CN110752258A - 纳米孔栅极掺杂制备的常关型hemt器件及制备方法 - Google Patents

纳米孔栅极掺杂制备的常关型hemt器件及制备方法 Download PDF

Info

Publication number
CN110752258A
CN110752258A CN201911108784.9A CN201911108784A CN110752258A CN 110752258 A CN110752258 A CN 110752258A CN 201911108784 A CN201911108784 A CN 201911108784A CN 110752258 A CN110752258 A CN 110752258A
Authority
CN
China
Prior art keywords
doping
normally
gate
nanopore
hemt device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911108784.9A
Other languages
English (en)
Other versions
CN110752258B (zh
Inventor
李国强
万利军
孙佩椰
阙显沣
姚书南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201911108784.9A priority Critical patent/CN110752258B/zh
Publication of CN110752258A publication Critical patent/CN110752258A/zh
Application granted granted Critical
Publication of CN110752258B publication Critical patent/CN110752258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8128Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with recessed gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种纳米孔栅极掺杂制备的常关型HEMT器件及制备方法,所述器件包括从下到上依次排布的硅衬底、GaN外延层和AlGaN势垒层,AlGaN势垒层上表面具有纳米孔栅结构,纳米孔栅结构掺杂有金属镁,形成p型AlGaN层,AlGaN势垒层上表面的两端接触有源极和漏极,p型AlGaN层的上表面接触有栅极。本发明利用感应耦合等离子体刻蚀机(ICP)对光刻制备的纳米栅电极接触窗口区域进行刻蚀处理形成纳米栅结构,通过掺杂来实现常关型GaN HEMT器件。该制备方法对于抑制电流衰减,实现大饱和电流常关型GaN HEMT器件有重要意义。

Description

纳米孔栅极掺杂制备的常关型HEMT器件及制备方法
技术领域
本发明属于半导体器件技术领域,具体涉及纳米孔栅极掺杂制备的常关型HEMT器件及制备方法。
背景技术
在微波功率放大器和低噪音功率放大器领域,常关型HEMT器件由于不需要负电压操控,极大的降低了电路的复杂性和成本。在高功率开关领域凭借其电路的安全性也成为市场的宠儿。
目前制备常关型HEMT器件的方法中最成熟的主要是通过降低势垒层的厚度来实现,其中又以降低栅极正下方势垒层的厚度为主,栅极下方势垒层厚度的减少会进一步减弱该处的极化效应,降低二维电子气的浓度使器件达到关断状态。该方法能够提高HEMT器件的高频性能,减少器件的短沟道效应。但是由于该方法对刻蚀精度的要求较高,工艺的稳定性和重复性较差,造成器件的阈值电压可控性较差,另外刻蚀造成的损伤大会严重影响器件的性能,造成严重的栅极漏电以及低的饱和电流情况发生。
CN109888013A公开了一种镁掺杂制备的增强型GaN基HEMT器件及其制备方法,但是该方法目前还存在掺杂浓度过高过深造成沟道二维电子气破坏的问题,进而影响器件的饱和电流,造成饱和电流下降明显。
发明内容
为了克服现有技术上的不足与缺点,本发明的目的在于提供一种纳米孔栅极掺杂制备的常关型HEMT器件及制备方法。通过ICP对光刻好的纳米孔栅极区域AlGaN势垒层表面进行刻蚀处理来形成纳米孔栅结构,通过后续纳米孔中填充金属镁在高温条件下退火实现镁扩散形成AlGaN材料的p型掺杂,最终实现常关型HEMT器件的制备。
本发明提供了一种纳米孔栅极掺杂制备的常关型的HEMT器件,包括从下到上依次排布的硅衬底、GaN外延层和AlGaN势垒层,AlGaN势垒层上表面具有纳米孔栅结构,纳米孔栅结构掺杂有金属镁,形成p型AlGaN层,AlGaN势垒层上表面的两端接触有源极和漏极,p型AlGaN层的上表面接触有栅极。
本发明还提供了一种纳米孔栅极掺杂制备所述的常关型的HEMT器件的方法,包括以下步骤:
(1)在AlGaN势垒层上光刻,制备出纳米孔栅电极光刻接触窗口区域,得到含纳米孔栅电极光刻接触窗口的器件;
(2)对步骤(1)所述纳米孔栅电极光刻接触窗口区域进行刻蚀处理,制备出刻蚀处理后的纳米孔接触窗口区域,得到刻蚀处理的器件;
(3)在步骤(2)所述刻蚀处理的纳米孔接触窗口区域蒸镀金属镁,得到含金属镁的器件;
(4)对步骤(3)所述含金属镁的器件上未曝光的光刻胶进行剥离处理,得到剥离处理后的器件;
(5)对步骤(4)所述剥离处理后的器件进行热掺杂处理,制备出P型AlGaN掺杂层,得到热掺杂处理后的器件;
(6)在步骤(5)所述掺杂后的器件中的AlGaN势垒层上光刻,然后制备源电极、漏电极以及栅电极,得到所述纳米孔栅极掺杂制备的常关型的GaN HEMT器件。
优选地,步骤(2)所述刻蚀为ICP刻蚀。
优选地,步骤(2)刻蚀的时间为3-20 s。
优选地,步骤(3)所述金属镁的厚度为10-50 nm。
优选地,步骤(3)所述蒸镀的方式包括电子束蒸发。
优选地,步骤(5)所述热掺杂的温度为200-1000℃。
优选地,步骤(5)热掺杂的时间为0.5-100min。
和现有技术相比,本发明具有以下有益效果和优点:
本发明利用感应耦合等离子体刻蚀机(ICP)对光刻纳米孔栅极区域AlGaN势垒层表面进行刻蚀处理形成纳米孔栅极结构,通过金属镁热掺杂来实现常关型HEMT器件。所提供的制备方法对于抑制电流衰减,实现大饱和电流常关型GaN HEMT器件有重要意义。
附图说明
图1为本发明实施例提供的纳米孔栅极掺杂制备的常关型HEMT器件结构示意图;
图2为本发明提供的一种纳米孔栅极掺杂制备常关型HEMT器件的方法的流程图;
图3为本发明实施例1提供的器件转移曲线测试图;
图中:1-硅衬底;2-GaN外延层;3-AlGaN势垒层;4-光刻胶;5-金属镁;6-p型AlGaN层;7-源极;8-漏极;9-栅极。
具体实施方式
以下结合附图和实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。
实施例1
本实施例提供了一种纳米孔栅极掺杂制备的常关型的HEMT器件,如图1所示,包括从下到上依次排布的硅衬底1、GaN外延层2和AlGaN势垒层3,AlGaN势垒层3上表面具有纳米孔栅结构,纳米孔栅结构掺杂有金属镁5,形成p型AlGaN层6,AlGaN势垒层3上表面的两端接触有源极7和漏极8,p型AlGaN层6的上表面接触有栅极9。所述器件的制备方法,如图2所示,包括以下步骤:
(1)在AlGaN势垒层3上光刻,制备出纳米孔栅电极接触窗口区域,得到含纳米孔栅电极接触窗口的器件;
(2)采用感应耦合等离子体刻蚀机(ICP)对步骤(1)所述纳米孔栅电极接触窗口区域进行刻蚀处理3 s,制备出刻蚀处理的纳米孔栅结构区域,得到刻蚀处理后的纳米孔栅结构器件;
(3)在步骤(2)所述刻蚀处理的纳米孔栅结构区域蒸镀一层金属镁5,所述金属镁的厚度为10 nm,得到含金属镁的器件;
(4)对步骤(3)所述含金属镁的器件上未曝光的光刻胶4进行剥离处理,得到剥离处理后的器件;
(5)对步骤(4)所述剥离处理后的器件进行热掺杂处理,所述热掺杂的温度为200 ℃,时间为100 min,得到热掺杂处理后的器件;
(6)在AlGaN势垒层上方光刻,然后采用电子束蒸发和剥离工艺及热退火的方法制备源电极7(欧姆接触电极)、漏电极8(欧姆接触电极)以及栅电极9(肖特基接触电极),得到所述纳米孔栅极掺杂制备常关型HEMT器件。
图3为实施例1制得的纳米孔栅极掺杂制备的常关型HEMT器件的转移曲线结果图,由图可知,器件的饱和电流为204 mA/mm,为较高水平,说明该方法制备的器件能有效提高器件的饱和电流。
实施例2
本实施例提供了一种纳米孔栅极掺杂制备的常关型的HEMT器件,如图1所示,包括从下到上依次排布的硅衬底1、GaN外延层2和AlGaN势垒层3,AlGaN势垒层3上表面具有纳米孔栅结构,纳米孔栅结构掺杂有金属镁5,形成p型AlGaN层6,AlGaN势垒层3上表面的两端接触有源极7和漏极8,p型AlGaN层6的上表面接触有栅极9。所述器件的制备方法,如图2所示,包括以下步骤:
(1)在AlGaN势垒层3上光刻,制备出纳米孔栅电极接触窗口区域,得到含纳米孔栅电极接触窗口的器件;
(2)采用感应耦合等离子体刻蚀机(ICP)对步骤(1)所述纳米孔栅电极接触窗口区域进行刻蚀处理10 s,制备出刻蚀处理的纳米孔栅结构区域,得到刻蚀处理后的纳米孔栅结构器件;
(3)在步骤(2)所述刻蚀处理的纳米孔栅结构区域蒸镀一层金属镁5,所述金属镁的厚度为30 nm,得到含金属镁的器件;
(4)对步骤(3)所述含金属镁的器件上未曝光的光刻胶4进行剥离处理,得到剥离处理后的器件;
(5)对步骤(4)所述剥离处理后的器件进行热掺杂处理,所述热掺杂的温度为600 ℃,时间为50 min,得到热掺杂处理后的器件;
(6)在AlGaN势垒层上方光刻,然后采用电子束蒸发和剥离工艺及热退火的方法制备源电极7(欧姆接触电极)、漏电极8(欧姆接触电极)以及栅电极9(肖特基接触电极),得到所述纳米孔栅极掺杂制备常关型HEMT器件。
实施例2制得的纳米孔掺杂制备的常关型HEMT器件的转移曲线结果与实施例1类似,可参考图3。
实施例3
本实施例提供了一种纳米孔栅极掺杂制备的常关型的HEMT器件,如图1所示,包括从下到上依次排布的硅衬底1、GaN外延层2和AlGaN势垒层3,AlGaN势垒层3上表面具有纳米孔栅结构,纳米孔栅结构掺杂有金属镁5,形成p型AlGaN层6,AlGaN势垒层3上表面的两端接触有源极7和漏极8,p型AlGaN层6的上表面接触有栅极9。所述器件的制备方法,如图2所示,包括以下步骤:
(1)在AlGaN势垒层3上光刻,制备出纳米孔栅电极接触窗口区域,得到含纳米孔栅电极接触窗口的器件;
(2)采用感应耦合等离子体刻蚀机(ICP)对步骤(1)所述纳米孔栅电极接触窗口区域进行刻蚀处理20 s,制备出刻蚀处理的纳米孔栅结构区域,得到刻蚀处理后的纳米孔栅结构器件;
(3)在步骤(2)所述刻蚀处理的纳米孔栅结构区域蒸镀一层金属镁5,所述金属镁的厚度为50 nm,得到含金属镁的器件;
(4)对步骤(3)所述含金属镁的器件上未曝光的光刻胶4进行剥离处理,得到剥离处理后的器件;
(5)对步骤(4)所述剥离处理后的器件进行热掺杂处理,所述热掺杂的温度为1000 ℃,时间为0.5 min,得到热掺杂处理后的器件;
(6)在AlGaN势垒层上方光刻,然后采用电子束蒸发和剥离工艺及热退火的方法制备源电极7(欧姆接触电极)、漏电极8(欧姆接触电极)以及栅电极9(肖特基接触电极),得到所述纳米孔栅极掺杂制备常关型HEMT器件。
实施例3制得的纳米孔掺杂制备的常关型HEMT器件的转移曲线结果与实施例1类似,可参考图3。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (8)

1.纳米孔栅极掺杂制备的常关型的HEMT器件,其特征在于,包括从下到上依次排布的硅衬底、GaN外延层和AlGaN势垒层,AlGaN势垒层上表面具有纳米孔栅结构,纳米孔栅结构掺杂有金属镁,形成p型AlGaN层,AlGaN势垒层上表面的两端接触有源极和漏极,p型AlGaN层的上表面接触有栅极。
2.一种纳米孔栅极掺杂制备权利要求1所述的常关型的HEMT器件的方法,其特征在于,包括以下步骤:
(1)在AlGaN势垒层上光刻,制备出纳米孔栅电极光刻接触窗口区域,得到含纳米孔栅电极光刻接触窗口的器件;
(2)对步骤(1)所述纳米孔栅电极光刻接触窗口区域进行刻蚀处理,制备出刻蚀处理后的纳米孔接触窗口区域,得到刻蚀处理的器件;
(3)在步骤(2)所述刻蚀处理的纳米孔接触窗口区域蒸镀金属镁,得到含金属镁的器件;
(4)对步骤(3)所述含金属镁的器件上未曝光的光刻胶进行剥离处理,得到剥离处理后的器件;
(5)对步骤(4)所述剥离处理后的器件进行热掺杂处理,制备出P型AlGaN掺杂层,得到热掺杂处理后的器件;
(6)在步骤(5)所述热掺杂处理后的器件中的AlGaN势垒层上光刻,然后制备源电极、漏电极以及栅电极,得到所述纳米孔栅极掺杂制备的常关型的GaN HEMT器件。
3.根据权利要求2所述的纳米孔栅极掺杂制备常关型的HEMT器件的方法,其特征在于,步骤(2)所述刻蚀为ICP刻蚀。
4.根据权利要求2所述的纳米孔栅极掺杂制备常关型的HEMT器件的方法,其特征在于,步骤(2)刻蚀的时间为3-20 s。
5.根据权利要求2所述的纳米孔栅极掺杂制备常关型的HEMT器件的方法,其特征在于,步骤(3)所述金属镁的厚度为10-50 nm。
6.根据权利要求2所述的纳米孔栅极掺杂制备常关型的HEMT器件的方法,其特征在于,步骤(3)所述蒸镀的方式包括电子束蒸发。
7.根据权利要求2所述的纳米孔栅极掺杂制备常关型的HEMT器件的方法,其特征在于,步骤(5)所述热掺杂的温度为200-1000℃。
8.根据权利要求2所述的纳米孔栅极掺杂制备常关型的HEMT器件的方法,其特征在于,步骤(5)热掺杂的时间为0.5-100min。
CN201911108784.9A 2019-11-13 2019-11-13 纳米孔栅极掺杂制备的常关型hemt器件及制备方法 Active CN110752258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911108784.9A CN110752258B (zh) 2019-11-13 2019-11-13 纳米孔栅极掺杂制备的常关型hemt器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911108784.9A CN110752258B (zh) 2019-11-13 2019-11-13 纳米孔栅极掺杂制备的常关型hemt器件及制备方法

Publications (2)

Publication Number Publication Date
CN110752258A true CN110752258A (zh) 2020-02-04
CN110752258B CN110752258B (zh) 2021-01-19

Family

ID=69283184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911108784.9A Active CN110752258B (zh) 2019-11-13 2019-11-13 纳米孔栅极掺杂制备的常关型hemt器件及制备方法

Country Status (1)

Country Link
CN (1) CN110752258B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744071A (zh) * 2022-03-29 2022-07-12 华南理工大学 一种紫外探测器及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578999A (zh) * 2017-08-10 2018-01-12 北京大学深圳研究生院 栅极区域图形化的高电子迁移率晶体管器件及制作方法
WO2018105219A1 (en) * 2016-12-07 2018-06-14 Mitsubishi Electric Corporation Semiconductor device and method for designing semiconductor device
CN208028062U (zh) * 2018-04-19 2018-10-30 苏州闻颂智能科技有限公司 一种增强型和耗尽型GaN HEMT集成结构
CN109841676A (zh) * 2019-03-21 2019-06-04 华南理工大学 辅助掺杂实现常关型GaN HEMT器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105219A1 (en) * 2016-12-07 2018-06-14 Mitsubishi Electric Corporation Semiconductor device and method for designing semiconductor device
CN107578999A (zh) * 2017-08-10 2018-01-12 北京大学深圳研究生院 栅极区域图形化的高电子迁移率晶体管器件及制作方法
CN208028062U (zh) * 2018-04-19 2018-10-30 苏州闻颂智能科技有限公司 一种增强型和耗尽型GaN HEMT集成结构
CN109841676A (zh) * 2019-03-21 2019-06-04 华南理工大学 辅助掺杂实现常关型GaN HEMT器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744071A (zh) * 2022-03-29 2022-07-12 华南理工大学 一种紫外探测器及其制备方法和应用

Also Published As

Publication number Publication date
CN110752258B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
WO2016141762A1 (zh) Iii族氮化物增强型hemt及其制备方法
CN104201104A (zh) 一种氮化镓基增强型器件的制造方法
US20210098628A1 (en) Normally-off gallium oxide field-effect transistor structure and preparation method therefor
TWI470792B (zh) 異質結構場效電晶體改良結構及其製程方法
CN110752258B (zh) 纳米孔栅极掺杂制备的常关型hemt器件及制备方法
CN107154426A (zh) 一种提高硅基GaN HEMT关态击穿电压的器件结构及实现方法
CN107785435A (zh) 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法
CN106158960A (zh) 基于数字化湿法栅刻蚀技术形成GaN增强型MOSFET及制备方法
CN109411350A (zh) 一种GaN基p型栅结构的制备方法
CN110911484B (zh) 湿法腐蚀辅助掺杂制备的增强型GaN HEMT器件及制备方法
US20240178313A1 (en) Enhanced gan hemt radio-frequency device and manufacturing method thereof
CN107221498A (zh) 一种含InGaN插入层的增强型GaN_HEMT制备方法
CN107887447B (zh) 一种mos型器件的制造方法
CN114883406B (zh) 一种增强型GaN功率器件及其制备方法
WO2019137093A1 (zh) 一种SiC基DI-MOSFET的制备方法及SiC基DI-MOSFET
CN114121655B (zh) 一种基于增强型器件的自终止刻蚀方法及器件
CN103681831B (zh) 高电子迁移率晶体管及其制造方法
CN111128701B (zh) 一种通过实时监控氟注入实现增强型hemt器件的方法
CN115377215A (zh) 增强型iii-v族半导体元件与其制造方法
CN108695156B (zh) 改善iii族氮化物mis-hemt欧姆接触的方法及mis-hemt器件
CN108335982B (zh) 一种GaN基HEMT器件的制作方法
CN114975101B (zh) 一种GaN器件及其制备方法
CN115588616B (zh) 一种增强型氮化镓高电子迁移率晶体管制造方法及器件
CN108695383B (zh) 实现高频mis-hemt的方法及mis-hemt器件
KR20130075490A (ko) N-극성의 질화물계 반도체 소자 및 그의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant