402的实施方式以及过滤器组件将被附接的位置(例如,样本输入区域1404)。图14B示出了被附接到盒1402的过滤器组件1400。
如图15所示,在一些实施方式中,过滤器设计可以被组装在用于多通道微型移液管或机器人液体处理站的阵列中。当需要同时处理多个样本时,这种构型对于在实验室中节省时间可以是特别有用的。图15示出了如何可以将过滤器组件适配成阵列,其中所有四个端口1502、1504、1506、1508彼此独立地作用,从而允许不同的样本被独立地过滤而没有交叉污染。每个端口1502、1504、1506、1508可以包括上面描述的柔性连接器和过滤器组件的设计。这种设计可以以阵列的方式被扩展成任意数量的过滤器。跨越实验室装备的通用的标准的且普及的96孔板格式在移液管通道中的每个移液管通道之间具有9mm的间距。输入通道可以间隔9mm或9的任意倍数(9、18、27等)。
图16A-16C描绘了使用如上面(例如,关于图1A和图1B)描述的柔性容器1602和帽1604的设计的过滤器装置的其他实施方式。为了提高具有柔性容器的血液过滤器设计的可用性,拭子1606可以被包括在帽1604中,如图16A的横截面所示。拭子长度的尺寸被设计为使得当使用者开始拧动帽1604时,拭子的尖端1608被抵靠挤压瓶1602的内壁挤压。理想地,拭子1606由半刚性和可弯曲的材料和几何形状制成,使得当在帽1604的附接期间施加力时,拭子不会断裂。在瓶的螺纹1612上转动帽的螺纹1610的拧动动作确保帽被锁定在适当的位置,同时还搅动流体,使得拭子尖端上的血液样本与瓶内部的缓冲溶液混合。
已经发现,当顺时针转动螺纹以将帽与拭子附接时,帽会由于拭子弯曲时的弹性而在逆时针方向上反冲(recoil)。为了抵消这种反冲,在帽的螺纹1610与柔性容器的螺纹1612之间引入摩擦,使得施加到帽1604上的反冲扭矩不会使帽1604在相反的方向上明显地转动。拭子1606通过在拭子中包括底切1614而被固定到帽1604上,这在图16B的放大视图中最佳示出。你能确认这在图中被正确引用吗?该底切1614与帽1604上的互补配合特征1616卡扣到适当的位置。重要的是,帽能够将扭矩传递给拭子,使得该拭子在转动时旋转。因此,底切包括小平面(facet)1618,以允许扭矩传递。帽还包括互补的小平面1620以与帽匹配。
另一个用于其适当起作用的重要特征可以是,帽和拭子在附接时不必产生流体密封,以允许样本进入到过滤器中。因此,拭子1606与帽1604之间在几何形状方面可以存在不匹配。在该示例中,帽的六边形面对面的尺寸(hex flat to flat dimensions)1622(例如,六边形的平行的小平面之间的距离)超过六边形外部面对面的尺寸(outer flat to flatdimensions)1624(例如超过0.002”、0.001”-0.002”、0.001”-0.1”、0.001”-0.005”等),以允许流体流动穿过间隙并且进入到过滤器中。通过将拭子上的闩锁特征1614推动超过帽中的六角形1620,拭子被卡扣到适当的位置中。这些闩锁特征确保拭子被保持在适当的位置中并且不能容易地被拉出。如果过滤器被放置在测试盒本身上或者如果应用不需要过滤,那么将不需要帽上的过滤器,并且一旦装置被挤压,流体将自由地流出。上述构型展示了如何将过滤器集成到该组件中,但是当测试不需要样本过滤时,过滤器是不需要的。相反,本描述描绘了一种使用螺旋帽来混合血液样本的方法,该方法具有与过滤器设计集成的选项,使得该血液样本可以作为经过滤的样本或未经过滤的样本被分配。
因为许多应用需要不同体积量的血液和缓冲液来对于特定的应用起作用,所以存在设计具有可变的过滤面积的量的过滤器的能力的需要。图17示出了组件1700,该组件的螺旋微通道1706延伸超过粘合剂切口周边1702。此外,在将粘合剂压靠输出部件的密封表面之后,压敏粘合剂蠕动到通道中并且完全地或部分地密封这些通道。因此,代表粘合剂切口周边的线1702被双面粘合剂层(以白色示出)覆盖并且不被使用,原因在于粘合剂已经堵塞了通道的该长度。因此,在这种设计中,正在使用的过滤器的可用部分由双面粘合剂层限定。阴影部分1704是被用于血液样本过滤的过滤膜的区域。粘合剂的这种密封允许设计者为应用指定切口面积,而不需要重新设计刚性壳体。这一优点允许使用相同制造的刚性壳体部件,以适用于对于具有不同体积和稀释要求的许多不同的应用起作用。这种能力消除了设计新的并且昂贵的工具来将过滤器重新构造成新尺寸的覆盖区需要。相反,粘合剂层被转换成对于应用而言合适的尺寸,这比为不同的应用创建新的模具实施起来简单且廉价得多。
如上所描述,典型的样本处理包括使用精密移液管经由静脉穿刺从真空管收集血液样本,并且将样本沉积到离心管中。随后将特定量的缓冲溶液与血液样本一起转移到离心管中。随后将混合物数次吸入移液管,直至该混合物均匀。随后,混合物以高转速离心持续特定的时间量。随后将特定量的上清液转移到测试条上。使用本文所述的装置和方法,可以将一定体积的血液收集或转移到毛细管、拭子中。该装置不限制血液是如何被收集的。血液可以通过旋转或搅拌混合物被混合。使用过滤器从稀释的血浆中分离细胞。通过计数液滴或收集特定量的样本将体积沉积到测试条中。
由本文所描述的装置排除的所需资源是精密移液管、离心机、电力和专业培训以及成本。对于许多即时应用,细胞分离是护理人员面临的一个重大挑战,当前的装置和方法使用过滤器组件已经解决了该挑战。其他产品利用切向流动过滤和惯性集中,这些其他产品不如本文所述的装置快速或简单。在研究中,微流体方面有很多工作能够使所有这些步骤自动化。然而,微流体装置仍然需要电力、压力泵、专用仪器、计算机控制、阀、专业培训和资金。此外,在微观尺度上,过程(如混合)变得非同寻常,因为低雷诺(Reynold)数的小通道不促进湍流混合。细胞分离在微流体方面执行也是一项非常困难的任务。血液与血浆的比例为约50%。因此,过滤器在从血浆中分离细胞时需要非常有效,这在文献中还没有被适当地证明具有高效率和低成本。此外,对于微流体细胞分离来说,目前还没有证明大批量制造的途径。
本文描述的装置和方法发挥了对于大批量制造来说合理的规模的优势。装置和方法在可以使装置部件注射成型的尺寸和规模方面起作用,从而显著地降低成本。由于此原因,混合任务可以通过搅拌、旋转、翻转或重复转移被容易地执行。在这种规模下,装置可以在收集略多的样本体积(1-2滴)的成本的情况下使用大型过滤器。该装置中的压力源来自简单的动作,例如柔性容器的挤压动作或按压微型移液管柱塞。所有样本处理步骤都是直观的,并且不需要明显的培训就正确执行。
与目前可获得的过滤器设计相比,当前应用的过滤器设计可以具有几个优点。在一些目前可获得的过滤器设计中,从过滤器接收滤液的通道可以被布置在薄膜或其它薄材料上。此外,通道可以通过激光蚀刻或另外从层中移除材料来形成,使得层变得更薄。包括通道的层的薄性要求通道充分地间隔开,以允许层的偏转或压紧,这可能导致彼此间隔太近的任何通道的阻塞。相比之下,当前设计的通道被设置在不可弯曲或更刚性的、不能弯曲的基底上。包括通道的基底的刚性可以允许通道的精确定位。例如,通道可以彼此非常靠近地定位,而不用担心通道会被基底的偏转所阻塞。这种能力可以允许更密集的通道网络,从而为过滤器提供更快和额外的输出能力。
目前可获得的过滤器还可以提供一种设计,其中缓冲溶液被设置在过滤器内并且在过滤过程中的某一时刻被动地被混合。因此,样本的稀释取决于过滤器设计的构型和几何形状。相反,在当前设计中,在将缓冲液和样本的混合物施加到过滤器之前,使用的任何缓冲液都是预混合的(例如,在柔性容器中)。这种预混合允许使用者精确选择或计算样本的期望的稀释度。
目前可获得的过滤器不被设计为适应各种各样的加压装置(例如,微型移液管、挤压瓶、注射器和球形移液管)的使用。这些目前可获得的装置被设计成使得它们仅可以与特定类型的加压装置起作用。当前设计通过一种设计与许多加压装置兼容,这允许该当前设计被用于更广泛的应用。
此外,许多目前可获得的过滤器设计缺乏为过滤器提供稳定性的刚性基底或壳体。这样的柔性设计不能被容易地放置在测试盒上或附接(例如卡扣)到测试盒。相反,当前应用的过滤器设计包括刚性基底或壳体。此外,由于缺乏刚性,这些柔性设计在加压的情况下会变形并且导致组件不必要的鼓胀。基底或壳体的刚性可以允许其被容易地放置在测试盒上或卡扣到测试盒上并且在加压的情况下保持其形式。
本文公开的装置和方法的变型和修改对于本领域技术人员将是明显的。因此,应当理解,前述详细描述和所附图示是为了清楚和理解的目的,而并不意在限制本发明的范围,本发明的范围由所附权利要求限定。本文描述的任何一个实施方式中所描述的任何特征均可以与任何其它实施方式的任何其它特征组合,无论是否是优选的。
应当理解,本文所描述的示例和实施方式仅用于说明性目的,并且本领域技术人员将提出鉴于其的各种修改或改变,并且这些修改或改变被包括在本申请的精神和范围以及所附权利要求的范围之内。出于所有的目的,本文所引用的所有出版物、专利和专利申请据此通过引用并入。

Claims (179)

1.一种用于处理样本的样本过滤装置,包括:
柔性容器;
帽,所述帽被构造成密封到所述柔性容器,所述帽包括:
一个或更多个入口孔,所述一个或更多个入口孔与所述柔性容器流体连通;
不对称过滤器,所述不对称过滤器与所述一个或更多个入口孔流体连通并且被构造成将所述样本过滤成滤液;
支撑部件,所述支撑部件包括一个或更多个通道,所述一个或更多个通道与来自所述不对称过滤器的所述滤液流体连通;
粘合剂层,所述粘合剂层被构造成将所述过滤器连结到所述帽或所述支撑部件;和
出口,所述出口与所述一个或更多个通道流体连通。
2.如权利要求1所述的样本过滤装置,其中所述粘合剂层是双面粘合剂层。
3.如权利要求1所述的样本过滤装置,其中所述帽经由螺纹连接密封到所述柔性容器。
4.如权利要求1所述的样本过滤装置,其中所述样本流体包括全血。
5.如权利要求1所述的样本过滤装置,其中所述粘合剂层包括切口部分,所述切口部分被构造成当所述粘合剂层被粘附到所述不对称过滤器时暴露所述不对称过滤器。
6.如权利要求1所述的样本过滤装置,其中所述不对称过滤器的尺寸小于所述粘合剂层的尺寸。
7.如权利要求1所述的样本过滤装置,其中所述一个或更多个通道包括蛇形通道或多个通道。
8.如权利要求1所述的样本过滤装置,其中所述出口包括喷口。
9.如权利要求1所述的样本过滤装置,其中所述帽包括聚丙烯、聚碳酸酯、铝和钢中的至少一种。
10.如权利要求1所述的样本过滤装置,其中所述帽的连结所述粘合剂层的表面是大体平坦的。
11.如权利要求1所述的样本过滤装置,其中所述帽的连结所述粘合剂层的表面包括凸起特征。
12.如其中所述的样本过滤装置,其中所述支撑部件的连结所述粘合剂层的表面是大体平坦的。
13.如权利要求1所述的样本过滤装置,其中所述支撑部件的连结所述粘合剂层的表面包括凸起特征。
14.如权利要求1所述的样本过滤装置,其中所述粘合剂层包括基于硅酮或丙烯酸的粘合剂。
15.如权利要求1所述的样本过滤装置,其中所述过滤膜的宽度为约15mm。
16.如权利要求1所述的样本过滤装置,其中所述过滤膜的长度为约15mm。
17.如权利要求1所述的样本过滤装置,其中所述不对称过滤器包括约0.8μm的孔径。
18.如权利要求1所述的样本过滤装置,其中所述过滤膜包括聚碳酸酯、聚砜、聚酯、聚乙烯和聚丙烯中的至少一种。
19.如权利要求1所述的样本过滤装置,其中所述帽包括围绕其周边的脊。
20.如权利要求19所述的样本过滤装置,其中所述支撑部件的尺寸被设计为装配在所述帽的脊的内部。
21.如权利要求1所述的样本过滤装置,其中所述支撑部件包括围绕其周边的脊。
22.如权利要求21所述的样本过滤装置,其中所述帽的尺寸被设计为装配在所述支撑部件的脊的内部。
23.如权利要求1所述的样本过滤装置,其中所述一个或更多个通道贯穿所述过滤膜的区域延伸。
24.如权利要求1所述的样本过滤装置,其中所述一个或更多个通道包括在通道之间的约1.5mm的间距。
25.如权利要求1所述的样本过滤装置,其中所述通道的构型基于所述支撑部件的材料和表面粗糙度来选择。
26.如权利要求1所述的样本过滤装置,其中所述帽的密封部分小于所述帽的周边,以适应大于所述容器的开口的尺寸的过滤器尺寸。
27.如权利要求1所述的样本过滤装置,进一步包括拭子,所述拭子被连接到所述帽并且贯穿所述柔性容器的长度延伸。
28.如权利要求27所述的样本过滤装置,其中所述拭子的端部包括底切,所述底切被构造成与所述帽的切口部分匹配。
29.如权利要求28所述的样本过滤装置,进一步包括当所述帽被附接到所述拭子时穿过围绕所述拭子的所述切口的流体路径。
30.如权利要求1所述的样本过滤装置,其中所述粘合剂层被构造成将所述过滤器连结到所述帽。
31.如权利要求1所述的样本过滤装置,其中所述粘合剂层被构造成将所述过滤器连结到所述支撑部件。
32.一种过滤样本的方法,进一步包括一个或更多个附加的过滤器。
提供样本过滤装置,所述样本过滤装置包括柔性容器和被构造为密封到所述柔性容器的帽;
将样本流体放置到所述柔性容器中;以及
挤压所述柔性容器,从而推动所述样本流体穿过所述帽中的一个或更多个入口孔、穿过不对称过滤器以产生滤液,并且推动所述滤液穿过一个或更多个通道到达出口。
33.如权利要求32所述的方法,进一步包括挤压所述柔性容器。
34.如权利要求32所述的方法,其中所述样本流体包括全血。
35.如权利要求32所述的方法,进一步包括向所述柔性容器添加缓冲溶液。
36.如权利要求32所述的方法,进一步包括在挤压所述柔性容器之前混合所述样本流体。
37.如权利要求32所述的方法,进一步包括在挤压所述柔性容器之前翻转所述柔性容器。
38.如权利要求32所述的方法,其中挤压所述容器产生0.25psi-5psi的压力。
39.如权利要求32所述的方法,进一步包括在测试或诊断设备中使用所述滤液。
40.如权利要求32所述的方法,进一步包括在横向流动免疫测定(LFIA)测试中使用所述滤液。
41.如权利要求32所述的方法,进一步包括使用所述滤液以用于血液酒精含量、大麻素检测或维生素缺乏的测试。
42.如权利要求32所述的方法,进一步包括使用所述滤液以分离在血流中循环的游离DNA。
43.如权利要求32所述的方法,进一步包括在横向流动免疫测定测试条上使用所述滤液。
44.一种制造样本过滤装置的方法,包括:
提供第一基底,所述第一基底包括入口孔;
提供不对称过滤器,所述不对称过滤器与所述入口孔流体连通并且被构造成将所述样本过滤成滤液;
提供第二基底,所述第二基底包括一个或更多个通道,所述一个或更多个通道与来自所述过滤器的所述滤液流体连通并且与出口孔流体连通;以及
提供粘合剂层,所述粘合剂层包括小于所述不对称过滤器的尺寸的中心切口,所述粘合剂层被构造成将所述不对称过滤器连结到所述第一基底或所述第二基底。
45.如权利要求44所述的方法,进一步包括将所述过滤器组件压紧在一起,以确保所述粘合剂层结合到邻近的表面并且密封所述过滤膜的周边。
46.如权利要求44所述的方法,其中所述第一基底是帽。
47.如权利要求44所述的方法,进一步包括将柔性连接器附接到所述第一基底或所述第二基底。
48.如权利要求47所述的方法,其中附接所述柔性连接器包括将所述柔性连接器包覆成型到所述第一基底上。
49.如权利要求47所述的方法,其中附接所述柔性连接器包括使用机械互锁以将所述柔性连接器附接到所述第一基底。
50.如权利要求47所述的方法,其中所述柔性连接器包括通向管部分的漏斗形状的入口,所述管部分与缩小孔流体连通,所述缩小孔的直径小于所述管部分的直径,其中所述缩小孔与所述第一基底的所述入口孔流体连通。
51.如权利要求50所述的方法,进一步包括在所述入口孔附近的腔中提供球阀,所述球阀被构造成可逆地密封所述入口孔。
52.如权利要求44所述的方法,进一步包括使用所述粘合剂层将所述不对称过滤器粘附到所述第一基底。
53.如权利要求44所述的方法,进一步包括使用所述粘合剂层将所述不对称过滤器粘附到所述第二基底。
54.如权利要求44所述的方法,进一步包括围绕所述第二基底的至少一部分形成脊。
55.如权利要求54所述的方法,其中所述第一基底的形状被设计成装配在所述脊内。
56.如权利要求44所述的方法,进一步包括围绕所述第一基底的至少一部分形成脊。
57.如权利要求56所述的方法,其中所述第二基底的形状被设计成装配在所述脊内。
58.一种样本过滤装置,包括:
柔性连接器,所述柔性连接器包括通向管部分的漏斗形状的开口;
输入基底,所述输入基底包括与所述管部分流体连接的入口缩小孔;
不对称过滤膜,所述不对称过滤膜与所述入口缩小孔流体连通并且被构造成将样本过滤成滤液;
粘合剂层,所述粘合剂层被构造成连结到所述不对称过滤膜,所述粘合剂层包括被构造为暴露所述过滤膜的中心部分的中心切口;和
输出基底,所述输出基底包括一个或更多个通道,所述一个或更多个通道与来自所述不对称过滤器的滤液流体连通,所述一个或更多个通道与所述输出基底的出口流体连通。
59.如权利要求58所述的样本过滤装置,进一步包括球阀,所述球阀被构造成可逆地密封所述入口缩小孔。
60.如权利要求59所述的样本过滤装置,其中所述球被定位在所述入口缩小孔与所述过滤膜之间的腔中。
61.如权利要求59所述的样本过滤装置,其中所述球阀被构造成防止由激活动作的释放引起的回流。
62.如权利要求59所述的样本过滤装置,其中所述球包括橡胶、塑料、陶瓷和金属中的至少一种。
63.如权利要求59所述的样本过滤装置,其中所述球的材料基于所述过滤器组件的预期的使用取向来选择。
64.如权利要求63所述的样本过滤装置,其中低密度材料被选择以用于直立取向。
65.如权利要求63所述的样本过滤装置,其中高密度材料被选择以用于颠倒取向。
66.如权利要求58所述的样本过滤装置,其中所述柔性连接器的开口和所述管部分的形状被设计为接收微型移液管尖端。
67.如权利要求58所述的样本过滤装置,其中所述柔性连接器的外表面的形状被设计为与挤压瓶的开口的内表面匹配并且密封到所述内表面。
68.如权利要求58所述的样本过滤装置,其中所述漏斗形状的开口包括约1mm的长度。
69.如权利要求58所述的样本过滤装置,其中所述漏斗形状的开口包括约45°的角度。
70.如权利要求58所述的样本过滤装置,其中所述管部分包括约7mm的长度。
71.如权利要求58所述的样本过滤装置,其中所述管部分包括约1.5mm的最小内直径。
72.如权利要求58所述的样本过滤装置,其中所述缩小孔具有约0.75mm的直径。
73.如权利要求58所述的样本过滤装置,其中所述过滤膜被粘附到所述输入基底。
74.如权利要求58所述的样本过滤装置,其中所述过滤膜被粘附到所述输出基底。
75.如权利要求58所述的样本过滤装置,其中所述柔性连接器包括TPE、硅酮、橡胶、聚氨酯、LDPE、HDPE、PP和增塑PVC中的至少一种。
76.如权利要求58所述的样本过滤装置,其中所述柔性连接器的壁厚度为约2mm。
77.如权利要求58所述的样本过滤装置,其中所述粘合剂层是双面粘合剂层。
78.如权利要求58所述的样本过滤装置,其中所述样本流体包括全血。
79.如权利要求58所述的样本过滤装置,其中所述不对称过滤器的尺寸小于所述粘合剂层的外周边的尺寸。
80.如权利要求58所述的样本过滤装置,其中所述一个或更多个通道包括蛇形通道或多个通道。
81.如权利要求58所述的样本过滤装置,其中所述出口包括喷口。
82.如权利要求58所述的样本过滤装置,其中所述输入基底和所述输出基底中的至少一个基底的邻近所述过滤膜的表面是平坦的。
83.如权利要求58所述的样本过滤装置,其中所述输入基底和输出基底中的至少一个基底的邻近所述过滤膜的表面包括凸起特征。
84.如权利要求58所述的样本过滤装置,其中所述粘合剂层包括基于硅酮或丙烯酸的粘合剂。
85.如权利要求58所述的样本过滤装置,其中所述过滤膜的宽度为约15mm。
86.如权利要求58所述的样本过滤装置,其中所述过滤膜的长度为约15mm。
87.如权利要求58所述的样本过滤装置,其中所述不对称过滤器包括约0.8μm的孔径。
88.如权利要求58所述的样本过滤装置,其中所述过滤膜包括聚碳酸酯、聚砜、聚酯、聚乙烯和聚丙烯中的至少一种。
89.如权利要求58所述的样本过滤装置,其中所述输出基底包括围绕其周边的脊。
90.如权利要求89所述的样本过滤装置,其中所述输入基底的尺寸被设计成装配在所述输出基底的脊的内部。
91.如权利要求58所述的样本过滤装置,其中所述输入基底包括围绕其周边的脊。
92.如权利要求91所述的样本过滤装置,其中所述输出基底的尺寸被设计成装配在所述输入基底的脊的内部。
93.如权利要求58所述的样本过滤装置,其中所述一个或更多个通道贯穿所述过滤膜的区域延伸。
94.如权利要求58所述的样本过滤装置,其中所述一个或更多个通道包括在通道之间约1.5mm的间距。
95.如权利要求58所述的样本过滤装置,其中所述通道的构型基于所述支撑部件的材料和表面粗糙度来选择。
96.如权利要求58所述的样本过滤装置,其中所述入口缩小孔的直径小于所述管部分的直径。
97.如权利要求58所述的样本过滤装置,其中所述柔性连接器使用机械互锁被连接到所述输入基底。
98.一种诊断系统,所述诊断系统包括如权利要求58所述的样本过滤装置和包括样本输入区域的测试盒,所述测试盒包括对准特征,所述对准特征被构造成将所述样本过滤装置的所述出口与所述样本输入区域对准。
99.如权利要求98所述的诊断系统,进一步包括闩锁件,所述闩锁件被构造成将所述样本过滤装置固定到所述测试盒。
100.如权利要求99所述的诊断系统,其中所述对准特征是所述闩锁件。
101.如权利要求58所述的样本过滤装置,其中所述输出基底包括粘合剂,所述粘合剂被构造成将所述样本过滤装置粘附到测试盒。
102.如权利要求58所述的样本过滤装置,其中所述输出基底包括结合试剂,所述结合试剂被构造成将所述样本过滤装置粘附到测试盒。
103.如权利要求58所述的样本过滤装置,其中所述管部分的顶部部分包括被构造成与倒钩匹配的底切。
104.一种阵列,包括在权利要求58中描述的多个样本过滤装置。
105.如权利要求104所述的阵列,包括2、3、4、6、8或12个样本过滤装置。
106.一种过滤样本的方法,
提供样本过滤装置,所述样本过滤装置包括:柔性连接器,所述柔性连接器包括通向管部分的漏斗形状的开口;所述管部分与输入基底的入口流体连通,所述入口与不对称过滤膜流体连通,所述不对称过滤膜被连接到粘合剂层;以及输出基底,所述输出基底包括一个或更多个通道,所述一个或更多个通道被构造为接收来自所述过滤膜的滤液,并且所述输出基底包括出口;
将样本收集或分配装置附接到所述柔性容器;以及
向所述样本收集或分配装置施加压力,从而推动样本流体穿过所述不对称过滤器以产生滤液,并且推动所述滤液穿过一个或更多个通道到达所述出口。
107.如权利要求106所述的方法,其中附接所述样本收集或分配装置包括将微型移液管尖端插入到所述漏斗形状的开口中。
108.如权利要求106所述的方法,其中附接所述样本收集或分配装置包括将所述柔性连接器插入到柔性容器的开口中。
109.如权利要求108所述的方法,进一步包括向所述柔性容器添加缓冲溶液。
110.如权利要求108所述的方法,进一步包括挤压所述柔性容器以将所述滤液分配在测试条或测试盒上。
111.如权利要求110所述的方法,进一步包括在挤压所述柔性容器之前翻转所述柔性容器。
112.如权利要求110所述的方法,其中挤压所述容器产生0.25psi-5psi的压力。
113.如权利要求106所述的方法,其中附接所述样本收集或分配装置包括将倒钩插入到所述漏斗形状的开口中。
114.如权利要求106所述的方法,其中附接所述样本收集或分配装置包括将凸型连接器插入到所述漏斗形状的开口中。
115.如权利要求106所述的方法,进一步包括将所述滤液分配到测试条上。
116.如权利要求106所述的方法,其中所述样本流体包括全血。
117.如权利要求106所述的方法,其中所述样本流体包括稀释的血液。
118.如权利要求106所述的方法,进一步包括向所述样本收集或分配装置添加缓冲溶液。
119.如权利要求118所述的方法,进一步包括混合所述样本流体和所述缓冲溶液。
120.如权利要求106所述的方法,进一步包括在测试或诊断设备中使用所述滤液。
121.如权利要求106所述的方法,进一步包括在横向流动免疫测定(LFIA)测试中使用所述滤液。
122.如权利要求106所述的方法,进一步包括使用所述滤液以用于血液酒精含量、维生素缺乏或大麻素检测的测试。
123.如权利要求106所述的方法,进一步包括使用所述滤液以分离在血流中循环的游离DNA。
124.如权利要求106所述的方法,进一步包括在横向流动免疫测定测试条上使用所述滤液。
125.如权利要求106所述的方法,进一步包括将所述样本过滤装置放置在测试盒上。
126.如权利要求125所述的方法,其中将所述样本过滤装置放置在所述测试盒上包括将所述样本过滤装置闩锁到所述测试盒。
127.如权利要求125所述的方法,其中将所述样本过滤装置放置在所述测试盒上包括将所述样本过滤装置粘附到所述测试盒。
128.如权利要求125所述的方法,其中将所述样本过滤装置放置在所述测试盒上包括将所述样本过滤装置结合到所述测试盒。
129.一种样本过滤装置,包括:
输入基底,所述输入基底包括入口孔;
不对称过滤膜,所述不对称过滤膜与所述入口孔流体连通并且被构造成将样本过滤成滤液;
粘合剂层,所述粘合剂层被构造成连结到所述不对称过滤膜,所述粘合剂层包括中心切口,所述中心切口被构造成暴露所述过滤膜的中心部分;和
输出基底,所述输出基底包括一个或更多个通道,所述一个或更多个通道与来自所述不对称过滤器的滤液流体连通,所述一个或更多个通道与所述输出基底的出口流体连通。
130.如权利要求129所述的样本过滤装置,进一步包括被附接到所述入口孔的柔性连接器,所述柔性连接器包括与管状部分流体连通的漏斗形状的开口,所述管状部分与所述入口孔流体连通。
131.如权利要求130所述的样本过滤装置,其中所述柔性连接器的形状被设计为与柔性容器、球形移液管、微型移液管和倒钩匹配。
132.如权利要求129所述的样本过滤装置,其中所述输入基底或所述输出基底中的至少一个包括柔性容器的帽的部分。
133.如权利要求129所述的样本过滤装置,进一步包括球阀,所述球阀被构造成可逆地密封所述入口孔。
134.如权利要求133所述的样本过滤装置,其中所述球被定位在所述入口孔与所述过滤膜之间的腔中。
135.如权利要求133所述的样本过滤装置,其中所述球阀被构造成防止由激活动作的释放引起的回流。
136.如权利要求133所述的样本过滤装置,其中所述球包括橡胶、塑料、陶瓷和金属中的至少一种。
137.如权利要求133所述的样本过滤装置,其中所述球的材料基于所述过滤器组件的预期的使用取向来选择。
138.如权利要求137所述的样本过滤装置,其中低密度材料被选择以用于直立取向。
139.如权利要求137所述的样本过滤装置,其中高密度材料被选择以用于颠倒取向。
140.如权利要求129所述的样本过滤装置,其中所述过滤膜被粘附到所述输入基底。
141.如权利要求129所述的样本过滤装置,其中所述过滤膜被粘附到所述输出基底。
142.如权利要求129所述的样本过滤装置,其中所述粘合剂层是双面粘合剂层。
143.如权利要求129所述的样本过滤装置,其中所述样本流体包括全血。
144.如权利要求129所述的样本过滤装置,其中所述不对称过滤器的尺寸小于所述粘合剂层的外周边的尺寸。
145.如权利要求129所述的样本过滤装置,其中所述一个或更多个通道包括蛇形通道或多个通道。
146.如权利要求129所述的样本过滤装置,其中所述出口包括喷口。
147.如权利要求129所述的样本过滤装置,其中所述输入基底和所述输出基底中的至少一个基底的邻近所述过滤膜的表面是平坦的。
148.如权利要求129所述的样本过滤装置,其中所述输入基底和所述输出基底中的至少一个基底的邻近所述过滤膜的表面包括凸起特征。
149.如权利要求129所述的样本过滤装置,其中所述粘合剂层包括基于硅酮或丙烯酸的粘合剂。
150.如权利要求129所述的样本过滤装置,其中所述过滤膜的宽度为约15mm-17mm。
151.如权利要求129所述的样本过滤装置,其中所述过滤膜的长度为约15mm-17mm。
152.如权利要求129所述的样本过滤装置,其中所述不对称过滤器包括约0.8μm的孔径。
153.如权利要求129所述的样本过滤装置,其中所述过滤膜包括聚碳酸酯、聚砜、聚酯、聚乙烯和聚丙烯中的至少一种。
154.如权利要求129所述的样本过滤装置,其中所述输出基底包括围绕其周边的脊。
155.如权利要求154所述的样本过滤装置,其中所述输入基底的尺寸被设计成装配在所述输出基底的脊的内部。
156.如权利要求129所述的样本过滤装置,其中所述输入基底包括围绕其周边的脊。
157.如权利要求156所述的样本过滤装置,其中所述输出基底的尺寸被设计成装配在所述输入基底的脊的内部。
158.如权利要求129所述的样本过滤装置,其中所述一个或更多个通道贯穿所述过滤膜的区域延伸。
159.如权利要求129所述的样本过滤装置,其中所述一个或更多个通道包括在通道之间的约1.5mm的间距。
160.如权利要求129所述的样本过滤装置,其中所述通道的构型基于所述支撑部件的材料和表面粗糙度来选择。
161.如权利要求129所述的样本过滤装置,其中所述输入基底和所述输出基底中的至少一个包括刚性材料。
162.如权利要求129所述的样本过滤装置,进一步包括连接器,所述连接器被构造为将所述装置附接到样本收集和分配装置。
163.一种过滤样本的方法,包括:
提供样本过滤装置,所述样本过滤装置包括:输入基底,所述输入基底包括入口孔;不对称过滤膜,所述不对称过滤膜与所述入口孔流体连通并且被构造成将所述样本过滤成滤液;粘合剂层,所述粘合剂层被构造成连结到所述不对称过滤膜,所述粘合剂层包括被构造为暴露所述过滤膜的中心部分的中心切口;以及输出基底,所述输出基底包括一个或更多个通道,所述一个或更多个通道与来自所述不对称过滤器的滤液流体连通,所述一个或更多个通道与所述输出基底的出口流体连通;
将样本收集或分配装置连接到所述入口孔;以及
激活所述样本收集或分配装置以驱动所述样本穿过所述过滤膜。
164.如权利要求163所述的方法,进一步包括将柔性连接器连接到所述过滤装置,所述柔性连接器与所述入口孔流体连通。
165.如权利要求163所述的方法,其中连接所述样本收集或分配装置包括将微型移液管尖端流体地连接到所述入口孔。
166.如权利要求163所述的方法,其中连接所述样本收集或分配装置包括将柔性连接器流体地连接到所述入口孔。
167.如权利要求163所述的方法,进一步包括激活所述样本收集或分配装置,以驱动所述样本穿过所述过滤膜。
168.如权利要求163所述的方法,进一步包括将所述滤液分配到测试条上。
169.如权利要求163所述的方法,其中所述样本流体包括全血。
170.如权利要求163所述的方法,其中所述样本流体包括稀释的血液。
171.如权利要求163所述的方法,进一步包括向所述样本收集或分配装置添加缓冲溶液。
172.如权利要求163所述的方法,进一步包括混合所述样本流体和所述缓冲溶液。
173.如权利要求163所述的方法,进一步包括在测试或诊断设备中使用所述滤液。
174.如权利要求163所述的方法,进一步包括在横向流动免疫测定(LFIA)测试中使用所述滤液。
175.如权利要求163所述的方法,进一步包括使用所述滤液以用于血液酒精含量、维生素缺乏或大麻素检测的测试。
176.如权利要求163所述的方法,进一步包括使用所述滤液以分离在血流中循环的游离DNA。
177.如权利要求163所述的方法,进一步包括在横向流动免疫测定测试条上使用所述滤液。
178.如权利要求163所述的方法,进一步包括将所述样本过滤装置放置在测试盒上。
179.如权利要求175所述的方法,其中将所述样本过滤装置放置在所述测试盒上包括将所述样本过滤装置闩锁到所述测试盒。
CN201880042213.7A 2017-06-26 2018-06-26 样本过滤装置 Pending CN110785649A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762525039P 2017-06-26 2017-06-26
US62/525,039 2017-06-26
PCT/US2018/039556 WO2019005833A1 (en) 2017-06-26 2018-06-26 SAMPLE FILTERING DEVICE

Publications (1)

Publication Number Publication Date
CN110785649A true CN110785649A (zh) 2020-02-11

Family

ID=64741868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880042213.7A Pending CN110785649A (zh) 2017-06-26 2018-06-26 样本过滤装置

Country Status (5)

Country Link
US (1) US11946843B2 (zh)
EP (1) EP3645998B1 (zh)
JP (1) JP2020525802A (zh)
CN (1) CN110785649A (zh)
WO (1) WO2019005833A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858085A (zh) * 2021-01-19 2021-05-28 竹简云(天津)生物科技有限公司 一种食品药物溶解度检测分析装置
CN113252765A (zh) * 2021-06-21 2021-08-13 南昌大学 毛细管电泳仪
US11612888B2 (en) 2017-01-04 2023-03-28 The Research Foundation For The State University Of New York Biomarker detection device
CN115950868A (zh) * 2022-12-26 2023-04-11 深圳市雷诺华科技实业有限公司 一种抗体-斑点法进行糖化白蛋白测定的测试装置及其测试方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596943B2 (en) * 2018-07-25 2023-03-07 Canon Virginia, Inc. Multi hole inlet structure
USD920534S1 (en) 2018-12-21 2021-05-25 CanaryQ, Inc. Blood sample filtration device
WO2023114978A1 (en) 2021-12-17 2023-06-22 Abbott Laboratories Systems and methods for determining uch-l1, gfap, and other biomarkers in blood samples
CN114323803B (zh) * 2022-03-08 2022-05-20 潍坊市奎文区园林环卫服务中心 一种园林生态管理用水质取样装置
CN115138406A (zh) * 2022-06-15 2022-10-04 安徽福贸生物科技有限公司 一种便于消杀的医用微流控芯片进样过滤装置
WO2024006876A1 (en) 2022-06-29 2024-01-04 Abbott Laboratories Magnetic point-of-care systems and assays for determining gfap in biological samples

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761230A (en) * 1987-06-11 1988-08-02 Millipore Corporation Small volume tangential flow filtration apparatus
CN1169886A (zh) * 1996-01-19 1998-01-14 富士胶片公司 血液过滤器
WO2002062942A2 (en) * 2001-02-06 2002-08-15 Pall Corporation Filtration assembly
US20110266160A1 (en) * 2009-01-08 2011-11-03 James Gordon Campbell Method and apparatus for alcohol concentration detection in a blood sample
CN102791616A (zh) * 2009-12-23 2012-11-21 西托维拉公司 用于粒子过滤的系统和方法
CN102803958A (zh) * 2009-06-17 2012-11-28 白血球保健股份有限公司 血液过滤器以及过滤血液的方法
CN103038624A (zh) * 2010-07-14 2013-04-10 恰根有限公司 一种新型的贮存、收集或分离用装置
US20140080112A1 (en) * 2012-02-13 2014-03-20 Streck, Inc. Blood collection device for improved nucleic acid regulation
CN105874052A (zh) * 2013-11-04 2016-08-17 查尔斯河实验室公司 过滤系统和其使用

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939822A (en) * 1974-08-14 1976-02-24 Jack Markowitz Disposable blood collection and filtering device
BE849898A (fr) 1976-12-28 1977-06-28 Dispositif de dilution et de filtration
DE3037898A1 (de) 1980-10-07 1982-05-06 Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten Mischkammer
US4915847A (en) 1987-08-04 1990-04-10 Baxter International Inc. Cryoglobulin separation
USD305934S (en) 1986-11-27 1990-02-06 Terumo Kabushiki Kaisha Filter for treating blood
US4828716A (en) 1987-04-03 1989-05-09 Andronic Devices, Ltd. Apparatus and method for separating phases of blood
NL8800796A (nl) * 1988-03-29 1989-10-16 X Flow Bv Werkwijze voor de chemische analyse van bestanddelen van een lichaamsvloeistof, alsmede een testinrichting en testpakket voor een dergelijke analyse.
US4976851A (en) 1988-06-06 1990-12-11 Terumo Kabushiki Kaisha Liquid separator
GB2232599A (en) 1989-06-08 1990-12-19 Summers Dr Julie Andrea One-step blood to plasma device
USD355973S (en) 1993-02-10 1995-02-28 Terumo Kabushiki Kaisha Blood filter
EP1021715B1 (en) 1996-02-09 2002-09-18 Micro Diagnostic Innovations Nederland B.V. Method and kit for separating plasma from whole blood
USD403975S (en) 1997-06-17 1999-01-12 Mercury Diagnostics, Inc. Test strip device
US7745106B2 (en) 1997-06-24 2010-06-29 Cascade Medical Enterprises, Llc Methods and devices for separating liquid components
JP2000074906A (ja) 1998-09-01 2000-03-14 Fuji Photo Film Co Ltd 簡易血液濾過点着器
CA2374423C (en) * 1999-05-28 2013-04-09 Cepheid Apparatus and method for analyzing a liquid sample
JP2001299730A (ja) 2000-04-21 2001-10-30 Fuji Photo Film Co Ltd 血漿採取具
AU2001259449A1 (en) 2000-05-03 2001-11-12 Eligix, Inc. Whole blood separator apparatus and method of use
JP2001321368A (ja) 2000-05-16 2001-11-20 Fuji Photo Film Co Ltd 血漿採取具
US6632681B1 (en) 2000-07-24 2003-10-14 Ey Laboratories Reagent delivery device and method of use
AU151377S (en) 2002-06-10 2003-04-04 Daiichi Pure Chemicals Co Ltd Device for test of specimen
US7093507B2 (en) 2003-05-12 2006-08-22 Bel-Art Products, Inc. Pipette control arrangement
JP2006118936A (ja) 2004-10-20 2006-05-11 Denka Seiken Co Ltd メンブランエンザイムイムノアッセイ法
USD566291S1 (en) 2005-05-03 2008-04-08 Handylab, Inc. Microfluidic cartridge
KR20100111097A (ko) 2009-04-06 2010-10-14 삼성전자주식회사 표적물질 분리를 위한 미세유동장치 및 그 정제방법
USD642908S1 (en) 2009-11-17 2011-08-09 Help Remedies, Inc. Container
AU2013204820B2 (en) 2009-12-23 2014-01-30 Cytovera, Inc. A System and Method for Particle Filtration
US8388566B2 (en) 2010-04-29 2013-03-05 Sorin Group Italia, S.r.l. Oxygenator with integrated arterial filter including filter frame
WO2011155897A1 (en) 2010-06-10 2011-12-15 Hemcheck Sweden Aktiebolag Arrangement for detection of hemolysis
KR101749243B1 (ko) * 2010-12-06 2017-06-21 한국전자통신연구원 자기력을 이용한 혈장 분리 방법 및 장치
SE536634C2 (sv) 2011-12-09 2014-04-15 Hemcheck Sweden Ab Anordning för detektion av hemolys
US10384153B2 (en) * 2012-01-24 2019-08-20 Minicare B.V. Filter unit for a cartridge
USD734467S1 (en) 2014-03-24 2015-07-14 Fenwal, Inc. Blood filter
WO2016073415A2 (en) 2014-11-04 2016-05-12 Wainamics, Inc. Microscale plasma separator
USD771834S1 (en) 2015-04-28 2016-11-15 University Of British Columbia Microfluidic cartridge
USD772427S1 (en) 2015-04-28 2016-11-22 University Of British Columbia Microfluidic cartridge
USD771833S1 (en) 2015-04-28 2016-11-15 University Of British Columbia Microfluidic cartridge
PL3272760T3 (pl) 2016-07-19 2019-10-31 Evonik Degussa Gmbh Ligandy 1,1'-bis(fosfino)ferrocenowe dla alkoksykarbonylowania
DE102017125881B4 (de) 2017-11-06 2019-06-19 Sartorius Stedim Biotech Gmbh Filtermodul und Verfahren zum Nachweis von Mirkoorganismen
JP1610170S (zh) 2017-11-10 2018-07-30
USD875271S1 (en) 2018-08-03 2020-02-11 Vdi Laboratory, Llc. Collection and storage case for dry blood samples

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761230A (en) * 1987-06-11 1988-08-02 Millipore Corporation Small volume tangential flow filtration apparatus
CN1169886A (zh) * 1996-01-19 1998-01-14 富士胶片公司 血液过滤器
WO2002062942A2 (en) * 2001-02-06 2002-08-15 Pall Corporation Filtration assembly
US20110266160A1 (en) * 2009-01-08 2011-11-03 James Gordon Campbell Method and apparatus for alcohol concentration detection in a blood sample
CN102803958A (zh) * 2009-06-17 2012-11-28 白血球保健股份有限公司 血液过滤器以及过滤血液的方法
CN102791616A (zh) * 2009-12-23 2012-11-21 西托维拉公司 用于粒子过滤的系统和方法
CN103038624A (zh) * 2010-07-14 2013-04-10 恰根有限公司 一种新型的贮存、收集或分离用装置
US20140080112A1 (en) * 2012-02-13 2014-03-20 Streck, Inc. Blood collection device for improved nucleic acid regulation
CN105874052A (zh) * 2013-11-04 2016-08-17 查尔斯河实验室公司 过滤系统和其使用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612888B2 (en) 2017-01-04 2023-03-28 The Research Foundation For The State University Of New York Biomarker detection device
CN112858085A (zh) * 2021-01-19 2021-05-28 竹简云(天津)生物科技有限公司 一种食品药物溶解度检测分析装置
CN112858085B (zh) * 2021-01-19 2021-11-02 竹简云(天津)生物科技有限公司 一种食品药物溶解度检测分析装置
CN113252765A (zh) * 2021-06-21 2021-08-13 南昌大学 毛细管电泳仪
CN115950868A (zh) * 2022-12-26 2023-04-11 深圳市雷诺华科技实业有限公司 一种抗体-斑点法进行糖化白蛋白测定的测试装置及其测试方法
CN115950868B (zh) * 2022-12-26 2024-02-13 深圳市雷诺华科技实业有限公司 一种抗体-斑点法进行糖化白蛋白测定的测试装置及其测试方法

Also Published As

Publication number Publication date
EP3645998A1 (en) 2020-05-06
US11946843B2 (en) 2024-04-02
JP2020525802A (ja) 2020-08-27
EP3645998A4 (en) 2021-07-14
WO2019005833A1 (en) 2019-01-03
EP3645998B1 (en) 2023-11-15
US20200124508A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US11946843B2 (en) Sample filtration device
JP4513085B2 (ja) 試料の容器
US10589265B2 (en) Reagent storage in microfluidic systems and related articles and methods
CA2419862C (en) Fluid control and processing system
US7870964B2 (en) Implementation of microfluidic components in a microfluidic system
JP5369043B2 (ja) 流体の処理および制御
US6878271B2 (en) Implementation of microfluidic components in a microfluidic system
EP2423667B1 (en) Particle processing system
JP6061313B2 (ja) 核酸を処理及び検出するためのマイクロ流体カートリッジ
CN108745429B (zh) 一种多通道快速检测微流体检测芯片
CN107405619B (zh) 用于样品流体分析的一次性盒
CA2320296A1 (en) Liquid analysis cartridge
CN109746059B (zh) 微液滴生成系统
US20210291175A1 (en) Fluidic system for taking in, dispensing and moving liquids, method for processing fluids in a fluidic system
CN113351267A (zh) 应用于微流控芯片之快速拆接之密封匹配接头模块及其操作平台
KR20180115695A (ko) 미세유체 혼합 장치 및 방법
EP2847597B1 (en) Functionalized microfluidic device and method
KR20210093860A (ko) 반도체 검출 칩을 이용한 샘플 프로세싱의 시스템, 장치, 및 방법
CN210427608U (zh) 一种片上实验室
CN1331575C (zh) 微射流系统中的微射流部件的实现
MXPA01000691A (es) Extraccion mediante un fluido de muestras microdisectadas.
RU200301U1 (ru) Микрофлюидный чип для проведения многопараметрического иммуноанализа
JP2010151716A (ja) 使い捨て式流体導入装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200211