CN110734288A - 氮化钒的生产加工方法 - Google Patents

氮化钒的生产加工方法 Download PDF

Info

Publication number
CN110734288A
CN110734288A CN201910158511.9A CN201910158511A CN110734288A CN 110734288 A CN110734288 A CN 110734288A CN 201910158511 A CN201910158511 A CN 201910158511A CN 110734288 A CN110734288 A CN 110734288A
Authority
CN
China
Prior art keywords
temperature
hours
minutes
utilizing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910158511.9A
Other languages
English (en)
Inventor
严华军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910158511.9A priority Critical patent/CN110734288A/zh
Publication of CN110734288A publication Critical patent/CN110734288A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种氮化钒的生产加工方法,包括如下步骤:a、预还原:将NH4VO3和稀氨水倒入反应釜中,充分搅拌混合均匀制成混合溶液,将混合溶液蒸干水分得到固体,将粉状物料置于回转窑内进行高温处理;b、还原:将经过高温处理后的粉状物料从回转窑内取出与碳粉制成粉料;c、碳化和氮化:将碳粉与粉料进行充分混合,并压型成块状物料,将块状物料微波加热处理,本发明优点是:本氮化钒的生产加工方法以NH4VO3为原料,并通过预还原、还原、碳化和氮化的生产步骤进行生产加工,从而在原料成本较低的前提下,获得了较高纯度的氮化钒,并且可实现连续化生产。

Description

氮化钒的生产加工方法
技术领域
本发明涉及冶金的技术领域,更具体地说是涉及氮化钒生产方法的技术领域。
背景技术
钢微合金化已成为高质量钢的重要手段,钒可以作为合金和微合 金加入钢中,对于钢的钒微合金化,主要是靠钒的沉淀析出细化晶粒, 钢中氮的存在,进一步提高这一作用,因为析出物就是钒的碳氮化合 物,钢中直接加入氮化钒将进一步体现钒微合金化对性能的作用优 势,生产还表明,氮化钒比加钒铁节约钒用量,目前常见的氮化钒生产工艺通常是以V2O5或V2O3为原料,然而采用V2O5为原料,虽然原料成本较低,容易采购,但通过V2O5制备得到的氮化钒产品质量不是十分理想,产品纯度较低;采用V2O3为原料制备得到的氮化钒,虽然产品质量和纯度较高,但V2O3原料价格昂贵,不易采购,并且对生产工艺要求苛刻,生产成本高,难以形成连续化生产。
发明内容
本发明的目的就是为了解决上述之不足而提供一种工艺合理,可降低制造成本,提高产品纯度,生产效率高,并可有效保证产品质量的氮化钒的生产加工方法。
本发明为了解决上述技术问题而采用的技术解决方案如下:
氮化钒的生产加工方法,包括如下步骤:
a、预还原:按重量份配比取NH4VO365~72份和质量浓度为25%的稀氨水120~135份,将NH4VO3和稀氨水倒入反应釜中,充分搅拌混合均匀制成混合溶液,并将混合溶液的温度加热至89~92℃,接着,按2.8~3.2L/s的通气速率向混合溶液中通入氨气,按2.1~2.5L/s的通气速率向混合溶液中通入氮气,按3.4~3.7L/s的通气速率向混合溶液中通入氢气,持续通气3.2~3.5小时后,将混合溶液蒸干水分得到固体,并将固体研磨成细度为120~140目的粉状物料,将粉状物料置于回转窑内进行高温处理,并向回转窑内通入充足的氨气、氮气和氢气,氨气、氮气和氢气的体积比为1:(2.2~2.5):(1.8~2),将回转窑内的初始温度控制为680~700℃,并保温1.2~1.8小时,接着利用2~4分钟,将回转窑内的温度升为720~750℃,并保温2.3~2.5小时,再利用3~5分钟,将回转窑内的温度降为640~690℃,并保温3.1~3.4小时,再利用1~3分钟,将回转窑内的温度降为610~630℃,并保温2.8~3小时,最后利用2~4分钟,将回转窑内的温度升为730~760℃,并保温3.5~4.2小时结束;
b、还原:将经过高温处理后的粉状物料从回转窑内取出,按重量份配比取细度为130~150目的碳粉18~24份,将碳粉与经过高温处理后的粉状物料进行充分混合制成粉料,并将粉料送入真空炉内在氮气的气氛下进行高温处理,将真空炉内的真空度控制为120~130pa,将真空炉内的初始温度控制为800~820℃,并保温2.1~2.3小时,接着利用3~5分钟,将真空炉内的温度升为930~960℃,并保温3.4~3.6小时,再利用1~3分钟,将真空炉内的温度升为1100~1200℃,并保温2.5~2.8小时,再利用2~4分钟,将真空炉内的温度降为980~1000℃,并保温3.2~3.5小时,最后利用3~6分钟,将真空炉内的温度降为940~950℃,并保温4.7~5.3小时结束;
c、碳化和氮化:按重量份配比取碳粉16~20份和质量浓度为2%~5%的聚乙烯醇水溶液9~12份,将碳粉与经高温处理后的粉料进行充分混合,再研磨成细度为210~220目的粉末,将粉末与聚乙烯醇水溶液充分搅拌混合均匀,并压型成块状物料,将块状物料送入工业微波炉内并在氮气气氛下进行微波加热处理,将工业微波炉内的真空度控制为140~150pa,利用25~28分钟,将块状物料的温度加热至760~800℃,接着利用29~32分钟,将块状物料的温度升至830~850℃,并保温2.1~2.4小时,再利用36~43分钟,将块状物料的温度升至1200~1300℃,并保温3.8~4.2小时,再利用20~24分钟,将块状物料的温度升至1400~1600℃,并保温4.7~5.3小时,然后利用18~21分钟,将块状物料的温度降至1100~1200℃,并保温2.6~3.4小时,最后利用30~35分钟,将块状物料的温度升至1200~1250℃,并保温6.5~7小时结束,将工业微波炉内的块状物料在常压下冷却至100~120℃即可出炉,得到所需产品,在微波加热过程中,采用频率为30~35kHz、功率为1500~2000W的超声波发生器对工业微波炉内的块状物料进行超声波处理。
在所述微波加热处理过程中,将工业微波炉内的真空度控制为145pa,利用26分钟,将块状物料的温度加热至780℃,接着利用30分钟,将块状物料的温度升至840℃,并保温2.2小时,再利用40分钟,将块状物料的温度升至1250℃,并保温4小时,再利用22分钟,将块状物料的温度升至1500℃,并保温5小时,然后利用20分钟,将块状物料的温度降至1150℃,并保温3小时,最后利用32分钟,将块状物料的温度升至1230℃,并保温6.8小时结束。
本发明采用上述技术解决方案所能达到的有益效果是:本氮化钒的生产加工方法以NH4VO3为原料,并通过预还原、还原、碳化和氮化的生产步骤进行生产加工,从而在原料成本较低的前提下,获得了较高纯度的氮化钒,并且可实现连续化生产。在预还原和还原的过程中,采用变温的加热方式进行高温加热处理,并且该加热温度曲线是根据产品特性精心设计得到,从而大幅提高了制得的氮化钒的纯度。在碳化和氮化过程中,采用微波变温加热的方式,并在微波加热过程中进行超声波处理,从而使制得的氮化钒质量稳定,有效提高了氮化钒的成品品质。
具体实施方式
实施例一:氮化钒的生产加工方法,包括如下步骤:
a、预还原:按重量配比取NH4VO365千克和质量浓度为25%的稀氨水120千克,将NH4VO3和稀氨水倒入反应釜中,充分搅拌混合均匀制成混合溶液,并将混合溶液的温度加热至89℃,接着,按2.8L/s的通气速率向混合溶液中通入氨气,按2.1L/s的通气速率向混合溶液中通入氮气,按3.4L/s的通气速率向混合溶液中通入氢气,持续通气3.2小时后,将混合溶液蒸干水分得到固体,并将固体研磨成细度为120目的粉状物料,将粉状物料置于回转窑内进行高温处理,并向回转窑内通入充足的氨气、氮气和氢气,氨气、氮气和氢气的体积比为1:2.2:1.8,将回转窑内的初始温度控制为680℃,并保温1.2小时,接着利用2分钟,将回转窑内的温度升为720℃,并保温2.3小时,再利用3分钟,将回转窑内的温度降为640℃,并保温3.1小时,再利用1分钟,将回转窑内的温度降为610℃,并保温2.8小时,最后利用2分钟,将回转窑内的温度升为730℃,并保温3.5小时结束;
b、还原:将经过高温处理后的粉状物料从回转窑内取出,按重量配比取细度为130目的碳粉18千克,将碳粉与经过高温处理后的粉状物料进行充分混合制成粉料,并将粉料送入真空炉内在氮气的气氛下进行高温处理,将真空炉内的真空度控制为120pa,将真空炉内的初始温度控制为800℃,并保温2.1小时,接着利用3分钟,将真空炉内的温度升为930℃,并保温3.4小时,再利用1分钟,将真空炉内的温度升为1100℃,并保温2.5小时,再利用2分钟,将真空炉内的温度降为980℃,并保温3.2小时,最后利用3分钟,将真空炉内的温度降为940℃,并保温4.7小时结束;
c、碳化和氮化:按重量配比取碳粉16千克和质量浓度为2%的聚乙烯醇水溶液9千克,将碳粉与经高温处理后的粉料进行充分混合,再研磨成细度为210目的粉末,将粉末与聚乙烯醇水溶液充分搅拌混合均匀,并压型成块状物料,将块状物料送入工业微波炉内并在氮气气氛下进行微波加热处理,将工业微波炉内的真空度控制为140pa,利用25分钟,将块状物料的温度加热至760℃,接着利用29分钟,将块状物料的温度升至830℃,并保温2.1小时,再利用36分钟,将块状物料的温度升至1200℃,并保温3.8小时,再利用20分钟,将块状物料的温度升至1400℃,并保温4.7小时,然后利用18分钟,将块状物料的温度降至1100℃,并保温2.6小时,最后利用30分钟,将块状物料的温度升至1200℃,并保温6.5小时结束,将工业微波炉内的块状物料在常压下冷却至100℃即可出炉,得到所需产品,在微波加热过程中,采用频率为30kHz、功率为1500W的超声波发生器对工业微波炉内的块状物料进行超声波处理。
实施例二:氮化钒的生产加工方法,包括如下步骤:
a、预还原:按重量配比取NH4VO368千克和质量浓度为25%的稀氨水128千克,将NH4VO3和稀氨水倒入反应釜中,充分搅拌混合均匀制成混合溶液,并将混合溶液的温度加热至90℃,接着,按3L/s的通气速率向混合溶液中通入氨气,按2.3L/s的通气速率向混合溶液中通入氮气,按3.6L/s的通气速率向混合溶液中通入氢气,持续通气3.4小时后,将混合溶液蒸干水分得到固体,并将固体研磨成细度为130目的粉状物料,将粉状物料置于回转窑内进行高温处理,并向回转窑内通入充足的氨气、氮气和氢气,氨气、氮气和氢气的体积比为1:2.4:1.9,将回转窑内的初始温度控制为690℃,并保温1.5小时,接着利用3分钟,将回转窑内的温度升为730℃,并保温2.4小时,再利用4分钟,将回转窑内的温度降为670℃,并保温3.2小时,再利用2分钟,将回转窑内的温度降为620℃,并保温2.9小时,最后利用3分钟,将回转窑内的温度升为740℃,并保温3.8小时结束;
b、还原:将经过高温处理后的粉状物料从回转窑内取出,按重量配比取细度为140目的碳粉21千克,将碳粉与经过高温处理后的粉状物料进行充分混合制成粉料,并将粉料送入真空炉内在氮气的气氛下进行高温处理,将真空炉内的真空度控制为125pa,将真空炉内的初始温度控制为810℃,并保温2.2小时,接着利用4分钟,将真空炉内的温度升为940℃,并保温3.5小时,再利用2分钟,将真空炉内的温度升为1150℃,并保温2.6小时,再利用3分钟,将真空炉内的温度降为990℃,并保温3.3小时,最后利用4分钟,将真空炉内的温度降为945℃,并保温5小时结束;
c、碳化和氮化:按重量配比取碳粉18千克和质量浓度为3%的聚乙烯醇水溶液10千克,将碳粉与经高温处理后的粉料进行充分混合,再研磨成细度为215目的粉末,将粉末与聚乙烯醇水溶液充分搅拌混合均匀,并压型成块状物料,将块状物料送入工业微波炉内并在氮气气氛下进行微波加热处理,将工业微波炉内的真空度控制为145pa,利用26分钟,将块状物料的温度加热至780℃,接着利用30分钟,将块状物料的温度升至840℃,并保温2.2小时,再利用40分钟,将块状物料的温度升至1250℃,并保温4小时,再利用22分钟,将块状物料的温度升至1500℃,并保温5小时,然后利用20分钟,将块状物料的温度降至1150℃,并保温3小时,最后利用32分钟,将块状物料的温度升至1230℃,并保温6.8小时结束,将工业微波炉内的块状物料在常压下冷却至110℃即可出炉,得到所需产品,在微波加热过程中,采用频率为33kHz、功率为1800W的超声波发生器对工业微波炉内的块状物料进行超声波处理。
实施例三:氮化钒的生产加工方法,包括如下步骤:
a、预还原:按重量配比取NH4VO372千克和质量浓度为25%的稀氨水135千克,将NH4VO3和稀氨水倒入反应釜中,充分搅拌混合均匀制成混合溶液,并将混合溶液的温度加热至92℃,接着,按3.2L/s的通气速率向混合溶液中通入氨气,按2.5L/s的通气速率向混合溶液中通入氮气,按3.7L/s的通气速率向混合溶液中通入氢气,持续通气3.5小时后,将混合溶液蒸干水分得到固体,并将固体研磨成细度为140目的粉状物料,将粉状物料置于回转窑内进行高温处理,并向回转窑内通入充足的氨气、氮气和氢气,氨气、氮气和氢气的体积比为1:2.5:2,将回转窑内的初始温度控制为700℃,并保温1.8小时,接着利用4分钟,将回转窑内的温度升为750℃,并保温2.5小时,再利用5分钟,将回转窑内的温度降为690℃,并保温3.4小时,再利用3分钟,将回转窑内的温度降为630℃,并保温3小时,最后利用4分钟,将回转窑内的温度升为760℃,并保温4.2小时结束;
b、还原:将经过高温处理后的粉状物料从回转窑内取出,按重量配比取细度为150目的碳粉24千克,将碳粉与经过高温处理后的粉状物料进行充分混合制成粉料,并将粉料送入真空炉内在氮气的气氛下进行高温处理,将真空炉内的真空度控制为130pa,将真空炉内的初始温度控制为820℃,并保温2.3小时,接着利用5分钟,将真空炉内的温度升为960℃,并保温3.6小时,再利用3分钟,将真空炉内的温度升为1200℃,并保温2.8小时,再利用4分钟,将真空炉内的温度降为1000℃,并保温3.5小时,最后利用6分钟,将真空炉内的温度降为950℃,并保温5.3小时结束;
c、碳化和氮化:按重量配比取碳粉20千克和质量浓度为5%的聚乙烯醇水溶液12千克,将碳粉与经高温处理后的粉料进行充分混合,再研磨成细度为220目的粉末,将粉末与聚乙烯醇水溶液充分搅拌混合均匀,并压型成块状物料,将块状物料送入工业微波炉内并在氮气气氛下进行微波加热处理,将工业微波炉内的真空度控制为150pa,利用28分钟,将块状物料的温度加热至800℃,接着利用32分钟,将块状物料的温度升至850℃,并保温2.4小时,再利用43分钟,将块状物料的温度升至1300℃,并保温4.2小时,再利用24分钟,将块状物料的温度升至1600℃,并保温5.3小时,然后利用21分钟,将块状物料的温度降至1200℃,并保温3.4小时,最后利用35分钟,将块状物料的温度升至1250℃,并保温7小时结束,将工业微波炉内的块状物料在常压下冷却至120℃即可出炉,得到所需产品,在微波加热过程中,采用频率为35kHz、功率为2000W的超声波发生器对工业微波炉内的块状物料进行超声波处理。

Claims (2)

1.氮化钒的生产加工方法,其特征在于包括如下步骤:
a、预还原:按重量份配比取NH4VO365~72份和质量浓度为25%的稀氨水120~135份,将NH4VO3和稀氨水倒入反应釜中,充分搅拌混合均匀制成混合溶液,并将混合溶液的温度加热至89~92℃,接着,按2.8~3.2L/s的通气速率向混合溶液中通入氨气,按2.1~2.5L/s的通气速率向混合溶液中通入氮气,按3.4~3.7L/s的通气速率向混合溶液中通入氢气,持续通气3.2~3.5小时后,将混合溶液蒸干水分得到固体,并将固体研磨成细度为120~140目的粉状物料,将粉状物料置于回转窑内进行高温处理,并向回转窑内通入充足的氨气、氮气和氢气,氨气、氮气和氢气的体积比为1:(2.2~2.5):(1.8~2),将回转窑内的初始温度控制为680~700℃,并保温1.2~1.8小时,接着利用2~4分钟,将回转窑内的温度升为720~750℃,并保温2.3~2.5小时,再利用3~5分钟,将回转窑内的温度降为640~690℃,并保温3.1~3.4小时,再利用1~3分钟,将回转窑内的温度降为610~630℃,并保温2.8~3小时,最后利用2~4分钟,将回转窑内的温度升为730~760℃,并保温3.5~4.2小时结束;
b、还原:将经过高温处理后的粉状物料从回转窑内取出,按重量份配比取细度为130~150目的碳粉18~24份,将碳粉与经过高温处理后的粉状物料进行充分混合制成粉料,并将粉料送入真空炉内在氮气的气氛下进行高温处理,将真空炉内的真空度控制为120~130pa,将真空炉内的初始温度控制为800~820℃,并保温2.1~2.3小时,接着利用3~5分钟,将真空炉内的温度升为930~960℃,并保温3.4~3.6小时,再利用1~3分钟,将真空炉内的温度升为1100~1200℃,并保温2.5~2.8小时,再利用2~4分钟,将真空炉内的温度降为980~1000℃,并保温3.2~3.5小时,最后利用3~6分钟,将真空炉内的温度降为940~950℃,并保温4.7~5.3小时结束;
c、碳化和氮化:按重量份配比取碳粉16~20份和质量浓度为2%~5%的聚乙烯醇水溶液9~12份,将碳粉与经高温处理后的粉料进行充分混合,再研磨成细度为210~220目的粉末,将粉末与聚乙烯醇水溶液充分搅拌混合均匀,并压型成块状物料,将块状物料送入工业微波炉内并在氮气气氛下进行微波加热处理,将工业微波炉内的真空度控制为140~150pa,利用25~28分钟,将块状物料的温度加热至760~800℃,接着利用29~32分钟,将块状物料的温度升至830~850℃,并保温2.1~2.4小时,再利用36~43分钟,将块状物料的温度升至1200~1300℃,并保温3.8~4.2小时,再利用20~24分钟,将块状物料的温度升至1400~1600℃,并保温4.7~5.3小时,然后利用18~21分钟,将块状物料的温度降至1100~1200℃,并保温2.6~3.4小时,最后利用30~35分钟,将块状物料的温度升至1200~1250℃,并保温6.5~7小时结束,将工业微波炉内的块状物料在常压下冷却至100~120℃即可出炉,得到所需产品,在微波加热过程中,采用频率为30~35kHz、功率为1500~2000W的超声波发生器对工业微波炉内的块状物料进行超声波处理。
2.根据权利要求1所述的氮化钒的生产加工方法,其特征在于:在所述微波加热处理过程中,将工业微波炉内的真空度控制为145pa,利用26分钟,将块状物料的温度加热至780℃,接着利用30分钟,将块状物料的温度升至840℃,并保温2.2小时,再利用40分钟,将块状物料的温度升至1250℃,并保温4小时,再利用22分钟,将块状物料的温度升至1500℃,并保温5小时,然后利用20分钟,将块状物料的温度降至1150℃,并保温3小时,最后利用32分钟,将块状物料的温度升至1230℃,并保温6.8小时结束。
CN201910158511.9A 2019-03-04 2019-03-04 氮化钒的生产加工方法 Pending CN110734288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910158511.9A CN110734288A (zh) 2019-03-04 2019-03-04 氮化钒的生产加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910158511.9A CN110734288A (zh) 2019-03-04 2019-03-04 氮化钒的生产加工方法

Publications (1)

Publication Number Publication Date
CN110734288A true CN110734288A (zh) 2020-01-31

Family

ID=69236642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910158511.9A Pending CN110734288A (zh) 2019-03-04 2019-03-04 氮化钒的生产加工方法

Country Status (1)

Country Link
CN (1) CN110734288A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540556A (zh) * 2015-11-11 2016-05-04 陕西盛迈石油有限公司 一种微波加热制备氮化钒的方法
CN106399786A (zh) * 2016-11-25 2017-02-15 南通汉瑞新材料科技有限公司 一种新型制备钒氮合金的方法
CN108018474A (zh) * 2017-11-09 2018-05-11 中国电子科技集团公司第四十八研究所 一种用偏钒酸铵连续化制备氮化钒的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540556A (zh) * 2015-11-11 2016-05-04 陕西盛迈石油有限公司 一种微波加热制备氮化钒的方法
CN106399786A (zh) * 2016-11-25 2017-02-15 南通汉瑞新材料科技有限公司 一种新型制备钒氮合金的方法
CN108018474A (zh) * 2017-11-09 2018-05-11 中国电子科技集团公司第四十八研究所 一种用偏钒酸铵连续化制备氮化钒的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏巍 主编: "《液晶器件制造工艺技术》", 31 January 2011, 航空工业出版社 *

Similar Documents

Publication Publication Date Title
CN100378238C (zh) 氮化钒铁合金及其制备方法
CN107699780B (zh) 一种制备氮化钒铁合金的方法
WO2018214849A1 (zh) 一种多级深度还原制备还原钛粉的方法
CN103305739B (zh) 一种高氮钒氮合金vn18及其生产方法
CN106834775A (zh) 一种碳热还原及氮化合成氮化钒铁的方法
CN107829018A (zh) 一种制备氮化钒铁的方法
CN110016607A (zh) 一种氮化钒铁合金的制备工艺
CN107012385A (zh) 高氮钒氮合金的制备方法
CN109440003A (zh) 一种氮化硅钒合金的冶炼方法
CN104018056A (zh) 一种高品质低成本的氮化钒铁制备方法
CN107881403A (zh) 一种制备氮化钒铁的方法
CN103484752A (zh) 硅钒铁合金及其生产方法
CN107058855B (zh) 一种用含钒溶液制备钒氮合金的方法
CN114162857A (zh) 一种硬质合金用钛白粉及其制备方法
CN110734288A (zh) 氮化钒的生产加工方法
CN1775663A (zh) 一种氮化锰的微波合成方法
CN106048279B (zh) 一种钒氮合金液相烧结生产方法
CN105986140A (zh) 一种采用偏钒酸铵生产钒氮合金的方法及其设备
CN110317992A (zh) 高氮硅钒铁合金及其生产方法
CN103388096A (zh) 钒氮合金的生产方法
CN113897507B (zh) 一种vn19钒氮合金的制备方法以及一种匣钵装置
CN106498266B (zh) 一种钒氮合金的制备方法
CN114560451A (zh) 一种连续化生产氮化锰产品的方法
CN103993165A (zh) 用偏钒酸铵制粒替代片状五氧化二钒生产钒铁的方法
CN107937797A (zh) 一种氮化钒铁及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200131

RJ01 Rejection of invention patent application after publication