CN110760828B - 一种锌磷酸盐化学转化-水热复合防护膜及其制备方法 - Google Patents

一种锌磷酸盐化学转化-水热复合防护膜及其制备方法 Download PDF

Info

Publication number
CN110760828B
CN110760828B CN201810837528.2A CN201810837528A CN110760828B CN 110760828 B CN110760828 B CN 110760828B CN 201810837528 A CN201810837528 A CN 201810837528A CN 110760828 B CN110760828 B CN 110760828B
Authority
CN
China
Prior art keywords
zinc phosphate
chemical conversion
magnesium alloy
protective film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810837528.2A
Other languages
English (en)
Other versions
CN110760828A (zh
Inventor
王吉会
袁静
胡文彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810837528.2A priority Critical patent/CN110760828B/zh
Publication of CN110760828A publication Critical patent/CN110760828A/zh
Application granted granted Critical
Publication of CN110760828B publication Critical patent/CN110760828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明公开一种锌磷酸盐化学转化‑水热复合防护膜及其制备方法,取磷酸氢二钠、硝酸锌、亚硝酸钠和氟酸钠配制锌磷酸盐溶液,并采用磷酸调节锌磷酸盐溶液的pH,水浴保温;将镁合金试样放入到锌磷酸盐溶液中,搅拌反应后取出,清洗风干;取硝酸锌与二水合柠檬酸钠溶解于去离子水中制成混合溶液,再将硬脂酸加入上述混合液中搅拌,搅拌均匀后采用氨水调节溶液pH;将混合液置于反应釜中,再将镁合金试样平放入上述反应釜内,在80‑230℃的温度条件下保温10‑40h;待反应釜自然冷却至室温后,取出试样,用去离子水冲洗烘干后,即得到锌磷酸盐化学转化‑水热复合防护膜,以能够显著改善镁合金的耐蚀性能,从而进一步拓展镁合金的使用范围。

Description

一种锌磷酸盐化学转化-水热复合防护膜及其制备方法
技术领域
本发明涉及镁合金表面耐蚀防护技术领域,更具体地说涉及一种锌磷酸盐化学转化-水热复合防护膜及其制备方法及其应用。
背景技术
镁及其镁合金具有比重小、比强度高、减震与电磁屏蔽性能强、生物相容性好等优点,被誉为21世纪的绿色材料,在汽车、航空航天、电子工业、军事与核能、生物医用等行业具有广泛的应用潜景。但镁的化学活性高、标准电极电位为-2.37V,且镁合金的表面膜疏松多孔,因而镁合金的耐腐蚀性不高,从而严重制约了镁合金的开发和广泛应用。
为改善镁合金的耐蚀性能,除对镁合金进行成分与结构设计外,表面处理技术如微弧氧化(王吉会,房大然,杨静.镁合金微弧氧化的电解液组分研究,天津大学学报-自然科学与工程技术版,2005,38(11):1026-1030)、化学镀(Yuan Jing,Gao Yun,Wang Jihui,Hu Wenbin,Preparation and corrosion resistance of Ni-P bilayer on magnesiumalloy,Materials and Corrosion,2017,68:1377-1388)、化学转化(袁静,王吉会,李文才,李海琴,镁合金表面稀土铈盐转化膜的制备与耐蚀性能,表面技术,2016,45(12):8-14)、有机涂层等是较为常用的防腐蚀方法。
相对阳极氧化、电镀、有机涂层等方法,化学转化处理具有成本低廉、工艺简单的特点,适合于进行大规模工业生产。其中铬酸盐处理是较为成熟的化学转化处理,处理后的膜层结合力和耐蚀性能较好;但转化处理中产生的Cr6+毒性大,不利于环境和身体健康。于是,无铬的、环保型化学转化处理技术如草酸盐、磷酸盐、高锰酸盐、植酸等一元或二元转化液的开发日益受到关注。周婉秋等采用磷酸盐体系在AZ31D镁合金表面制备出具有保护性的化学转化膜(Zhou W Q,Shan D Y,Han E H.Structure and formation mechanism ofphosphate conversion coating on die-cast AZ91D magnesium alloy.CorrosionScience,2008,50(5):329-337);Hawke等利用磷酸盐-高锰酸盐转化处理液在AM60B镁合金基体上制备出化学转化膜(Hawke D,Albright D L.A phosphate-permanganateconversion coating for magnesium.Metal Finishing,1995,93(10):34-38)。为进一步提高镁合金的耐蚀性能,Niu等在磷酸盐中加入硝酸锌,进而对AZ91镁合金进行了化学转化处理,达到进一步提高镁合金耐蚀性能的目的(Niu LY,Jiang Z H,Li G Y,Gu C D,Lian JS.A study and application of zinc phosphate coating on AZ91D magnesium alloy,Surf.Coat.Technol.2006,200:3021-3026)。此外,Zeng等还在锌磷酸盐体系中引入Ca2+,得到了锌-钙磷酸盐转化膜,又进一步提高了化学转化膜的耐蚀性能(Zeng R C,Zhang F,LanZ D,Cui H Z,Han E H.Corrosion resistance of calcium-modified zinc phosphateconversion coatings on magnesium–aluminum alloys,Corrosion Science,2014,88:452-459)。但因化学转化膜的膜层厚度有限、结构较疏松且存在大量的微观裂纹和缺陷,使得镁合金化学转化膜的性能难以得到进一步的提升。
疏水化处理是提高镁合金耐蚀性能的又一重要方法,它首先通过微弧氧化、刻蚀和电沉积等方法在镁合金表面构建出特定的表面微结构,进而经由水热法或化学成膜技术在微结构表面制备出低表面物质,从而实现镁合金表面的疏水特性、达到提升其耐蚀性能的目的(李杰,郭浩正,石文天.镁合金超疏水表面制备技术的研究进展,表面技术,2016,45(12):15-22)。如Yang等利用化学转化膜法在AZ91D镁合金表面制备出具有自修复能力的锡酸镁膜层,进而对锡酸镁膜层进行硬脂酸修饰,制备得到具有耐腐蚀的超疏水表面(YangNa,Qing Li,Chen Funan,A solving-reprecipitation theory for self-healingfunctionality of stannate coating with a high environmental stability,Electrochimica Acta,2015,174:1192-1201);Zhao等在AZ91D镁合金表面制备一层经脂肪酸修饰的磷酸盐转化膜层,该膜层的接触角大于160°、滚动角为2°且其耐蚀性得到显著提高(Zhao M,Wang X,Song H,Fabrication of a superhydrophobic phosphate/fatty-acid salt compound coating on magnesium alloy,ECS Electrochemistry Letters,2015,4(5):C19-C21)。但超疏水膜存在稳定性差、与基体的结合力不强等缺陷,因而难以发挥其对镁合金的长期保护作用。
鉴于单一防护层自身的缺陷和不足,近年来开始在镁合金表面发展出复合防护层,以期通过防护层间的协同作用提升镁合金的耐蚀性能。如Cui等利用硬脂酸溶液对经微弧氧化处理后的AZ31镁合金进行表面修饰,获得了具有超疏水特特性的复合膜层,从而使镁合金的耐蚀性能提高了两个数量级(Cui X J,Lin X Z,Liu C H.Fabrication andcorrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mgalloy.Corrosion Science,2015,90:402-412)。Ishizaki等将经铈酸盐化学转化后的镁合金进行了疏水化处理,得到了复合疏水膜;实验结果表明复合膜层的腐蚀电流密度较镁合金转化膜降低了1个数量级(Ishizaki T,Saito N.Rapid formation of asuperhydrophobic surface on a magnesium alloy coated with a cerium oxide filmby a simple immersion process at room temperature and its chemicalstability.Langmuir,2010,26(12):9749-9755)。
发明内容
本发明克服了现有技术中的不足,鉴于化学转化膜的膜层厚度有限、结构较疏松且存在大量的微观裂纹和缺陷,以及超疏水膜存在稳定性差、与基体的结合力不强等缺陷,制约了镁合金的开发和应用,提供了一种锌磷酸盐化学转化-水热复合防护膜及其制备方法及其应用,以期能够显著改善镁合金的耐蚀性能,从而进一步拓展镁合金的使用范围。
本发明的目的通过下述技术方案予以实现。
一种锌磷酸盐化学转化-水热复合防护膜及其制备方法,按照下述步骤进行:
步骤1,取磷酸氢二钠(Na2HPO4)、硝酸锌(Zn(NO3)2)、亚硝酸钠(NaNO2)以及氟化钠(NaF)配制锌磷酸盐溶液,并采用磷酸调节锌磷酸盐溶液的pH值为2.0-4.0后,将上述锌磷酸盐溶液的容器水浴加热保温;
步骤2,将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理3-30min,取出试样去离子水清洗、自然风干;
步骤3,取硝酸锌(Zn(NO3)2)与二水合柠檬酸钠(C6H5Na3O7·2H2O)溶解于去离子水中制成混合溶液,再将硬脂酸(CH3(CH2)16COOH)加入上述混合液中搅拌,搅拌均匀后采用氨水调节溶液pH值为8-10;
步骤4,将步骤3制备得到的混合液置于反应釜中,再将步骤2中的镁合金试样平放入上述反应釜内,在80-230℃的温度条件下保温10-40h;
步骤5,待反应釜自然冷却至室温20-25℃后,取出试样,用去离子水冲洗、烘干后,即得到锌磷酸盐化学转化-水热复合防护膜。
在步骤1中,磷酸氢二钠(Na2HPO4)的质量浓度为2.0-20.0g/L,硝酸锌(Zn(NO3)2)的质量浓度为1.0-12.0g/L,亚硝酸钠(NaNO2)的质量浓度为1.0-10.0g/L,氟化钠(NaF)的质量浓度为1.0-10.0g/L,水浴温度为40-80℃,优选磷酸氢二钠(Na2HPO4)的质量浓度为5-12g/L,硝酸锌(Zn(NO3)2)的质量浓度为3-6g/L,亚硝酸钠(NaNO2)的质量浓度为3-6g/L,氟化钠(NaF)的质量浓度为3-8g/L。
在步骤2中,镁合金试样化学转化处理时间为5-25min。
在步骤3中,硝酸锌(Zn(NO3)2)的摩尔浓度为0.010-0.045mol/L,二水合柠檬酸钠(C6H5Na3O7·2H2O)的摩尔浓度为0.001-0.010mol/L,硬脂酸(CH3(CH2)16COOH)质量浓度为0.02-0.20g/10mL,优选硝酸锌(Zn(NO3)2)的摩尔浓度为0.02-0.04mol/L,二水合柠檬酸钠(C6H5Na3O7·2H2O)的摩尔浓度为0.003-0.005mol/L,硬脂酸(CH3(CH2)16COOH)质量浓度为0.05-0.12g/10mL。
在步骤4中,反应温度为100-200℃,保温时间为12-36h。
在步骤5中,烘干温度为40-80℃。
将本发明的锌磷酸盐化学转化-水热复合防护膜进行疏水和缓蚀功能测试,结果如下:
(1)良好的疏水特性
对不同条件下制备的锌磷酸盐化学转化-水热复合防护膜,采用JC2000D光学接触仪测定了复合膜层在pH1-14、1-5mol/L NaCl溶液中的静态接触角。结果表明,锌磷酸盐化学转化-水热复合防护膜的静态接触角在145-1550左右,即具有良好的疏水甚至是超疏水特性,而且对溶液pH值、NaCl浓度具有很强的耐受性。
(2)优异的缓蚀性能
以锌磷酸盐化学转化-水热复合防护膜为工作电极、饱和甘汞电极为参比电极、铂片为辅助电极,利用Autolab 302F电化学工作站测定了锌磷酸盐化学转化-水热复合防护膜在3.5%NaCl溶液中的极化曲线和电化学阻抗谱图(如图1),进而计算出复合防护膜的腐蚀电流密度和极化电阻曲线(如图2)。由图1和图2可见,与镁合金基体相比,锌磷酸盐化学转化-水热复合防护膜具有较高的腐蚀电位(正移1000-1500mV)、较低的腐蚀电流密度(低4-5个数量级)及较高的极化电阻(高4-5个数量级)。因而,镁合金经锌磷酸盐化学转化-水热复合处理后具有优异的耐蚀性能。
本发明的有益效果为:镁合金表面的锌磷酸盐化学转化-水热复合防护膜不仅具有良好的疏水甚至超疏水特性,而且具有优异的耐蚀性能,因而可大幅提升镁合金的耐蚀能力。
附图说明
图1是镁合金基体与锌磷酸盐化学转化-水热复合防护膜在3.5%NaCl溶液中的极化曲线和电化学阻抗谱曲线,其中(a)为极化曲线,(b)为电化学阻抗谱曲线;
图2是镁合金基体与锌磷酸盐化学转化-水热复合防护膜在3.5%NaCl溶液中的腐蚀电流密度图和极化电阻图,其中(a)为腐蚀电流密度图,(b)为极化电阻图。
具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的说明。
实施例中,所有溶液均为分析纯的化学试剂与去离子水配制而成,其中Na2HPO4由上海阿拉丁有限公司生产;CH3(CH2)16COOH由天津市江天化工技术有限公司生产;Zn(NO3)2由天津市元立化工有限公司生产;NaNO2、C6H5Na3O7、NH3·H2O、H3PO4、NaF由天津市光复精细化工研究所生产。
实施例1
(1)按5.0g/LNa2HPO4,6.0g/LZn(NO3)2,6.0g/LNaNO2,4.0g/LNaF的比例配制锌磷酸盐转化液,并采用磷酸调节溶液的pH值为2.0左右。
(2)将盛有上述锌磷酸盐溶液的烧杯放入恒温水浴槽中,加热至40℃进行保温。
(3)将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理10min。实验结束后取出试样,用去离子水清洗,自然风干。
(4)按0.010mol/L、0.004mol/L分别称取Zn(NO3)2与C6H5Na3O7·2H2O,并溶解于40mL的去离子水中制成混合溶液;再将0.05g/10mL的CH3(CH2)16COOH加入混合液后磁力搅拌20min,搅拌均匀后采用氨水调节溶液pH值为8。
(5)将混合液移入100mL反应釜中,再将经化学转化处理后的镁合金基体平放入反应釜内,在120℃的温度条件下保温12h。
(6)保温结束,待反应釜自然冷却至室温后取出试样;用去离子水冲洗,40℃烘干后获得锌磷酸盐化学转化-水热复合防护膜。
实施例2
(1)按10.0g/LNa2HPO4,8.0g/LZn(NO3)2,6.0g/LNaNO2,6.0g/LNaF的比例配制锌磷酸盐转化液,并采用磷酸调节溶液的pH值为3.0左右。
(2)将盛有上述锌磷酸盐溶液的烧杯放入恒温水浴槽中,加热至50℃进行保温。
(3)将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理15min。实验结束后取出试样,用去离子水清洗,自然风干。
(4)按0.020mol/L mol/L、0.006mol/L分别称取Zn(NO3)2与C6H5Na3O7·2H2O,并溶解于40mL的去离子水中制成混合溶液;再将0.10g/10mL的CH3(CH2)16COOH加入混合液后磁力搅拌20min,搅拌均匀后采用氨水调节溶液pH值为9。
(5)将混合液移入100mL反应釜中,再将经化学转化处理后的镁合金基体平放入反应釜内,在180℃的温度条件下保温24h。
(6)保温结束,待反应釜自然冷却至室温后取出试样;用去离子水冲洗,50℃烘干后获得锌磷酸盐化学转化-水热复合防护膜。
实施例3
(1)按15.0g/LNa2HPO4,10.0g/LZn(NO3)2,8.0g/LNaNO2,8.0g/LNaF的比例配制锌磷酸盐转化液,并采用磷酸调节溶液的pH值为2.8左右。
(2)将盛有上述锌磷酸盐溶液的烧杯放入恒温水浴槽中,加热至60℃进行保温。
(3)将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理25min。实验结束后取出试样,用去离子水清洗,自然风干。
(4)按0.035mol/L、0.010mol/L分别称取Zn(NO3)2与C6H5Na3O7·2H2O,并溶解于40mL的去离子水中制成混合溶液;再将0.20g/10mL的CH3(CH2)16COOH加入混合液后磁力搅拌20min,搅拌均匀后采用氨水调节溶液pH值为10。
(5)将混合液移入100mL反应釜中,再将经化学转化处理后的镁合金基体平放入反应釜内,在200℃的温度条件下保温36h。
(6)保温结束,待反应釜自然冷却至室温后取出试样;用去离子水冲洗,80℃烘干后获得锌磷酸盐化学转化-水热复合防护膜。
实施例4
(1)按20.0g/LNa2HPO4,8.0g/LZn(NO3)2,2.0g/LNaNO2,3.0g/LNaF的比例配制锌磷酸盐转化液,并采用磷酸调节溶液的pH值为4.0左右。
(2)将盛有上述锌磷酸盐溶液的烧杯放入恒温水浴槽中,加热至80℃进行保温。
(3)将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理20min。实验结束后取出试样,用去离子水清洗,自然风干。
(4)按0.045mol/L、0.008mol/L分别称取Zn(NO3)2与C6H5Na3O7·2H2O,并溶解于40mL的去离子水中制成混合溶液;再将0.15g/10mL的CH3(CH2)16COOH加入混合液后磁力搅拌20min,搅拌均匀后采用氨水调节溶液pH值为9。
(5)将混合液移入100mL反应釜中,再将经化学转化处理后的镁合金基体平放入反应釜内,在160℃的温度条件下保温24h。
(6)保温结束,待反应釜自然冷却至室温后取出试样;用去离子水冲洗,70℃烘干后获得锌磷酸盐化学转化-水热复合防护膜。
实施例5
(1)按10.0g/LNa2HPO4,6.0g/LZn(NO3)2,4.0g/LNaNO2,2.0g/LNaF的比例配制锌磷酸盐转化液,并采用磷酸调节溶液的pH值为2.8左右。
(2)将盛有上述锌磷酸盐溶液的烧杯放入恒温水浴槽中,加热至55℃进行保温。
(3)将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理20min。实验结束后取出试样,用去离子水清洗,自然风干。
(4)按0.025mol/L、0.005mol/L分别称取Zn(NO3)2与C6H5Na3O7·2H2O,并溶解于40mL的去离子水中制成混合溶液;再将0.12g/10mL的CH3(CH2)16COOH加入混合液后磁力搅拌20min,搅拌均匀后采用氨水调节溶液pH值为8.5。
(5)将混合液移入100mL反应釜中,再将经化学转化处理后的镁合金基体平放入反应釜内,在140℃的温度条件下保温20h。
(6)保温结束,待反应釜自然冷却至室温后取出试样;用去离子水冲洗,60℃烘干后获得锌磷酸盐化学转化-水热复合防护膜。
实施例6
(1)按6.0g/LNa2HPO4,3.0g/LZn(NO3)2,5.0g/LNaNO2,8.0g/LNaF的比例配制锌磷酸盐转化液,并采用磷酸调节溶液的pH值为2.0左右。
(2)将盛有上述锌磷酸盐溶液的烧杯放入恒温水浴槽中,加热至75℃进行保温。
(3)将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理3min。实验结束后取出试样,用去离子水清洗,自然风干。
(4)按0.030mol/L、0.008mol/L分别称取Zn(NO3)2与C6H5Na3O7·2H2O,并溶解于40mL的去离子水中制成混合溶液;再将0.10g/10mL的CH3(CH2)16COOH加入混合液后磁力搅拌20min,搅拌均匀后采用氨水调节溶液pH值为10。
(5)将混合液移入100mL反应釜中,再将经化学转化处理后的镁合金基体平放入反应釜内,在80℃的温度条件下保温40h。
(6)保温结束,待反应釜自然冷却至室温后取出试样;用去离子水冲洗,50℃烘干后获得锌磷酸盐化学转化-水热复合防护膜。
实施例7
(1)按12.0g/LNa2HPO4,10.0g/LZn(NO3)2,3.0g/LNaNO2,2.0g/LNaF的比例配制锌磷酸盐转化液,并采用磷酸调节溶液的pH值为3左右。
(2)将盛有上述锌磷酸盐溶液的烧杯放入恒温水浴槽中,加热至45℃进行保温。
(3)将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理30min。实验结束后取出试样,用去离子水清洗,自然风干。
(4)按0.040mol/L、0.008mol/L分别称取Zn(NO3)2与C6H5Na3O7·2H2O,并溶解于40mL的去离子水中制成混合溶液;再将0.18g/10mL的CH3(CH2)16COOH加入混合液后磁力搅拌20min,搅拌均匀后采用氨水调节溶液pH值为9。
(5)将混合液移入100mL反应釜中,再将经化学转化处理后的镁合金基体平放入反应釜内,在230℃的温度条件下保温10h。
(6)保温结束,待反应釜自然冷却至室温后取出试样;用去离子水冲洗,75℃烘干后获得锌磷酸盐化学转化-水热复合防护膜。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种锌磷酸盐化学转化-水热复合防护膜,其特征在于:按照下述步骤进行:
步骤1,取磷酸氢二钠、硝酸锌、亚硝酸钠以及氟化钠配制锌磷酸盐溶液,并采用磷酸调节锌磷酸盐溶液的pH值为2.0-4.0后,将上述锌磷酸盐溶液的容器水浴加热保温;磷酸氢二钠的质量浓度为2.0-20.0g/L,硝酸锌的质量浓度为1.0-12.0g/L,亚硝酸钠的质量浓度为1.0-10.0g/L,氟化钠的质量浓度为1.0-10.0g/L,水浴温度为40-80℃;
步骤2,将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理3-30min,取出试样去离子水清洗、自然风干;
步骤3,取硝酸锌与二水合柠檬酸钠溶解于去离子水中制成混合溶液,再将硬脂酸加入上述混合溶液中搅拌,搅拌均匀后采用氨水调节溶液pH值为8-10,硝酸锌的摩尔浓度为0.010-0.045mol/L,二水合柠檬酸钠的摩尔浓度为0.001-0.010mol/L,硬脂酸质量浓度为0.02-0.20g/10mL;
步骤4,将步骤3制备得到的混合液置于反应釜中,再将步骤2中的镁合金试样平放入上述反应釜内,在80-230℃的温度条件下保温10-40h;
步骤5,待反应釜自然冷却至室温20-25℃后,取出试样,用去离子水冲洗、烘干后,即得到锌磷酸盐化学转化-水热复合防护膜。
2.根据权利要求1所述的一种锌磷酸盐化学转化-水热复合防护膜,其特征在于:在步骤1中,磷酸氢二钠的质量浓度为5-12g/L,硝酸锌的质量浓度为3-6g/L,亚硝酸钠的质量浓度为3-6g/L,氟化钠的质量浓度为3-8g/L。
3.根据权利要求1所述的一种锌磷酸盐化学转化-水热复合防护膜,其特征在于:在步骤2中,镁合金试样化学转化处理时间为5-25min,在步骤3中,硝酸锌的摩尔浓度为0.02-0.04mol/L,二水合柠檬酸钠的摩尔浓度为0.003-0.005mol/L,硬脂酸质量浓度为0.05-0.12g/10mL。
4.根据权利要求1所述的一种锌磷酸盐化学转化-水热复合防护膜,其特征在于:在步骤4中,反应温度为100-200℃,保温时间为12-36h,在步骤5中,烘干温度为40-80℃。
5.制备如权利要求1-4任一所述的一种锌磷酸盐化学转化-水热复合防护膜的方法,其特征在于:按照下述步骤进行:
步骤1,取磷酸氢二钠、硝酸锌、亚硝酸钠以及氟化钠配制锌磷酸盐溶液,并采用磷酸调节锌磷酸盐溶液的pH值为2.0-4.0后,将上述锌磷酸盐溶液的容器水浴加热保温;磷酸氢二钠的质量浓度为2.0-20.0g/L,硝酸锌的质量浓度为1.0-12.0g/L,亚硝酸钠的质量浓度为1.0-10.0g/L,氟化钠的质量浓度为1.0-10.0g/L,水浴温度为40-80℃;
步骤2,将镁合金试样放入到锌磷酸盐溶液中,在缓慢搅拌情况下进行化学转化处理3-30min,取出试样去离子水清洗、自然风干;
步骤3,取硝酸锌与二水合柠檬酸钠溶解于去离子水中制成混合溶液,再将硬脂酸加入上述混合溶液中搅拌,搅拌均匀后采用氨水调节溶液pH值为8-10,硝酸锌的摩尔浓度为0.010-0.045mol/L,二水合柠檬酸钠的摩尔浓度为0.001-0.010mol/L,硬脂酸质量浓度为0.02-0.20g/10mL;
步骤4,将步骤3制备得到的混合液置于反应釜中,再将步骤2中的镁合金试样平放入上述反应釜内,在80-230℃的温度条件下保温10-40h;
步骤5,待反应釜自然冷却至室温20-25℃后,取出试样,用去离子水冲洗、烘干后,即得到锌磷酸盐化学转化-水热复合防护膜。
6.根据权利要求5所述的一种锌磷酸盐化学转化-水热复合防护膜的制备方法,其特征在于:在步骤1中,磷酸氢二钠的质量浓度为5-12g/L,硝酸锌的质量浓度为3-6g/L,亚硝酸钠的质量浓度为3-6g/L,氟化钠的质量浓度为3-8g/L。
7.根据权利要求5所述的一种锌磷酸盐化学转化-水热复合防护膜的制备方法,其特征在于:在步骤2中,镁合金试样化学转化处理时间为5-25min。
8.根据权利要求5所述的一种锌磷酸盐化学转化-水热复合防护膜的制备方法,其特征在于:在步骤3中,硝酸锌的摩尔浓度为0.02-0.04mol/L,二水合柠檬酸钠的摩尔浓度为0.003-0.005mol/L,硬脂酸质量浓度为0.05-0.12g/10mL。
9.根据权利要求5所述的一种锌磷酸盐化学转化-水热复合防护膜的制备方法,其特征在于:在步骤4中,反应温度为100-200℃,保温时间为12-36h,在步骤5中,烘干温度为40-80℃。
10.如权利要求1-4任一所述的一种锌磷酸盐化学转化-水热复合防护膜在镁合金表面耐蚀防护上的应用,其特征在于:锌磷酸盐化学转化-水热复合防护膜的静态接触角为145-155° ,具有良好的疏水甚至是超疏水特性,而且对溶液pH值、NaCl浓度具有很强的耐受性,锌磷酸盐化学转化-水热复合防护膜的腐蚀电位相较于镁合金基体正移1000-1500mV,腐蚀电流密度相较于镁合金基体低4-5个数量级,极化电阻相较于镁合金基体高4-5个数量级。
CN201810837528.2A 2018-07-26 2018-07-26 一种锌磷酸盐化学转化-水热复合防护膜及其制备方法 Active CN110760828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810837528.2A CN110760828B (zh) 2018-07-26 2018-07-26 一种锌磷酸盐化学转化-水热复合防护膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810837528.2A CN110760828B (zh) 2018-07-26 2018-07-26 一种锌磷酸盐化学转化-水热复合防护膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110760828A CN110760828A (zh) 2020-02-07
CN110760828B true CN110760828B (zh) 2021-09-07

Family

ID=69327959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810837528.2A Active CN110760828B (zh) 2018-07-26 2018-07-26 一种锌磷酸盐化学转化-水热复合防护膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110760828B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157590A (zh) * 2013-03-14 2013-06-19 许昌学院 一种基于锌的超疏水表面及其制备方法
JP2013228187A (ja) * 2012-03-29 2013-11-07 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
CN104711572A (zh) * 2015-01-26 2015-06-17 北方工业大学 镁合金磷酸盐/脂肪酸盐复合超疏水耐蚀膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228187A (ja) * 2012-03-29 2013-11-07 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
CN103157590A (zh) * 2013-03-14 2013-06-19 许昌学院 一种基于锌的超疏水表面及其制备方法
CN104711572A (zh) * 2015-01-26 2015-06-17 北方工业大学 镁合金磷酸盐/脂肪酸盐复合超疏水耐蚀膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Characterization of calcium-modified zinc phosphate conversion coatings and their;R. Zeng et al;《SURFACE & COATINGS TECHNOLOGY》;20101124;第205卷(第11期);第3348页 *
Facile fabrication of superhydrophobic ZnO surfaces from high to low water adhesion;J. Li et al;《Materials Letters》;20120204;第75卷;第71页 *

Also Published As

Publication number Publication date
CN110760828A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
Amini et al. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent
Rezaee et al. Studying corrosion performance, microstructure and adhesion properties of a room temperature zinc phosphate conversion coating containing Mn2+ on mild steel
CN102766862B (zh) 一种处理液及用其制备具有自修复性能的铝合金表面钒锆复合转化膜的方法
Zhu et al. Improvement on corrosion resistance of micro-arc oxidized AZ91D magnesium alloy by a pore-sealing coating
Zhou et al. The preparation and characterization of a nano-CeO2/phosphate composite coating on magnesium alloy AZ91D
CN104561999B (zh) 一种在镁合金表面制备超疏水膜层的方法
CN110724992B (zh) 在铝合金表面制备耐腐蚀超疏水膜层的方法
CN106868486B (zh) 一种镁合金用复合物化学转化膜的成膜处理剂及成膜工艺
CN107937893B (zh) 一种铝或铝合金用环保钝化液及其制备方法和处理工艺
CN104313655A (zh) 一种离子液体电镀Ni-Fe合金的方法
Maddela et al. Influence of surface pretreatment on coating morphology and corrosion performance of cerium-based conversion coatings on AZ91D alloy
Xiong et al. The study of a phosphate conversion coating on magnesium alloy AZ91D: II. Effects of components and their content in phosphating bath
CN102199767A (zh) 电镀Zn-Ni合金镀层的无铬无氟彩色钝化溶液及其钝化方法
Sudagar et al. Electrochemical polarization behaviour of electroless Ni-P deposits with different chromium-free pre-treatment on magnesium alloy
CN103614717A (zh) 一种镁合金表面水热法制备的耐蚀膜层及其制备工艺
CN108611672B (zh) 铝合金硬质阳极氧化电解液、制备方法及应用
Cui et al. Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance
Wang et al. Fabrication of superhydrophobic Zn-Ni coatings on LA43M magnesium alloy
CN114574844A (zh) 一种镁合金表面复合膜转化处理剂及其应用
CN110760828B (zh) 一种锌磷酸盐化学转化-水热复合防护膜及其制备方法
CN101892468A (zh) 一种Mg-Li合金表面化学镀Ni-W-P三元合金的制备方法
CN114892152A (zh) 一种在镁合金表面制备离子液体转化膜的方法
JIANG et al. Microstructure and properties of oxalate conversion coating on AZ91D magnesium alloy
CN114016110A (zh) 一种镁合金表面微弧氧化/氧化石墨烯/硬脂酸超疏水复合涂层及其制备方法
KR100917326B1 (ko) 마그네슘 합금에 구리를 도금하는 방법 및 구리 도금된 마그네슘 합금

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant