CN110743565A - 一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用 - Google Patents

一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110743565A
CN110743565A CN201911002273.9A CN201911002273A CN110743565A CN 110743565 A CN110743565 A CN 110743565A CN 201911002273 A CN201911002273 A CN 201911002273A CN 110743565 A CN110743565 A CN 110743565A
Authority
CN
China
Prior art keywords
ultrathin
coni
ldh
composite material
nanosheet composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911002273.9A
Other languages
English (en)
Inventor
陈旭
翟晓颖
徐亮
杨文胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201911002273.9A priority Critical patent/CN110743565A/zh
Publication of CN110743565A publication Critical patent/CN110743565A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型钯‑超薄CoNi‑LDH纳米片复合材料及其制备方法和应用。本发明先通过一步水醇热溶剂法制备超薄CoNi‑LDH纳米片,以该超薄CoNi‑LDH纳米片作为载体负载贵金属Pd纳米颗粒,制备出Pd‑超薄CoNi‑LDH纳米片复合材料。将其应用于电催化乙醇氧化反应,具有质量活性高、稳定性好和抗毒化能力强等优点。可归因于以下几方面:(1)、超薄载体能够提供较大的电化学活性面积、较好的导电性,以及较强的抗CO毒化能力,(2)、Ni基LDH载体能够清除PdNPs位点附近的碳质中间体,层板高度分散的Co元素能够实现PdNPs的均匀牢固负载,有利于PdNPs的充分利用,从而协同提升催化活性和稳定性。

Description

一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法 和应用
本发明属于电催化技术领域,具体涉及一种负载型钯-超薄CoNi-LDH纳米片电催化剂及其制备方法和在电催化乙醇氧化反应中的应用。
背景技术
直接乙醇燃料电池(DEFCs)具有能量密度高、无污染、燃料绿色可再生等优点。研究直接乙醇燃料电池对缓解当前能源危机、环境污染等问题具有战略性意义。但是乙醇完全催化氧化是一个12电子的转移过程,C-C键的断裂较为困难,中间反应繁多,反应过程中的产物易使催化剂毒化失活,因此寻找价格低廉,高催化活性和高稳定性的阳极催化剂是当前的发展趋势。
在用于DEFCs的电催化剂中,Pt、Pd和Ru等贵金属在乙醇催化氧化方面表现出较高的催化性能。但是,这些贵金属还存在成本高、储量少及稳定性差等问题,限制了其进一步应用,因此迫切需要研究高活性、高稳定性的贵金属基电催化剂,降低电极上贵金属使用量,提高其利用率是降低其成本的有效路径;同时,将贵金属与其它纳米材料进行复合是提高其稳定性的有效策略。传统方法制备的PdNPs通常容易聚集,从而降低其催化活性位的暴露以及使用过程中的稳定性,且贵金属Pd存在易被反应过程中产生的碳质中间体(主要是CO)毒化而降低活性的问题。因此,将Pd负载在合适的载体上,既可以实现PdNPs具有洁净的反应界面和牢固负载,又具备清除碳质中间体的能力,是切实有效的解决办法。
本发明以超薄CoNi-LDH纳米片作为载体负载Pd纳米颗粒(PdNPs),利用LDH超薄结构能够提供较大的电化学活性面积、较好的导电性的特点,结合Ni基氢氧化物载体本身能够清除碳质中间体的能力,层板Co元素高度分散的结构特点实现PdNPs的均匀牢固负载,有利于PdNPs的暴露和利用,协同提升电催化乙醇氧化性能。同时负载型钯-超薄CoNi-LDH纳米片复合材料的制备过程简单,环境友好,具有高质量活性、高稳定性和抗毒化能力强的特点。
发明内容
本发明的目的在于针对背景技术中所存在的问题和现有技术存在的不足,提供一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和在电催化乙醇氧化反应中的应用,通过合理调控复合材料的组成与微观结构以提高电催化乙醇氧化性能,且制备方法简单、绿色环保。本发明制备的催化剂在碱性电催化乙醇氧化反应中表现出高的质量活性、良好的抗CO中毒能力和高稳定性,在电催化乙醇氧化方面具有重要的意义和应用前景。
本发明通过简单的两步法制备一种负载型钯-超薄CoNi-LDH纳米片复合材料,其特征在于,该复合材料由厚度为1.3~1.5 nm、片径尺寸为400~600 nm的超薄CoNi-LDH纳米片和直径为1.5~2.5 nm的钯(Pd)纳米颗粒组成,其中Pd纳米颗粒均匀分散在超薄CoNi-LDH纳米片上,负载量为1.6~17.6 wt%。
一种负载型钯-超薄CoNi-LDH纳米片复合材料的制备方法,包括以下步骤:
(1)将水和乙醇配成体积比为1:3~3:1的混合溶液,加入金属镍和金属钴可溶性盐、六次亚甲基四胺溶解于上述混合溶液中,然后于85~105 °C温度下水热反应8~12 h。冷却后经去离子水离心洗涤2~3次,50~80 ℃下干燥后即得到超薄CoNi-LDH纳米片。所述金属镍可溶性盐为硝酸镍、硫酸镍、草酸镍或氯化镍;所述金属钴可溶性盐为硝酸钴、硫酸钴、草酸钴或氯化钴。所述混合溶液中金属镍盐和金属钴盐的总量为1.0~1.5 mmol L-1;所述混合溶液中金属镍和金属钴盐的比例为1:2~2:1;所述混合溶液中六次甲基四胺的浓度为3~9 mmol L-1
(2)将上述超薄CoNi-LDH纳米片均匀分散于去离子水中,配成1~2 mg mL-1分散液,加入贵金属Pd前驱体超声溶解后连续搅拌反应4~8 h,将所得的产物离心收集,并用去离子水离心洗涤2-3次,50~80 ℃下干燥后得到负载型钯-超薄CoNi-LDH纳米片复合材料。所述钯前驱体为氯钯酸、氯钯酸钾、氯钯酸钠、氯钯酸铵盐;所述钯前驱体的浓度为0.05~0.3 mmolL-1
使用上述负载型钯-超薄CoNi-LDH纳米片复合材料作为电催化剂用于乙醇电催化氧化反应的应用。
将上述方法制备的负载型钯-超薄CoNi-LDH纳米片复合材料应用于电催化乙醇氧化的具体操作为:将钯-超薄CoNi-LDH纳米片复合材料配置成浓度为1 mg mL-1的分散液,用移液枪移取10 μL悬浊液滴涂在已预处理过的玻碳电极表面,电极表面Pd负载量为5.4 μgPdcm-2,室温下自然干燥后在1 mol L-1的NaOH溶液中测试,接着在1 mol L-1的NaOH和1 molL-1的乙醇混合溶液中进行电催化乙醇氧化测试。
本发明的方法具有以下优点:
(1)本发明提供的钯-超薄CoNi-LDH纳米片复合材料的超薄载体制备方法简单,采用一步水醇热溶剂法制备超薄CoNi-LDH纳米片,通过调节水醇比例可控制片层厚度,超薄结构能够提供较大的电化学活性面积和较好的导电性,有利于提升催化活性和稳定性;
(2)本发明提供的钯-超薄CoNi-LDH纳米片复合材料组成合理,Ni基氢氧化物载体能够清除PdNPs位点附近的碳质中间体,同时层板高度分散的Co元素能够实现PdNPs的均匀牢固负载,有利于PdNPs的暴露和利用,从而协同提升电催化乙醇氧化反应活性和稳定性;
(3)本发明提供的钯-超薄CoNi-LDH纳米片复合材料制备过程简单,原料来源广泛,环境友好,不需添加任何表面活性剂,且在碱性条件下对乙醇电催化氧化反应具有良好的质量活性、高稳定性和抗毒化性,优于商业钯碳,有望在燃料电池等领域应用。
附图说明
图1 为本发明实施例1中的超薄CoNi-LDH纳米片(CoNi-LDH-UT)复合材料的透射电镜图TEM(A)和X射线衍射图(B);其中B图横坐标为衍射角度,单位为:度(°);纵坐标为衍射强度,单位为:绝对单位(a.u.);
图2为本发明实施例1得到的负载型PdNPs/CoNi-LDH-UT纳米片复合材料的原子力显微镜图(A)及相应的厚度曲线图(B);其中,B图横坐标为片尺寸,单位:纳米(nm);纵坐标为厚度,单位: (纳米)(nm);
图3 为本发明实施例1得到的负载型PdNPs/CoNi-LDH-UT纳米片复合材料的透射电镜图(TEM)及EDS能谱(A)和高分辨透射电镜图(B-C)及粒径分布(B插图);其中,B插图粒径分布横坐标为纳米粒子尺寸,单位为:纳米(nm);纵坐标为百分比,单位为:%;
图4为本发明实施例1得到的负载型PdNPs/CoNi-LDH-UT纳米片复合材料的电催化乙醇氧化性能图,A:1.0 mol L-1 KOH溶液中循环伏安曲线;B:1.0 mol L-1 KOH+1.0 mol L-1CH3CH2OH溶液中循环伏安曲线;其中,横坐标为相对于Ag/AgCl的电位,单位:伏特(V);纵坐标为质量活性,单位:安每毫克钯(A mgPd -1);
图5为本发明实施例1得到的负载型PdNPs/CoNi-LDH-UT纳米片复合材料对1.0 mol L-1乙醇电催化响应的循环稳定性和长期稳定性测试;其中,A图横坐标为循环圈数,纵坐标为剩余电流百分比;B图横坐标为时间,单位:秒(s),纵坐标为电流密度,单位:毫安每平方厘米(mA cm-2)。
具体实施方式
以下结合说明书和具体实施案例来进一步说明本发明,所述实施例仅是本发明的一部分,用于帮助理解本发明,不应视为对本发明的具体限制。
实施例1
(1)超薄CoNi-LDH纳米片的制备:首先,将48 μmol的Ni(NO3)2·6H2O、48 μmol的Co(NO3)2·6H2O和480 μmol的六次亚甲基四胺超声溶解在80 mL去离子水和乙醇的混合溶液中(乙醇60 mL、去离子水20 mL),然后转移至100 mL不锈钢反应釜中,密封后放置于95 °C烘箱中反应10 h。将所得到的产物离心收集,并用去离子水洗涤三次,60 ℃下干燥后即得到超薄钴镍水滑石纳米片(以CoNi-LDH-UT表示);
(2)负载型PdNPs超薄CoNi-LDH纳米片复合材料的制备:取1 mg所制备的CoNi-LDHs-UT分散在10 mL水溶液中,加入1.0 μmol K2PdCl4(加入后其浓度为0.1 mmol L-1),室温下连续搅拌6 h,将所得的产物离心收集,并用去离子水洗涤三次,60 ℃下干燥后即得到负载型超薄钴镍水滑石纳米片(以PdNPs/CoNi-LDH-UT表示)。
超薄CoNi-LDH纳米片的透射电镜图(TEM)和X射线衍射图(XRD)如图1所示,纳米片为CoNi-LDH,具有LDH类材料典型的(003)、(006)、(009)等特征衍射峰,且形貌为标准的六边形片状,结构相对规整(其片径尺寸约500 nm),有轻微褶皱现象。负载型PdNPs/CoNi-LDH-UT纳米片复合材料的原子力显微镜(AFM)表征如图2所示,复合材料依旧保持载体原有的超薄特点,厚度约为1.4 nm。图3为负载型PdNPs/CoNi-LDH-UT纳米片复合材料的透射电镜图(TEM)以及相应的EDS能谱和高分辨透射电镜(HRTEM)图,EDS表明包含的金属元素有Ni、Co、Pd,纳米颗粒的晶格条纹间距为0.22 nm,与Pd(111)晶面对应,可以看到尺寸约2.1nm的 PdNPs在超薄LDHs纳米片表面均匀分布。
为了进一步证明本发明上述提供的负载型钯-超薄CoNi-LDH纳米片复合材料在碱性介质中的乙醇氧化性能,将实施例1的PdNPs/CoNi-LDH-UT纳米片复合材料负载在电极表面,并测试其碱性EOR性能,具体步骤如下:
将实施例1得到的PdNPs/CoNi-LDH-UT复合材料分散在一定体积水溶液中,配置成1 mgmL-1 溶液,用移液枪移取10 μL悬浊液滴涂在已预处理过的玻碳电极表面,电极表面Pd负载量为5.4 μgPd cm-2,室温下自然干燥后在1 mol L-1的NaOH溶液中和1 mol L-1的NaOH和1mol L-1的乙醇混合溶液中进行电催化乙醇氧化测试,所有测试均在三电极体系中进行,工作电极为铂碳电极,参比电极为Ag/AgCl电极,对电极为铂丝电极,测试电位范围为0.00 −0.70 V vs. Ag/AgCl,扫速为50 mV s−1。循环稳定性测试是在同样条件下加入乙醇后进行CV测试200周,取不同循环周数的CV曲线中氧化峰电流进行评估。长期稳定性采用恒电位计时电流法(i-t)进行分析。
所提供的负载型PdNPs/CoNi-LDH-UT纳米片复合材料的电化学测试结果如图4所示,从催化剂样品的正向氧化峰电流密度可以看出,PdNPs/CoNi-LDH-UT样品表现出最高的质量活性(2.06 A mgPd -1)。所提供的负载型PdNPs超薄CoNi-LDH纳米片复合材料的计时电流曲线如图5所示,从中可以看出,PdNPs/CoNi-LDHs-UT催化剂样品表现出最佳的长期稳定性:在- 0.20 V vs. Ag/AgCl电位下,连续反应12000 s后,其氧化电流仍保持初始值的91.89%。此外,PdNPs/CoNi-LDH-UT样品的氧化电流密度较大,进一步证明了这种以超薄LDHs作为载体的PdNPs/CoNi-LDH-UT催化剂具有显著增强的EOR电催化活性和稳定性。
实施例2
(1)超薄CoNi-LDH纳米片的制备:首先,将32 μmol的Ni(NO3)2·6H2O、64 μmol的Co(NO3)2·6H2O和240 μmol的六次亚甲基四胺超声溶解在80 mL去离子水和乙醇的混合溶液中(乙醇20 mL、去离子水60 mL),然后转移至100 mL不锈钢反应釜中,密封后放置于85 °C烘箱中反应8 h。将所得到的产物离心收集,并用去离子水洗涤三次,50 ℃下干燥后即得到超薄钴镍水滑石纳米片;
(2)负载型PdNPs超薄CoNi-LDH纳米片复合材料的制备:取1 mg所制备的CoNi-LDHs-UT分散在10 mL水溶液中,加入0.5 μmol K2PdCl4(加入后其浓度为0.05 mmol L-1),室温下连续搅拌4 h,将所得的产物离心收集,并用去离子水洗涤三次,50 ℃下干燥后即得到负载型超薄钴镍水滑石纳米片。
实施例3
(1)超薄CoNi-LDH纳米片的制备:首先,将64 μmol的Ni(NO3)2·6H2O、32 μmol的Co(NO3)2·6H2O和720 μmol的六次亚甲基四胺超声溶解在80 mL去离子水和乙醇的混合溶液中(乙醇40 mL、去离子水40 mL),然后转移至100 mL不锈钢反应釜中,密封后放置于105 °C烘箱中反应12 h。将所得到的产物离心收集,并用去离子水洗涤三次,70 ℃下干燥后即得到超薄钴镍水滑石纳米片;
(2)负载型PdNPs超薄CoNi-LDH纳米片复合材料的制备:取1 mg所制备的CoNi-LDHs-UT分散在10 mL水溶液中,加入3.0 μmol K2PdCl4(加入后其浓度为0.3 mmol L-1),室温下连续搅拌8 h,将所得的产物离心收集,并用去离子水洗涤三次,80 ℃下干燥后即得到负载型超薄钴镍水滑石纳米片。
对比例1
与实施例1相比,对比例1的制备过程除了不加乙醇以外,其余条件与实施例1相同,得到负载型Pd-较厚CoNi-LDH纳米片复合材料。
对比例2
与实施例1相比,对比例2为直接购买的商业Pd/C催化剂,作为基准,对比各材料催化性能。
对比例1-2和实施例1提供的催化剂的电化学性能如图4和图5所示,与对比例1-2提供的催化剂相比,实施例1提供的催化剂样品表现出最高的质量活性(2.06 A mgPd –1),分别是对比例1和对比例2提供的催化剂的1.3倍和3.5倍。由图5的稳定性测试可以看出,与对比例1-2提供的催化剂相比,实施例1提供的催化剂样品表现出最佳的长期稳定性:在-0.20 V vs. Ag/AgCl电位下,连续反应12000 s后,其氧化电流仍保持初始值的91.89%,而对比例1-2样品的氧化电流只能保持初始值的82.32%和66.17%。此外,对比例1提供的催化剂样品的氧化电流密度远高于对比例1-2提供的催化剂,进一步证明了本发明提供的负载型钯-超薄CoNi-LDH具有显著增强的EOR电催化活性和稳定性。
上述实施例描述了本发明的详细情况,但是本发明并不局限于此。在本发明的技术构思范围内,对本发明的技术方案进行的任何改进和多种简单变形,均属于本发明的保护范围。

Claims (7)

1.一种负载型钯-超薄CoNi-LDH纳米片复合材料,其特征在于,该复合材料由厚度为1.3~1.5 nm、片径尺寸为400~600 nm的超薄CoNi-LDH纳米片和直径为1.5~2.5 nm的钯(Pd)纳米颗粒组成,其中Pd纳米颗粒均匀分散在超薄CoNi-LDH纳米片上,负载量为1.6~17.6wt%。
2.根据权利要求书1所述的一种负载型钯-超薄CoNi-LDH纳米片复合材料的制备方法,其特征在于,包括以下步骤:
(1)将水和乙醇配成体积比为1:3~3:1的混合溶液,加入金属镍和金属钴可溶性盐、六次亚甲基四胺溶解于上述混合溶液中,然后于85~105 °C温度下水热反应8~12 h,冷却后经去离子水离心洗涤2~3次,50~80 ℃下干燥后即得到超薄CoNi-LDH纳米片;
(2)将上述超薄CoNi-LDH纳米片均匀分散于去离子水中,配成1~2 mg mL-1分散液,加入贵金属Pd前驱体超声溶解后连续搅拌反应4~8 h,将所得的产物离心收集,并用去离子水离心洗涤2-3次,50~80 ℃下干燥后得到负载型Pd-超薄CoNi-LDH纳米片复合材料。
3.根据权利要求2所述的一种负载型钯-超薄CoNi-LDH纳米片复合材料的制备方法,其特征在于,在步骤(1)中,所述金属镍可溶性盐为硝酸镍、硫酸镍、草酸镍或氯化镍中的一种或多种,所述金属钴可溶性盐为硝酸钴、硫酸钴、草酸钴或氯化钴中的一种或多种;所述混合溶液中金属镍盐和金属钴盐的总量为1.0~1.5 mmol L-1;所述混合溶液中金属镍和金属钴盐的比例为1:2~2:1。
4.根据权利要求2所述的一种超薄Ni基层状双金属氢氧化物纳米片的制备方法,其特征在于,在步骤(1)中,所述混合溶液中六次甲基四胺的浓度为3~9 mmol L-1
5.根据权利要求2所述的一种负载型钯-超薄CoNi-LDH纳米片复合材料的制备方法,其特征在于,在步骤(2)中,所述钯前驱体为氯钯酸、氯钯酸钾、氯钯酸钠、氯钯酸铵盐中的一种;所述钯前驱体的浓度为0.05~0.3 mmol L-1
6.一种根据权利要求1-5之一所述的制备方法制得的负载型钯-超薄CoNi-LDH纳米片复合材料。
7.一种根据权利要求6所述的负载型钯-超薄CoNi-LDH纳米片复合材料在电催化乙醇氧化反应中的应用。
CN201911002273.9A 2019-10-22 2019-10-22 一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用 Pending CN110743565A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911002273.9A CN110743565A (zh) 2019-10-22 2019-10-22 一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911002273.9A CN110743565A (zh) 2019-10-22 2019-10-22 一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110743565A true CN110743565A (zh) 2020-02-04

Family

ID=69279171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911002273.9A Pending CN110743565A (zh) 2019-10-22 2019-10-22 一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110743565A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668014A (zh) * 2021-09-13 2021-11-19 吉林大学 一种NiFe LDH负载钯金属纳米晶体电解水催化材料及其制备方法
CN113751020A (zh) * 2020-06-03 2021-12-07 清华大学 金属复合化合物基贵金属单原子催化剂材料及其制备方法
CN113937311A (zh) * 2021-10-11 2022-01-14 福州大学 一种二维多孔形貌的二氧化硅非碳载体负载铂铜镍催化剂的制备方法
CN114204088A (zh) * 2021-12-10 2022-03-18 先进能源产业研究院(广州)有限公司 一种高活性直接甲酸燃料电池阳极催化剂及其制备方法
CN114284509A (zh) * 2021-08-05 2022-04-05 先进能源产业研究院(广州)有限公司 一种三金属析氧电催化剂的制备方法
CN114388829A (zh) * 2022-01-19 2022-04-22 先进能源产业研究院(广州)有限公司 一种直接甲醇燃料电池阳极用过渡金属基催化剂及其制备方法
CN114517304A (zh) * 2022-03-16 2022-05-20 杭州师范大学 具有PdCu合金颗粒负载的NiFe-LDH金属纳米片材料电催化剂制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751020A (zh) * 2020-06-03 2021-12-07 清华大学 金属复合化合物基贵金属单原子催化剂材料及其制备方法
CN114284509A (zh) * 2021-08-05 2022-04-05 先进能源产业研究院(广州)有限公司 一种三金属析氧电催化剂的制备方法
CN113668014A (zh) * 2021-09-13 2021-11-19 吉林大学 一种NiFe LDH负载钯金属纳米晶体电解水催化材料及其制备方法
CN113937311A (zh) * 2021-10-11 2022-01-14 福州大学 一种二维多孔形貌的二氧化硅非碳载体负载铂铜镍催化剂的制备方法
CN113937311B (zh) * 2021-10-11 2023-01-31 福州大学 一种二维多孔形貌的二氧化硅非碳载体负载铂铜镍催化剂的制备方法
CN114204088A (zh) * 2021-12-10 2022-03-18 先进能源产业研究院(广州)有限公司 一种高活性直接甲酸燃料电池阳极催化剂及其制备方法
CN114388829A (zh) * 2022-01-19 2022-04-22 先进能源产业研究院(广州)有限公司 一种直接甲醇燃料电池阳极用过渡金属基催化剂及其制备方法
CN114517304A (zh) * 2022-03-16 2022-05-20 杭州师范大学 具有PdCu合金颗粒负载的NiFe-LDH金属纳米片材料电催化剂制备方法
CN114517304B (zh) * 2022-03-16 2023-01-03 杭州师范大学 具有PdCu合金颗粒负载的NiFe-LDH金属纳米片材料电催化剂制备方法

Similar Documents

Publication Publication Date Title
CN110743565A (zh) 一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用
Safavi et al. Electrocatalytic behaviors of silver–palladium nanoalloys modified carbon ionic liquid electrode towards hydrogen evolution reaction
Qin et al. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium
Qiu et al. Electrocatalytic activity of bimetallic Pd–Ni thin films towards the oxidation of methanol and ethanol
Zhao et al. Direct synthesis of palladium nanoparticles on Mn3O4 modified multi-walled carbon nanotubes: A highly active catalyst for methanol electro-oxidation in alkaline media
Fournier et al. High‐performance, low Pt content catalysts for the electroreduction of oxygen in polymer‐electrolyte fuel cells
Pagliaro et al. Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols
El-Nagar et al. Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts
Hernandez-Pichardo et al. The role of the WO3 nanostructures in the oxygen reduction reaction and PEM fuel cell performance on WO3–Pt/C electrocatalysts
Cui et al. Based on a new support for synthesis of highly efficient palladium/hydroxyapatite catalyst for ethanol electrooxidation
Ma et al. Facile fabrication of gold coated nickel nanoarrays and its excellent catalytic performance towards sodium borohydride electro-oxidation
Du et al. Surfactant-free and template-free electrochemical approach to prepare well-dispersed Pt nanosheets and their high electrocatalytic activities for ammonia oxidation
CN109371420B (zh) 一种单层多孔镍铁水滑石基电催化析氧电极以及其制备方法和应用
CN103331172B (zh) 一种质子交换膜燃料电池非铂氢阳极催化剂的制备方法
Xia et al. Growing Platinum-Ruthenium-Tin ternary alloy nanoparticles on reduced graphene oxide for strong ligand effect toward enhanced ethanol oxidation reaction
CN114522706A (zh) 一种碳化物负载贵金属单原子催化剂及制备和应用
CN109088079A (zh) 一种一步合成铂-钯-铜三元金属纳米立方框架材料的方法
CN113328107A (zh) 一种钯镍碳电催化剂及其制备方法
Zhang et al. Pd-TiO2 nanoparticles supported on reduced graphene oxide: green synthesis and improved electrocatalytic performance for methanol oxidation
Guo et al. A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Holade et al. Electrochemical behavior of organics oxidation on palladium-based nanocatalysts synthesized from bromide anion exchange
Zhang et al. One-pot synthesis of PdZnO/C by microwave sintering method as an efficient electro catalyst for ethanol oxidation reaction
Yang et al. Electrocatalytic oxidation of formic acid on Pd/CNTs nanocatalysts synthesized in special “non-aqueous” system
CN110433810A (zh) 氧化铜掺杂镍铁类水滑石纳米片/石墨烯双功能水分解催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200204