CN110759965B - 一种金枪鱼红肉ace抑制肽及其制备方法 - Google Patents

一种金枪鱼红肉ace抑制肽及其制备方法 Download PDF

Info

Publication number
CN110759965B
CN110759965B CN201910973782.XA CN201910973782A CN110759965B CN 110759965 B CN110759965 B CN 110759965B CN 201910973782 A CN201910973782 A CN 201910973782A CN 110759965 B CN110759965 B CN 110759965B
Authority
CN
China
Prior art keywords
ace inhibitory
ace
tuna
preparation
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910973782.XA
Other languages
English (en)
Other versions
CN110759965A (zh
Inventor
赵玉勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhoushan Lingxian Marine Biotechnology Co ltd
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201910973782.XA priority Critical patent/CN110759965B/zh
Publication of CN110759965A publication Critical patent/CN110759965A/zh
Application granted granted Critical
Publication of CN110759965B publication Critical patent/CN110759965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/081Tripeptides with the first amino acid being neutral and aliphatic the side chain containing O or S as heteroatoms, e.g. Cys, Ser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/1013Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing O or S as heteroatoms, e.g. Cys, Ser
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

一种金枪鱼红肉ACE抑制肽及其制备方法,涉及ACE抑制肽制备领域,金枪鱼红肉ACE抑制肽的肽段氨基酸序列为Met‑Trp‑Asn、Met‑Glu‑Lys‑Ser、Met‑Lys‑Lys‑Ser或Leu‑Pro‑Arg‑Ser,制备方法包括以下步骤:1)将金枪鱼红肉解冻、烘干、脱脂备用;2)将预处理后的红肉粉末进行酶解,得到酶解液;3)将酶解液进行灭酶处理得灭酶酶解液,冷冻干燥得多肽粉,测ACE抑制活性;4)随后进行超滤、柱层析、高效液相色谱纯化、氨基酸测序后,制备得到金枪鱼红肉ACE抑制肽,本发明制备得到的金枪鱼红肉ACE抑制肽抑制活性好,制备成本低,效率高,适用工业生产。

Description

一种金枪鱼红肉ACE抑制肽及其制备方法
技术领域
本发明涉及ACE抑制肽制备领域,尤其涉及一种金枪鱼红肉ACE抑制肽及其制备方法。
背景技术
高血压的产生与肾素血管紧张素系统(RAS)和激肽释放酶激肽系统(KKS)的失调密切相关。血管紧张素转换酶通过将血管紧张素Ⅰ(AngⅠ)转化为具有强效血管收缩作用的八肽血管紧张素Ⅱ(AngⅡ),并通过降解具有血管舒张作用缓激肽,在调节血压方面起着至关重要的作用。降血压肽可对血管紧张素转化酶的底物形成竞争性抑制,影响具有强烈收缩血管作用AngⅡ的生成,从而达到降血压的目的,所以血管紧张素转换酶抑制作用抗高血压药物重要的作用靶点。目前,降血压肽制备方法主要有微生物发酵法、天然活性肽提取法及合成法提取,然而,提取法是从生物体中直接提取天然活性肽,成本较高,并且提取效率较低;微生物发酵法是利用乳、乳酪等动物制品自身的发酵和成熟作用制备ACE抑制肽的方法,虽然该方法成本低,但操作较复杂;合成法则成本相对较高,适合在实验室定向合成,不适用于工业化生产。例如,文献“Purification and characterization of a naturalantioxidant peptide from fertilized eggs”,其利用乳、乳酪等动物制品自身的发酵和成熟作用制备ACE抑制肽的方法,虽然该方法成本较低,但该方法操作较复杂。
发明内容
本发明是为了克服目前现有的降血压肽成本较高,效率较低,不适用工业生产,且降压活性低等问题,提出了一种金枪鱼红肉ACE抑制肽及其制备方法。
为了实现上述目的,本发明采用以下技术方案:
一种金枪鱼红肉ACE抑制肽,所述金枪鱼红肉ACE抑制肽的肽段氨基酸序列为Met-Trp-Asn、Met-Glu-Lys-Ser、Met-Lys-Lys-Ser或Leu-Pro-Arg-Ser。
本发明通过酶解法从金枪鱼红肉中成功提取纯化得到氨基酸序列为Met-Trp-Asn、Met-Glu-Lys-Ser、Met-Lys-Lys-Ser或Leu-Pro-Arg-Ser四种肽段的ACE抑制肽,通过FAPGG-ACE体外评价模型和人脐静脉内皮细胞(HUVEC)模型评价,具有明显的降血压作用。
一种金枪鱼红肉ACE抑制肽的制备方法,其特征在于,包括以下步骤:
1)将金枪鱼红肉解冻、烘干除去水份,随后脱脂、烘干、粉碎备用;
2)将预处理后的红肉粉末加入蒸馏水,调节pH值后,加入蛋白酶进行酶解,得到酶解液;
3)将酶解液进行灭酶处理,随后离心取上清液,得灭酶酶解液,冷冻干燥,得到多肽粉,测ACE抑制活性;
4)随后将灭酶酶解液进行超滤、柱层析、高效液相色谱纯化、氨基酸测序后,制备得到金枪鱼红肉ACE抑制肽。
本发明以ACE抑制活性为指标,以酶解法提取金枪鱼红肉ACE抑制肽,并以三因素(温度、加酶量和pH)优化酶解工艺,随后,经过超滤、Sephadex G-25凝胶层析和反相高效液相色谱(RP-HPLC)一系列纯化技术制备出具有ACE抑制活性的肽段,并且通过人脐静脉内皮细胞(HUVEC)模型对其降压活性进行进一步评价,具有明显的降血压作用。
作为优选,步骤1)中所述脱脂为:在金枪鱼中加入乙酸乙酯,浸没40-60h,随后旋转蒸发。
在金枪鱼中加入乙酸乙酯用于脱脂,方便后续ACE抑制肽的提取,旋转蒸发用于回收乙酸乙酯。
作为优选,步骤2)中红肉粉末与蒸馏水的质量比为1-3:20。
在该比例下,酶解效果较好。
作为优选,步骤2)中调节pH值至6-8。
作为优选,步骤2)中的加酶量为1-3wt%。
作为优选,步骤2)中酶解温度为45-65℃。
酶解程度对产物中游离氨基酸的相对含量和ACE抑制活性有重要影响。酶解度不够时,不能暴露具有ACE抑制活性的氨基酸残基,则没有ACE抑制活性。在蛋白水解的初始阶段,ACE的抑制作用随游离氨基酸的暴露而增强。然而,随着蛋白水解的进行,ACE对水解产物的抑制作用达到高峰,然后逐渐减弱。这可能是因为ACE抑制肽在蛋白水解开始时释放,导致水解产物的ACE抑制活性增加。而当水解达到一定程度时,部分ACE抑制肽进一步水解,破坏了ACE抑制肽的完整结构,产生较弱的ACE抑制肽。因此酶解工艺中的三因素对ACE抑制肽的制备至关重要,经过大量实验,上述范围内的酶解工艺参数具有较好的酶解效果,并通过实验得出了最优酶解工艺。
作为优选,步骤4)中所述的超滤步骤为在35.1-35.6Hz、0.5-1.2pa下,使用超滤膜对金枪鱼红肉灭酶酶解液进行超滤分级,将产物组分冷冻干燥后得到酶解物粉。
酶解液进行超滤分级后,进行ACE抑制活性的检测,用于筛分酶解液中抑制活性最好的组分。
作为优选,步骤4)中所述超滤膜的截留分子量为3.5KDa。
使用截留分子量为3.5KDa的超滤膜能够获得分子量小于3.5KDa的组分,该组分的ACE抑制活性较高。
作为优选,步骤4)中所述的层析步骤为将酶解物粉溶解过滤,使用Sephadex G-25凝胶过滤层析,随后冷冻干燥。
过滤层析能更进一步分离提纯ACE抑制肽。
因此,本发明具有如下有益效果:本发明制备得到的金枪鱼红肉ACE抑制肽抑制活性好,制备成本低,效率高,适用工业生产,为多肽类降压药物的开发及加工副产物的高值化发展开辟了新思路,具有广泛的应用前景,也为金枪鱼的深度开发和综合利用提供科学参考。
附图说明
图1是本发明制备过程中不同pH下多肽粉ACE活性抑制率。
图2是本发明制备过程中不同酶解温度下多肽粉ACE活性抑制率。
图3是本发明制备过程中不同加酶量下多肽粉ACE活性抑制率。
图4是本发明制备过程中不同超滤分子量酶解物粉的ACE活性抑制率。
图5是本发明制备过程中Sephadex G-25凝胶柱层析洗脱曲线。
图6是本发明制备过程中不同Sephadex G-25凝胶柱层析洗脱峰ACE活性抑制率。
图7是本发明制备过程中Zorbax SB-C18反相高效液相的谱图。
图8是本发明蛋白标准曲线。
图9是本发明ET-1标准曲线。
图10是本发明ACE抑制肽D3、D4、D7和D11对HUVEC的增殖活性影响。
图11是本发明不同浓度ACE抑制肽D3、D4、D7和D11对人脐静脉内皮细胞NO含量的影响(##P<0.01,#P<0.05 vs Control组;**P<0.01,*P<0.05 vs NE组)。
图12是本发明不同浓度ACE抑制肽D3、D4、D7和D11对人脐静脉内皮细胞ET-1含量的影响(##P<0.01,#P<0.05 vs Control组;**P<0.01,*P<0.05 vs NE组)。
具体实施方式
下面结合具体实施方式对本发明做进一步的描述。
实施例1-15:一种金枪鱼红肉ACE抑制肽的制备方法,包括以下步骤:
1)将金枪鱼红肉解冻、烘干除去水份,随后在金枪鱼中加入乙酸乙酯,浸没脱脂,旋转蒸发后,烘干、粉碎备用;
2)将预处理后的红肉粉末加入蒸馏水,调节pH值至6-8后,加入1-3wt%碱性蛋白酶,在45-65℃下酶解4h,得到酶解液;
3)将酶解液在100℃水浴下加热10min进行灭酶处理,随后在4000r下离心20min,取上清液,得灭酶酶解液,随后冷冻干燥,得到多肽粉,测ACE抑制活性;
4)使用3.5KDa的超滤膜对金枪鱼红肉酶解液进行超滤分级,将产物组分冷冻干燥后得到酶解物粉;随后将酶解物粉与超纯水配成浓度为50mg/mL的溶液,并于4℃下以12000r/min离心10min,去除不溶性杂质,用已活化葡聚糖凝胶Sephadex G-25过滤层析,冷冻干燥后,配成浓度为100mg/mL的溶液,经0.45μm微孔滤膜过滤,以乙腈-水-三氟乙酸(TFA)为洗脱液进行梯度洗脱,流速为2ml/min,经高效液相色谱柱Zorbax SB-C18纯化分析,氨基酸测序、合成得到金枪鱼红肉ACE抑制肽。
表1:实施例1-15制备条件。
Figure BDA0002232958600000041
将实施例制备过程中,多肽粉的ACE抑制活性的检测方法为以FAPGG为底物,用酶标仪法测定ACE抑制活性,具体步骤如下,将10μL的ACE溶液(0.1U/mL)和40μL多肽水解液加入微孔板的微孔中但不混合,然后加入50μL底物(37℃预热15分钟)使其开始反应。迅速将微孔板放入温度为37℃酶标仪中,每5min记录1次在340nm波长处的吸光度,共记录30min。空白对照使用40μL的HEPES缓冲液代替多肽溶液。以吸光度(ΔA340nm)对时间做出曲线,计算出斜率。ACE抑制率的计算公式如下:
Figure BDA0002232958600000051
其中ACEI为ACE活性抑制率;ΔAc为加入缓冲液时吸光度在30min内的变化;ΔAi为加入抑制剂时吸光度在30min内的变化。
实施例1-5不同pH对ACE活性抑制率的影响如图1所示,pH分别为6、6.5、7.0、7.5和8.0,图中可知,ACE活性抑制率在pH 7.0时达到最高(63.54±3.19%),说明此时,金枪鱼红肉酶解的程度较大。pH 6.0-7.0时呈上升趋势,pH 7.0后开始快速下降。因此pH 7.0为中性蛋白酶酶解的最佳pH。
实施例3、6-9不同酶解温度对ACE活性抑制率的影响如图2所示,酶解温度分别为45℃、50℃、55℃、60℃、65℃;图中可知,金枪鱼红肉在45℃时的水解程度较小,ACE抑制率较低;随着温度升高,酶的催化活性增强,酶解速度加快,ACE抑制率增强,直到50℃时,产物ACE抑制率达到最大值为65.33%;但当温度高于50℃时,ACE抑制率开始下降,说明蛋白质的酶解程度下降。因此,中性蛋白酶酶解金枪鱼红肉制备ACE抑制肽的最适酶解温度为50℃左右,据此,在响应曲面实验设计中选择50℃为中心温度。
实施例3、10-13不同加酶量对ACE活性抑制率的影响如图3所示,加酶量分别为1wt%、1.5wt%、2wt%、2.5wt%、3wt%。从图中可以看出,加酶量小于1.5wt%时,酶分子与底物蛋白质分子之间的相互结合的数量随着酶量的增加而增加,因此酶解的产物含量逐渐升高;但是,一旦所有的底物分子都被酶分子饱和时,如果继续增加酶量,已生成的ACE抑制成分被过度水解甚至失活,水解物的ACE抑制率逐渐下降。因此,中性蛋白酶酶解金枪鱼红肉最适加酶量为1.5wt%。
对比例1:与实施例11不同的地方在于,所用超滤膜的截留分子量为3.5kDa和5kDa,截留得到分子量为3.5-5kDa的组分。
对比例2:与实施例11不同的地方在于,所用超滤膜的截留分子量为5kDa和10kDa,截留得到分子量为5-10kDa的组分。
对比例3:与实施例11不同的地方在于,所用超滤膜的截留分子量为10kDa,截留得到分子量为大于10kDa的组分。
将实施例11和对比例1-3超滤后的产物分别标记为TDMH-I(<3.5KDa)、TDMH-II(3.5-5KDa)、TDMH-III(5-10KDa)和TDMH-IV(>10KDa),冷冻干燥后配制蛋白质浓度为1.0mg/mL的溶液,测定各组分的ACE抑制活性,结果如图4所示。图中可得,组分TDMH-I的ACE抑制活性最强,组分TDMH-II的活性次之,组分TDMH-IV的活性最小。
将实施例11制备得到的酶解物粉与超纯水配成浓度为50mg/mL的溶液,并于4℃下以12000r/min离心10min,去除不溶性杂质,用已活化葡聚糖凝胶Sephadex G-25过滤层析(上样浓度为50mg/mL,进样体积为3ml,洗脱速度为0.7ml/min),洗脱结果如图5所示,共有4个洗脱峰,分别记为B1、B2、B3和B4,按峰合并管内溶液,冻干后,将四个组分分别配制成1.0mg/mL的样品溶液测定ACE抑制活性,结果如图6所示,其中B2组分的ACE抑制活性最好,ACE抑制率可达81.87%。
将实施例11制备得到的B2组分配成浓度为100mg/mL的溶液,经0.45μm微孔滤膜过滤,以乙腈-水-三氟乙酸(TFA)为洗脱液进行梯度洗脱,流速为2ml/min,经高效液相色谱柱Zorbax SB-C18纯化分析,结果如图7所示,由图可知,B2组分经RP-HPLC分离得到12个主峰,对上述12个峰的成分进行N端测序及质谱分析,确定共14条多肽序列,其序列分别为:Thr-Glu(D1,248.24KDa)、Ala-Gly(D2,146.15Da)、Met-Trp-Asn(D3,449.53Da)、Met-Glu-Lys-Ser(D4,493.58Da)、Val-Lys(D5,245.32Da)、Met-Gln-Arg(D6,433.53Da)、Met-Lys-Lys-Ser(D7,492.64Da)、Val-Lys-Arg-Thr(D8,977.24Da)、Ile-Pro-Lys(D9,356.47Da)、Tyr-Asn-Tyr(D10,458.47Da)、Leu-Pro-Arg-Ser(D11,471.56Da)、Phe-Gln-Lys(D12,421.5Da)、Ile-Arg-Arg(D13,443.55Da)、和Trp-Glu-Arg-Gly-Glu(D14,675.7Da);测定14个肽段在不同浓度下的ACE抑制率,然后利用SPSS Statistic软件进行统计,计算14个肽段IC50值,分别为D1(IC50=1.885mg/mL)、D2(IC50=2.475mg/mL)、D3(IC50=0.328mg/mL)、D4(IC50=0.527mg/mL)、D5(IC50=2.712mg/mL)、D6(IC50=0.946mg/mL)、D7(IC50=0.269mg/mL)、D8(IC50=0.868mg/mL)D9(IC50=2.465mg/mL)、D10(IC50=9.254mg/mL)、D11(IC50=0.495mg/mL)、D12(IC50=1.731mg/mL)、D13(IC50=20.576mg/mL)和D14(IC50=1.000mg/mL)。IC50(half maximal inhibitory concentration)是指被测量的拮抗剂的半抑制浓度。它能指示某一药物或者物质(抑制剂)在抑制某些生物程序或者是(包含在此程序中的某些物质)的半量。其中D3的ACE抑制活性最强,D4、D7、D11紧随其后。
在上述实验数据中,在已建立的FAPGG-ACE体外评价模型中表现出较好的ACE抑制活性,但其降血压活性仍需通过生物水平实验进行证实,因此,本发明通过人脐静脉内皮细胞(HUVEC)模型对其降压活性进行进一步评价。
人脐静脉内皮细胞的培养:HUVEC采用高糖DMEM+FBS+双抗(青霉素-链霉素)培养基(DMEM:FBS:双抗=9:1:0.1)进行培养。培养流程如下:复苏后的细胞置于含5%CO2培养箱中,37℃培养,24小时后换液,等到细胞生长融合至能覆盖瓶底85%以上时,胰酶消化,1:2传代至两个瓶中。取对数生长期的HUVEC作为实验材料。
实验分组及处理:取对数生长期的HUVEC细胞,弃去培养基,PBS洗涤两遍,胰酶消化,2.4×105/孔接板,随机分组如下:
(1)空白对照组:不加任何试剂处理细胞;
(2)ACE抑制肽低剂量组:加入肽终浓度为100μM;
(3)ACE抑制肽中剂量组:加入肽终浓度为200μM;
(4)ACE抑制肽高剂量组:加入肽终浓度为400μM;
(5)卡托普利(Cap)组:加入Cap终浓度为1μM;
(6)去甲肾上腺素(NE)组:加入NE终浓度为0.5μM
(7)治疗组:加入肽和NE终浓度分别为200μM和0.5μM。
细胞毒性试验(MTT法):将HUVEC细胞调整为0.8×104个/孔的细胞悬液后,接种至96孔板中,160μl/孔,置于5%CO2培养箱中,37℃培养24小时后,空白孔加入20μL完全培养液和20μL PBS,样品孔加入20μL完全培养液和20μL终浓度分别为和25μM、50μM、100μM、200μM和400μM的样品(溶于水的用PBS溶解,不溶于水的用DMSO溶解),置于5%CO2培养箱中,37℃培养24小时后加入20μLMTT溶液,37℃培养4h后弃去培养基,加入150μLDMSO,37℃避光震荡10min使反应均匀,酶标仪上测定OD490nm值,测定细胞相对存活率。
总蛋白含量测定:在碱性环境下,蛋白将Cu2+还原成Cu+,Cu+与BCA试剂会形成蓝紫色的络合物,其在562nm处有特异性吸收,测定该波长下的吸光值,与标准曲线对比,计算出待测物的蛋白浓度。微孔酶标仪法操作如下所示:
1.BCA工作液的配制。根据标准品和样品的数量,按照BCA试剂和Cu试剂50:1的比例配制工作液,充分混匀;
2.绘制标准曲线。配制终浓度为0.5mg/mL的BSA标准品溶液(取10μLBSA标准品用PBS稀释到100μL),按照表2比例依次加到96孔板内;
表2:BCA试剂盒标准曲线加样
Figure BDA0002232958600000071
混匀后,37℃放置15-30min,用多功能酶标仪测定562nm处的吸光值。以蛋白含量(g/L)为横坐标,吸光值为纵坐标,绘制蛋白标准曲线。所得蛋白标准曲线如图8所示,图中可知,曲线方程为y=0.7464x+0.1304,R2=0.9918,呈良好的线性关系。可通过此方程计算样本的细胞蛋白浓度,以便于后期NO试剂盒的使用;
3.样品测定。超声破碎完的细胞样品用标准PBS液作适当稀释,取20μL加入到96孔板中,再加入200μLBCA工作液。按照上面的操作方法测定562nm处的吸光值,根据标准曲线计算出样品的蛋白总含量。
NO含量的测定:弃六孔板培养基,加PBS洗两遍培养的细胞,加2mLPBS,然后用细胞刮板将从六孔板刮下来,制成悬液,在冰浴条件下超声破碎,制成悬液。前处理结束后按照NO试剂盒的步骤进行操作。计算公式如下:
Figure BDA0002232958600000081
ET-1含量的测定:试剂盒采用双抗体一步夹心法酶联免疫吸附试验(ELISA)。往预先包被内皮素1(ET-1)抗体的包被微孔中,依次加入标本、标准品、辣根过氧化物酶(HRP)标记的检测抗体,经过恒温孵育并彻底洗涤。用底物四甲基联苯胺(TMB)显色,TMB在过氧化物酶的催化下转化成蓝色物质,并在酸的作用下转化成最终的黄色物质。颜色的深浅和样品中的内皮素1(ET-1)含量呈现正相关。用酶标仪在450nm波长下测定吸光度(OD值),作标准曲线,计算样品浓度。标准曲线如图9所示,图中可知,以标准品浓度作横坐标,对应OD值作纵坐标,绘制出标准品曲线,按曲线方程计算各样本浓度值。得到标准曲线如图9所示,回归方程为y=0.0029x+0.0649,R2=0.991,具有较好的拟合能力。
ACE抑制肽D3、D4、D7和D11对HUVEC的增殖活性影响如图10所示,图中可知,与空白对照组相比,多肽L1、L2、D3、D4、D7和D11在浓度25-400μM的范围内,对HUVEC的生长抑制无显著差异。说明在该系列浓度下,L1、L2、D3、D4、D7和D11 ACE抑制肽对HUVEC无明显毒性作用。
不同浓度ACE抑制肽D3、D4、D7和D11对人脐静脉内皮细胞NO含量的影响如图11所示,图中可知,D3、D4、D7和D11的高、中、低剂量组都与空白组有显著性差异,说明这四种多肽都可以促进人脐静脉内皮细胞NO的释放,且基本上都是中剂量活性最好。与NE组相比,这四种多肽的治疗组(200M+NE)的NO释放量都有有显著性增加,说明这四种多肽都能对抗NE对NO释放的抑制作用。
不同浓度ACE抑制肽D3、D4、D7和D11对人脐静脉内皮细胞ET-1含量的影响如图12所示,和空白对照组相比,Cap、D3、D4、D7和D11可以显著地减少细胞内ET-1的释放,且ACE抑制肽在中浓度时效果最好。与NE组相比,D3、D4、D7和D11的治疗组都有显著性差异,说明一定浓度的D3、D4、D7和D11能显著性地对抗NE促ET-1的释放作用。
因此ACE抑制活性相对较好的D3、D4、D7、D11均能促进HUVEC细胞中NO的释放,抑制ET-1的生成,结合两种作用初步说明:在体内环境下,这两种ACE抑制肽是可以通过对血管内皮细胞功能的影响来发挥其明显的降血压作用,是活性较好的降压肽,具有进一步研究的前景。

Claims (1)

1.一种金枪鱼红肉ACE抑制肽,其特征在于,所述抑制肽的氨基酸序列为Met-Trp-Asn。
CN201910973782.XA 2019-10-14 2019-10-14 一种金枪鱼红肉ace抑制肽及其制备方法 Active CN110759965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910973782.XA CN110759965B (zh) 2019-10-14 2019-10-14 一种金枪鱼红肉ace抑制肽及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910973782.XA CN110759965B (zh) 2019-10-14 2019-10-14 一种金枪鱼红肉ace抑制肽及其制备方法

Publications (2)

Publication Number Publication Date
CN110759965A CN110759965A (zh) 2020-02-07
CN110759965B true CN110759965B (zh) 2021-07-13

Family

ID=69332128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910973782.XA Active CN110759965B (zh) 2019-10-14 2019-10-14 一种金枪鱼红肉ace抑制肽及其制备方法

Country Status (1)

Country Link
CN (1) CN110759965B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753442B2 (en) 2020-12-01 2023-09-12 Thai Union Group Public Company Limited Angiotensin I-converting enzyme (ACE) inhibitory peptides
CN113481271B (zh) * 2021-06-22 2023-07-25 中国科学院南海海洋研究所 一种可有效减轻皮肤晒伤的海洋生物活性肽及其制备方法和应用
CN113801195B (zh) * 2021-10-15 2023-06-27 浙江海洋大学 一种金枪鱼鱼卵降血压肽及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306296A (ja) * 1992-04-24 1993-11-19 Marino Forum 21 魚類由来ペプチドとその製法
CN103073621B (zh) * 2012-12-20 2014-06-11 浙江海洋学院 一种金枪鱼碎肉蛋白抗氧化肽及其制备方法和用途
CN108165597A (zh) * 2018-02-08 2018-06-15 浙江工商大学 鲻鱼蛋白源抗氧化肽的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Impact of processing on stability of angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice;Hwang J S;《food research international》;20101231;第43卷(第3期);全文 *

Also Published As

Publication number Publication date
CN110759965A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN110724178B (zh) 一种金枪鱼白肉ace抑制肽及其制备方法
CN110759965B (zh) 一种金枪鱼红肉ace抑制肽及其制备方法
CN107779489B (zh) 一种具有抗氧化和ace抑制功能的蚕蛹蛋白肽
Pihlanto-Leppälä et al. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides
Jiang et al. Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein
CN113215212B (zh) 一种具有抗氧化和ace抑制功能的大豆蛋白肽及其制备方法
CN107163129B (zh) κ-酪蛋白来源生物活性肽的制备和应用
CN109293740A (zh) 一种牡蛎来源的ace抑制及抗肿瘤活性肽
CN103980347A (zh) 一种大黄鱼鱼鳔降压肽及其制备方法和用途
CN114989250B (zh) 一种来源于海水珍珠的血管紧张素转化酶抑制多肽及其应用
CN115960165B (zh) 一种来源于辣木叶的富硒ace抑制肽及其应用
Tian et al. Isolation and purification of antioxidant and ACE‐inhibitory peptides from yak (Bos grunniens) skin
CN107082807B (zh) 具有ace抑制功能的牦牛骨蛋白肽及制备方法和应用
CN112457387A (zh) 一种厚壳贻贝寡肽及其用途
CN105713945A (zh) 一种扇贝抗氧化肽的制备方法
CN114409738B (zh) 一种多功能马氏珠母贝源美白肽的制备方法及应用
CN112679578A (zh) 具有抗氧化性和dpp-iv抑制活性的多肽混合物及其制备方法
CN110732018B (zh) 一种金枪鱼鱼肉ace抑制肽咀嚼片的制备方法
CN112094881A (zh) 稳定型钙离子螯合肽的制备方法与应用
Huang et al. Sweet potato storage root trypsin inhibitor and their peptic hydrolysates exhibited angiotensin converting enzyme...
CN111499691B (zh) Ace抑制肽p1、其应用及其制备方法
CN111116712B (zh) 一种具有ace抑制活性的六肽及其应用
CN114763370B (zh) 一种抗氧化十肽及其制备方法和应用
JP2004189748A (ja) アンギオテンシン変換酵素阻害剤として用いられる新規ペプチド及びその製造方法
CN109517035B (zh) 一种西兰花蛋白来源的ace抑制肽、ace抑制肽酶切代谢产物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230105

Address after: Zone A, No. 2, Langang Avenue, West Wharf, Ganlan Town, Dinghai District, Zhoushan City, Zhejiang Province, 316000

Patentee after: Zhoushan Lingxian Marine Biotechnology Co.,Ltd.

Address before: 316022 No. 1, Haida South Road, Lincheng street, Dinghai District, Zhoushan, Zhejiang

Patentee before: Zhejiang Ocean University