CN110756207A - Fe/CN-H纳米复合材料及其制备方法和应用 - Google Patents

Fe/CN-H纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110756207A
CN110756207A CN201810824896.3A CN201810824896A CN110756207A CN 110756207 A CN110756207 A CN 110756207A CN 201810824896 A CN201810824896 A CN 201810824896A CN 110756207 A CN110756207 A CN 110756207A
Authority
CN
China
Prior art keywords
nitric acid
water
acid modified
nano composite
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810824896.3A
Other languages
English (en)
Inventor
付永胜
彭琼
汪信
黄婷
虞春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810824896.3A priority Critical patent/CN110756207A/zh
Publication of CN110756207A publication Critical patent/CN110756207A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Fe/CN‑H纳米复合材料及其制备方法和应用,属于纳米材料的制备和应用领域。通过将二氰二胺加热搅拌溶解在水中,再缓慢地滴加与水体积比为1:8的浓硝酸,反应结束后在冰水混合液中冷却结晶析出得到白色固体,然后干燥,得到硝酸改性二氰二胺;将硝酸改性二氰二胺溶解在水中,缓慢地滴加硝酸铁溶液进行反应,将该反应液冷冻干燥,得到硝酸改性二氰二胺和硝酸铁的络合物;将硝酸改性二氰二胺和硝酸铁的络合物在氩气气氛中高温煅烧得到Fe/CN‑H纳米复合物。本发明制备的Fe/CN‑H纳米复合物作为光催化剂,在可见光条件下具有优异的制氢性能,在可见光条件下光解水制氢速率可达到162.1μmoL h‑1以上。

Description

Fe/CN-H纳米复合材料及其制备方法和应用
技术领域
本发明涉及一种Fe/CN-H纳米复合材料及其制备方法和应用的应用,属于纳米材料的制备和应用领域。
背景技术
出于对化石燃料紧缺以及环境污染的严重的担忧,越来越多的研究者开始关注如何利用可再生的资源实现能量的无污染的转换,光解水制氢技术应运而生。光解水制氢技术能够将太阳能转换为化学能,所制备的氢气是一种清洁高效的新能源,已普遍被人们认为是一种最理想的新世纪无污染的绿色能源。自从1972年,Fujishima A和Honda K两位教授首次报告发现TiO2的单晶电极可以光解水制氢这一现象,从而揭示了利用太阳能直接分解水制氢的可能性。自此以后大量的半导体光催化剂被报道可以用来光解水制氢,这对于解决环境问题以及能源危机来说是很重要的。
g-C3N4作为一种典型的类石墨烯结构的半导体光催化剂,具有其独特的优点,但是同时也具有一些限制其应用的缺点。针对g-C3N4存在的缺点,诸多研究学者进行了不同的改性以提高其光催化活性。Xiaoming Fang等制备了Fe和碳量子点共掺杂g-C3N4的复合物,具有较好的降解污染物的光催化性能,但是制备过程繁琐,尤其是碳量子点的制备需要高温高压氛围[Liu Q, Chen T, Guo Y, et al. Grafting Fe(III) species on carbonnanodots/Fe-doped g-C3N4 via interfacial charge transfer effect for highlyimproved photocatalytic performance[J]. Applied Catalysis B Environmental,2017, 205:173-181]。Dinglong等制备了Fe3O4/g-C3N4纳米复合物应用在光催化降解有机污染物罗丹明B(RhB)上,由于所制备的复合物所用的g-C3N4是由三聚氰胺煅烧得到的,比表面积较小,因此催化性能并不是很高[Zhu D, Liu S, Chen M, et al. Flower-like-flake Fe3O4/g-C3N4nanocomposite: facile synthesis, characterization, andenhanced photocatalytic performance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 537: 372-382.]。
发明内容
本发明的目的是提供一种Fe/CN-H纳米复合材料及其制备方法和应用的应用。
实现本发明目的的技术解决方案为:一种Fe/CN-H纳米复合材料及其制备方法,通过硝酸改性二氰二胺和硝酸铁的络合物煅烧得到,其具体步骤为:
1)将二氰二胺加热搅拌溶解在水中,再缓慢地滴加与水体积比为1:8的浓硝酸,反应结束后在冰水混合液中冷却结晶析出得到白色固体,然后干燥,得到硝酸改性二氰二胺粉末;
2)将硝酸改性的二氰二胺粉末溶解在水中,缓慢地滴加硝酸铁溶液进行反应,将该反应液冷冻干燥,得到硝酸改性的二氰二胺和硝酸铁的络合物粉末;
3)将硝酸改性的二氰二胺和硝酸铁的络合物粉末在氩气气氛中高温煅烧得到Fe/CN-H纳米复合物。
进一步的,步骤1)中,加热搅拌溶解温度为40~50℃。
进一步的,步骤1)中,加热搅拌溶解时间为60~80 min。
进一步的,步骤1)中,二氰二胺与水的添加比例为1:20 g/mL。
进一步的,步骤1)中,反应时间为100~120 min。
进一步的,步骤1)中,干燥温度为50-60℃。
进一步的,步骤2)中,铁与硝酸改性二氰二胺粉末的质量比为0.5~2:2 mg/g。
进一步的,步骤2)中,反应时间为100~120 min。
进一步的,步骤3)中,高温煅烧的温度为550±10℃,煅烧时间为2~4h。
制备得到的Fe/CN-H纳米复合物中Fe的质量分数为1-3%。
上述方法制备的Fe/CN-H纳米复合物的应用,将其作为可见光催化剂,应用在光解水制氢上。
与现有技术相比相比,本发明的优点在于:
1)本发明制备的Fe/CN-H纳米复合物合成方法简单,g-C3N4的合成和Fe的掺杂同时完成,简化了合成的步骤;
2)本发明制备的Fe/CN-H纳米复合物所用金属Fe的质量少,却能够达到调节g-C3N4电子结构的目的;
3)本发明制备的Fe/CN-H纳米复合物作为光催化剂,在可见光条件下具有优异的制氢性能,在可见光条件下光解水制氢速率可达到162.1μmoL h-1
附图说明
图1 为实施例2制备Fe/CN-H纳米复合物的SEM图。
图2 为实施例2制备Fe/CN-H纳米复合物的TEM图。
图3为实施例1、实施例2、实施例3、以及对比样1、对比样2制备的催化剂在可见光条件下,光解水制氢的性能曲线。
图4为实施例2制备Fe/CN-H纳米复合物的可见光光解水制氢的循环性能测试曲线。
图5为实施例2制备Fe/CN-H纳米复合物的光解水制氢的量子产率曲线。
图6为实施例2制备Fe/CN-H纳米复合物及其对比样1,对比样2的光电流测试曲线。
图7为实施例2制备Fe/CN-H纳米复合物的光解水制氢性能显著提高的机理图。
图8为对比例1所制备的硝酸改性的g-C3N4的形成机理图。
具体实施方式
下面结合实施例和附图对本发明进行详细说明。
本发明提供一种Fe/CN-H纳米复合材料的应用,本发明制备的Fe/CN-H纳米复合材料作为可见光催化光解水制氢具有优异的制氢性能,这主要是由于铁的掺杂可以影响氮化碳的电子结构,调整价带、导带的位置,从而提高其可见光光催化活性。其机理图如图7所示。它的制备方法以及光解水制氢过程具体为:
第一步:将二氰二胺加热搅拌溶解在40~50℃的水中,溶解时间为60~80min,再缓慢地滴加与水体积比为1:8的浓硝酸反应100~120min,反应结束后在冰水混合液中冷却结晶析出得到白色固体,将其收集后烘干,烘干温度为50~60℃,得到硝酸改性的二氰二胺白色粉末;
第二步:取第一步得到的干燥的粉溶解在水中,然后缓慢地滴加铁的质量为0.5-3 mg的硝酸铁溶液反应100~120min,反应结束后将其反应液冷冻干燥,得到硝酸改性的二氰二胺和硝酸铁的络合物粉末;
第三步:将第二步得到的硝酸改性二氰二胺和硝酸铁的络合物粉末在氩气气氛中550±10℃下煅烧2-4h得到Fe/CN-H纳米复合物。
第四步:称取适量的Fe/CN-H纳米复合物超声分散在水中,加入30μL的氯铂酸溶液作为助催化剂,10mL的三乙醇胺作为空穴捕获剂,在可见光条件下光解水制氢。
实施例1
第一步:将2g二氰二胺加热搅拌溶解在40 mL的水中,加热搅拌的温度为40℃,加热搅拌溶解60min后,再缓慢地滴加5mL浓硝酸,反应120 min后在冰水混合液中冷却结晶析出得到白色固体,将白色固体收集后在60℃烘箱烘干,得到硝酸改性二氰二胺的白色粉末;
第二步:取第一步得到的干燥的粉末2g溶解在80 ℃的去离子水中,然后缓慢地滴加含铁量为0.5 mg的硝酸铁溶液,反应120 min后将其反应液冷冻干燥,得到硝酸改性的二氰二胺和硝酸铁的络合物粉末;
第三步:将第二步得到的硝酸改性二氰二胺和硝酸铁的络合物粉末在550℃(升温速度为2℃/min)氩气气氛中煅烧4h得到Fe/CN-H纳米复合物;
第四步:称取50 mg的Fe/CN-H纳米复合物超声分散在水中,加入30μL的氯铂酸溶液作为助催化剂,10mL的三乙醇胺作为空穴捕获剂,在可见光条件下光解水制氢。
所制得的Fe/CN-H纳米复合物的制氢性能如图3所示,4h的产氢量为385.71 μmoL。
实施例 2
本实施例与实施例1基本相同,唯一不同的是在第二步中缓慢地滴加含铁量为1 mg的硝酸铁溶液。
所制得的Fe/CN-H 纳米复合物的SEM图如图1所示,由图中可以看出所制得的复合物是由褶皱弯曲的小片层堆叠而成的多孔结构,由图2中的TEM图可以看出确实是小片层的多孔结构。
Fe/CN-H纳米复合物的可见光光解水制氢性能如图3所示,4 h的产氢量为678.04μmoL。图4是其可见光催化水解制氢的循环性能图,可以看出在循环4次,反应16h以后其光解水制氢性能并没有明显的降低,说明其循环性能优异。Fe/CN-H纳米复合物的量子产率曲线如图5所示,在400nm的单色光条件下其量子产率为6.89%。Fe/CN-H纳米复合物的光电流曲线如图6所示,在可见光条件下,瞬态光电流为0.95μA。
实施例3
本实施例与实施例1基本相同,唯一不同的是在第二步中缓慢地滴加含铁量为2 mg的硝酸铁溶液。
所制得的Fe/CN-H纳米复合物的制氢性能如图3所示,4h的产氢量为289.64 μmoL。
对比例1
本对比实施例与实施例1唯一不同的是,在第二步中不滴加硝酸铁溶液。
所制得的硝酸改性的氮化碳(CN-H)的形成机理图如图8所示,其制氢性能如图3所示,4h的产氢量为161.53 μmoL。在可见光条件下,瞬态光电流如图6所示,数值为0.35 μA。
对比例2
本对比实施例与实施例1不同的是,在第一步中不滴加浓硝酸,在第二步中不滴加硝酸铁溶液。
所制得的氮化碳(CN)的制氢性能如图3所示,4h的产氢量为37.10μmoL。在可见光条件下,瞬态光电流如图6所示,数值为0.03 μA。

Claims (10)

1.Fe/CN-H纳米复合材料的制备方法,其特征在于,包括如下步骤:
1)将二氰二胺加热搅拌溶解在水中,再缓慢地滴加与水体积比为1:8的浓硝酸,反应结束后在冰水混合液中冷却结晶析出得到白色固体,然后干燥,得到硝酸改性二氰二胺;
2)将硝酸改性二氰二胺溶解在水中,缓慢地滴加硝酸铁溶液进行反应,将该反应液冷冻干燥,得到硝酸改性二氰二胺和硝酸铁的络合物;
3)将硝酸改性二氰二胺和硝酸铁的络合物在氩气气氛中高温煅烧得到Fe/CN-H纳米复合物。
2. 如权利要求1所述的方法,其特征在于,步骤1)中,加热搅拌溶解温度为40~50℃;加热搅拌溶解时间为60~80 min。
3. 如权利要求1所述的方法,其特征在于,步骤1)中,二氰二胺与水的添加比例为1:20g/mL。
4.如权利要求1所述的方法,其特征在于,步骤1)中,反应时间为100~120 min;干燥温度为50-60℃。
5.如权利要求1所述的方法,其特征在于,步骤2)中,铁与硝酸改性二氰二胺的质量比为0.5~2:2 mg/g。
6.如权利要求1所述的方法,其特征在于,步骤2)中,反应时间为100~120 min。
7.如权利要求1所述的方法,其特征在于,步骤3)中,高温煅烧的温度为550±10℃,煅烧时间为2~4h。
8.如权利要求1-7任一所述的方法制备的Fe/CN-H纳米复合材料。
9.如权利要求8所述的复合材料,其特征在于,复合材料中Fe的质量分数为1-3%。
10.如权利要求1-7任一所述的方法制备的Fe/CN-H纳米复合材料在光解水制氢上的应用。
CN201810824896.3A 2018-07-25 2018-07-25 Fe/CN-H纳米复合材料及其制备方法和应用 Pending CN110756207A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810824896.3A CN110756207A (zh) 2018-07-25 2018-07-25 Fe/CN-H纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810824896.3A CN110756207A (zh) 2018-07-25 2018-07-25 Fe/CN-H纳米复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110756207A true CN110756207A (zh) 2020-02-07

Family

ID=69327970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810824896.3A Pending CN110756207A (zh) 2018-07-25 2018-07-25 Fe/CN-H纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110756207A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220315425A1 (en) * 2021-04-06 2022-10-06 Nanchang Hangkong University Single-atom catalyst for activation of persulfate to generate pure singlet oxygen as well as preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475140A (zh) * 2014-11-07 2015-04-01 江苏大学 一种银改性氮化碳复合光催化材料及其制备方法
CN104888837A (zh) * 2015-06-10 2015-09-09 浙江理工大学 一种具有可见光响应的氮化碳/三氧化二铁纳米复合材料的合成方法及应用
CN107970966A (zh) * 2017-11-14 2018-05-01 肇庆市华师大光电产业研究院 一种铁掺杂改性氮化碳光催化剂的制备及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475140A (zh) * 2014-11-07 2015-04-01 江苏大学 一种银改性氮化碳复合光催化材料及其制备方法
CN104888837A (zh) * 2015-06-10 2015-09-09 浙江理工大学 一种具有可见光响应的氮化碳/三氧化二铁纳米复合材料的合成方法及应用
CN107970966A (zh) * 2017-11-14 2018-05-01 肇庆市华师大光电产业研究院 一种铁掺杂改性氮化碳光催化剂的制备及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIE LUO,ET AL: "Mesoporous Metal-Containing Carbon Nitrides for Improved Photocatalytic Activities", 《JOURNAL OF CHEMISTRY》 *
JINGTIAN GAO, ET AL: "A Facile One-Step Synthesis of Fe-Doped g-C3N4 Nanosheets and Their Improved Visible-Light Photocatalytic Performance", 《CHEMCATCHEM》 *
TING HUANG,ET AL: "Metal-Free Graphitic Carbon Nitride As Highly Efficient Photocatalytic Degradation Catalysts", 《NORTH AMERICAN CATALYSIS SOCIETY MEETINGS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220315425A1 (en) * 2021-04-06 2022-10-06 Nanchang Hangkong University Single-atom catalyst for activation of persulfate to generate pure singlet oxygen as well as preparation method and application thereof
US11629052B2 (en) * 2021-04-06 2023-04-18 Nanchang Hangkong University Single-atom catalyst for activation of persulfate to generate pure singlet oxygen as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
Lu et al. Metal–organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN109876843B (zh) 铜合金修饰二氧化钛/氮化碳异质结光催化剂及制备方法
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN110743603A (zh) 一种钴铁双金属氮化物复合电催化剂及其制备方法与应用
CN113351210B (zh) 一种Cu基催化剂及将其用于光催化水产氢-5-HMF氧化偶联反应
CN113680372B (zh) 一种石墨相氮化碳纳米片的热辅助制备方法及应用
CN115518668B (zh) 一种氧氮化合物异质结及其制备方法和应用
CN110624550A (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN115555030A (zh) 具有受阻路易斯对的多孔层状高熵氧化物制备方法及应用
CN112717958B (zh) 一种富含氧空位BiOBr/HNb3O8纳米片光催化剂的制备方法与用途
CN110756207A (zh) Fe/CN-H纳米复合材料及其制备方法和应用
CN114452990A (zh) 过渡金属碳化物的制备方法和复合催化剂
CN108855222B (zh) ZCS@Ni-MOF纳米复合材料及其制备和应用
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法
CN113150291A (zh) 葡萄糖改性双金属沸石咪唑酯骨架衍生催化剂及其制备方法
CN116196944A (zh) 一种生物质氮掺杂碳量子点耦合超薄BiOBr纳米片复合材料光催化剂的制备方法及应用
CN116173987A (zh) CdIn2S4/CeO2异质结光催化剂及其制备方法和应用
CN116689006A (zh) 一种氮化碳纳米片复合材料及其制备方法和应用
CN107159197B (zh) 具有十二面体形貌的固溶体光催化剂及其制备方法
Gemeda et al. A recent review on photocatalytic CO2 reduction in generating sustainable carbon-based fuels
CN113355687B (zh) 一种锡基双金属碳化物@碳纳米链核壳结构及其制备方法和应用
CN113856668A (zh) 一种Bi/BiVO4复合异质结光催化材料的制备方法
CN113926480A (zh) 一种金属合金修饰的层状钙钛矿结构光催化剂的制备方法
CN109126789B (zh) 一种光催化制氢z型光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200207

RJ01 Rejection of invention patent application after publication