CN110734091B - 一种TiO2包覆ZrW2O8的方法 - Google Patents
一种TiO2包覆ZrW2O8的方法 Download PDFInfo
- Publication number
- CN110734091B CN110734091B CN201911021111.XA CN201911021111A CN110734091B CN 110734091 B CN110734091 B CN 110734091B CN 201911021111 A CN201911021111 A CN 201911021111A CN 110734091 B CN110734091 B CN 110734091B
- Authority
- CN
- China
- Prior art keywords
- powder
- zrw
- tio
- nano
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
- C23C24/103—Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种纳米TiO2包覆纳米ZrW2O8粉体的方法,通过选取黏稠性良好的金属有机物钛酸丁酯进行包覆,有效克服了ZrW2O8粉体沉底,分散性不好的缺点,从而实现纳米TiO2包覆纳米ZrW2O8粉体。这种核壳结构的粉末可以有效缓解ZrW2O8在激光加工过程中的分解。
Description
技术领域
本发明涉及纳米粉体包覆技术领域,具体涉及一种TiO2包覆ZrW2O8的方法。
背景技术
利用激光熔覆制备合金涂层是对材料表面改性的有效方法,但由于激光熔覆过程的急冷急热特性,熔覆涂层与基体材料的热膨胀系数不一,很容易导致涂层开裂。利用负膨胀材料在一定温度范围内会产生热缩冷涨的现象,以此来调控激光熔覆合金金涂层的膨胀行为,降低涂层中残余应力,制备出性能良好的合金涂层。
ZrW2O8具有良好的负膨胀性能,其具有较强的各向同性负热膨胀性能,在 -272.7~777℃分温度范围内其负热膨胀系数高达8.9×10-6/℃。但研究发现ZrW2O8在激光高能束的辐照下会发生分解,分解后负膨胀性能消失。
ZrW2O8分子质量大,粉体置于水中时,容易沉淀在底部,导致包覆效果不好,分散也不均匀;另在激光高能束辐照下ZrW2O8易分解,在粉体上包覆一层纳米尺寸的隔热材料可以有效减缓ZrW2O8在激光加工过程中的分解。然而用一般的液相沉淀法难以实现纳米 TiO2包覆纳米ZrW2O8粉体或包覆效果较差。因此如何实现包覆材料均匀,包覆率高,一直是技术上的难点。
发明内容
为了解决上述技术问题,本发明提供了一种纳米TiO2包覆纳米ZrW2O8粉体的制备方法,该方法利用纳米TiO2包覆在在ZrW2O8粉体表面,保护核心的ZrW2O8粉体不被烧蚀,从而充分发挥ZrW2O8负膨胀性能,同时,核壳结构粉末外层的TiO2具有极高的硬度,可有效提高合金涂层的耐磨性。
为实现上述目的,本发明提供如下技术方案:
一种纳米TiO2包覆纳米ZrW2O8粉体的制备方法,包括如下步骤:
(1)称取1~10g的ZrW2O8粉体,投入盛有20~100ml钛酸四丁酯溶剂的烧杯中,超声分散10~60min;
(2)将步骤(1)烧杯移置温度为20~90℃的恒温磁力搅拌器中搅拌1~10h,同时缓慢滴加蒸馏水;
(3)将步骤(2)中的溶液,经抽滤烘干,收集到浅绿色粉体;
(4)将步骤(3)中收集的粉体置于箱式电阻炉中在200~680℃下煅烧1~6h,煅烧升温速率:1~10℃/min,煅烧后得到纳米TiO2包覆的纳米ZrW2O8粉体。
优选地,步骤(2)中,搅拌温度为45-60℃,搅拌时间为3-6h。
优选地,步骤(4)中,从200℃升温至450℃,升温速率为5℃/min,煅烧时间为2-3h,然后继续升温至550℃,升温速率为3℃/min,煅烧时间为1h,最后升温至650℃,升温速率为8℃/min,煅烧时间为0.5h。
优选地,蒸馏水的滴加量为1-4ml。
优选地,钛酸四丁酯为分析纯钛酸四丁酯。
优选地,步骤(4)中,TiO2包覆层的厚度为300-800nm。
优选地,ZrW2O8粉体的平均粒径为300nm。
本发明方法制备的金属有机溶剂包覆ZrW2O8纳米粉体具有以下优点:
(1)钛酸四丁酯有机溶剂是粘稠液体,在投入ZrW2O8粉体后,可以有效的防止ZrW2O8粉体于烧杯底部沉淀,提高了包覆率;有机溶剂可以更充分和ZrW2O8粉体接触,大大改善了包覆的致密性,包覆效果更佳。
(2)本发明运用超声分散技术,对溶液进行充分分散,有利于纳米TiO2充分覆盖于ZrW2O8粉体表面;在超声处理之后避免了包覆严重团聚现象。
(3)本发明选取的钛酸丁酯有机溶剂,使得粉体外层包覆的是TiO2,极大提高激光熔覆之后涂层的耐磨性能,运用在刀具上能大幅提高刀具寿命。
(4)本发明包覆是通过有机物水解来达到效果,所以在实现包覆时,只需缓慢滴加蒸馏水,从而极大地控制了成本,包覆实现的路径更加简便,更加容易控制。
(5)本发明采用分段煅烧的烧成制度,提高了TiO2的结构致密性和包覆效果。
附图说明
图1为本申请实施例采用的ZrW2O8纳米粉体SEM图;
图2为纳米TiO2包覆ZrW2O8纳米粉体SEM图;
图3为通过液氮脆断的TiO2包覆ZrW2O8粉体的截面SEM图;
图4为激光熔覆FeNi36与FeNi36/TiO2-ZrW2O8复合涂层往复循环摩擦系数图。
具体实施方式
参照说明书附图,本部分详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
实施例
一种纳米TiO2包覆纳米ZrW2O8粉体的制备方法,包括如下步骤:
(1)称取5g的ZrW2O8粉体,ZrW2O8粉体的平均粒径为300nm。参见图1,投入盛有40ml钛酸四丁酯溶液的烧杯中,超声分散10~60min;
(2)将步骤(1)烧杯移置温度为50℃的恒温磁力搅拌器中搅拌5h,同时缓慢滴加蒸馏水1ml;
(3)将步骤(2)中的溶液,经抽滤烘干,收集到浅绿色粉体;
(4)将步骤(3)中收集的粉体置于箱式电阻炉中,从200℃升温至450℃,升温速率为5℃/min,煅烧时间为2-3h,然后继续升温至550℃,升温速率为3℃/min,煅烧时间为1h,最后升温至650℃,升温速率为8℃/min,煅烧时间为0.5h;煅烧后得到纳米TiO2包覆的纳米ZrW2O8粉体。图2展示了制备得到的纳米TiO2包覆ZrW2O8纳米粉体SEM图,图3展示了通过液氮脆断的TiO2包覆ZrW2O8粉体的截面SEM图,从图2-3中可以看出, ZrW2O8粉体外表面已经被致密的TiO2包覆,其中,TiO2包覆层的厚度为305nm。
测试例
以下以激光熔覆FeNi36与FeNi36/TiO2-ZrW2O5复合涂层进行往复循环摩擦系数的测试。
检测设备:UMT-3多功能摩擦磨损试验机
上磨副:GCr15轴承钢球
摩擦力:10N
频率:2HZ
测试结果参见图4,从图中可以看出,利用TiO2-ZrW2O5复合涂层加工得到的耐磨涂层的耐磨性明显高于未涂覆耐磨层的FeNi36。
以上所述的,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (4)
1.一种纳米 TiO2包覆纳米ZrW2O8粉体的制备方法,其特征在于,包括如下步骤:
(1)称取1~10g 的ZrW2O8粉体,投入盛有20~100ml 钛酸四丁酯溶剂的烧杯中,超声分散10~60min;
(2)将步骤(1)烧杯移置温度为20~90℃的恒温磁力搅拌器中搅拌1~10h,同时缓慢滴加蒸馏水;蒸馏水的滴加量为1-4ml;
(3)将步骤(2)中的溶液,经抽滤烘干,收集到浅绿色粉体;
(4)将步骤(3)中收集的粉体置于箱式电阻炉中煅烧,煅烧后得到纳米TiO2包覆的纳米ZrW2O8粉体;煅烧步骤具体为:从 200℃升温至450℃,升温速率为5℃/min,煅烧时间为2-3h,然后继续升温至550℃,升温速率为3℃/min,煅烧时间为1h,最后升温至650℃,升温速率为8℃/min,煅烧时间为0.5h;
TiO2包覆层的厚度为300-800nm。
2.根据权利要求 1 所述的制备方法,其特征在于,步骤(2)中,搅拌温度为45-60℃,搅拌时间为3-6h。
3.根据权利要求1所述的制备方法,其特征在于,钛酸四丁酯为分析纯钛酸四丁酯。
4.根据权利要求1所述的制备方法,其特征在于,ZrW2O8粉体的平均粒径为300nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911021111.XA CN110734091B (zh) | 2019-10-25 | 2019-10-25 | 一种TiO2包覆ZrW2O8的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911021111.XA CN110734091B (zh) | 2019-10-25 | 2019-10-25 | 一种TiO2包覆ZrW2O8的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110734091A CN110734091A (zh) | 2020-01-31 |
CN110734091B true CN110734091B (zh) | 2022-07-19 |
Family
ID=69271339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911021111.XA Active CN110734091B (zh) | 2019-10-25 | 2019-10-25 | 一种TiO2包覆ZrW2O8的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110734091B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116693293B (zh) * | 2023-04-01 | 2024-05-28 | 西北农林科技大学 | 一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100589903C (zh) * | 2006-12-28 | 2010-02-17 | 大连理工大学 | 一种无包覆纳米金属氧化物粉体的制备方法 |
CN101067201A (zh) * | 2007-06-12 | 2007-11-07 | 江苏大学 | 促进铜包覆钨酸锆复合粉体的预处理方法 |
JP2016179915A (ja) * | 2015-03-24 | 2016-10-13 | 株式会社Kri | タングステン酸ジルコニウム粒子の製造方法 |
CN105817241B (zh) * | 2016-05-23 | 2018-06-19 | 渤海大学 | 一种磷钨酸铜@二氧化钛核壳结构纳米材料的制备方法 |
CN108795406A (zh) * | 2017-05-02 | 2018-11-13 | 中国科学院上海硅酸盐研究所 | 一种二氧化钛包覆三氧化钼复合纳米粉体及其制备方法和用途 |
-
2019
- 2019-10-25 CN CN201911021111.XA patent/CN110734091B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110734091A (zh) | 2020-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Menazea | One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement | |
Liang et al. | Synthesis of ultrafine SnO2-x nanocrystals by pulsed laser-induced reactive quenching in liquid medium | |
Altavilla et al. | Inorganic nanoparticles: synthesis, applications and perspectives—an overview | |
Usui et al. | Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions | |
TW200815123A (en) | Silver particle powder and process therefor | |
CN1159735C (zh) | 磁性流体及其制造方法 | |
Quinsaat et al. | Dielectric properties of silver nanoparticles coated with silica shells of different thicknesses | |
TWI547326B (zh) | A surface-treated metal powder, and a method for producing the same | |
CN110734091B (zh) | 一种TiO2包覆ZrW2O8的方法 | |
JP4617499B2 (ja) | Ito粉体およびその製造方法、透明導電材用塗料、並びに透明導電膜 | |
JP2010126735A (ja) | ナノ粒子薄膜の製造方法、ナノ粒子薄膜及びそれを用いた電子デバイス | |
KR20100136807A (ko) | 자기 연마재 분말 및 그 제조방법 | |
Baiju et al. | Hydrothermal synthesis, dielectric properties of barium titanate, cobalt doped barium titanate, and their graphene nanoplatelet composites | |
JP2009161425A (ja) | ジスプロシウム酸化物ナノ粒子の製造方法及びジスプロシウム酸化物ナノゾルの製造方法 | |
TW201016920A (en) | Fibers including nanoparticles and a method of producing the nanoparticles | |
Trabelsi et al. | Synthesis of upconversion TiO2: Er3+-Yb3+ nanoparticles and deposition of thin films by spin coating technique | |
KR20160060913A (ko) | 졸겔 나노입자 분산용매의 유전상수 조절을 통한 입자응집 제어 및 이에 의한 초발수 표면 제조방법 | |
CN109071357B (zh) | 将基于石墨烯的添加剂添加至应用激光烧蚀的涂层中使用的靶材的方法 | |
CN1761003A (zh) | 一种制备磁性空心球的方法 | |
CN104357055B (zh) | 一种将油溶性纳米颗粒转换为水溶性纳米颗粒的方法 | |
WO2018024778A1 (en) | Method for the preparation of ceramic coatings on electrically conductive substrates | |
WO2014098163A1 (ja) | コアシェル粒子の製造方法および中空粒子の製造方法 | |
CN114951635B (zh) | 一种尺寸和形貌可控的镁纳米颗粒、其制备方法和调控方法以及应用 | |
Phule et al. | Anchoring silver with poly (vinylidene fluoride) molecules in model flocculates and its effects on rheology in stable nanofluids | |
JP2012246220A (ja) | 炭化ケイ素ナノ粒子分散液の製造方法及び炭化ケイ素ナノ粒子分散液並びに炭化ケイ素ナノ粒子膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |