CN110724156A - 一种增强铜纳米团簇荧光强度的方法 - Google Patents

一种增强铜纳米团簇荧光强度的方法 Download PDF

Info

Publication number
CN110724156A
CN110724156A CN201911005616.7A CN201911005616A CN110724156A CN 110724156 A CN110724156 A CN 110724156A CN 201911005616 A CN201911005616 A CN 201911005616A CN 110724156 A CN110724156 A CN 110724156A
Authority
CN
China
Prior art keywords
copper
fluorescence intensity
nanocluster
composite material
nanoclusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911005616.7A
Other languages
English (en)
Other versions
CN110724156B (zh
Inventor
杜袁鑫
史宏宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201911005616.7A priority Critical patent/CN110724156B/zh
Publication of CN110724156A publication Critical patent/CN110724156A/zh
Application granted granted Critical
Publication of CN110724156B publication Critical patent/CN110724156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/60Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing iron, cobalt or nickel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种增强铜纳米团簇荧光强度的方法,其步骤为首先合成铜纳米团簇粉末,再将铜纳米团簇粉末与过渡金属盐溶液、过渡金属氰化物原位生成铜纳米团簇与普鲁士蓝类似物的复合材料。本发明通过将铜纳米团簇与普鲁士蓝类似物相互结合,形成铜纳米团簇与普鲁士蓝类似物的复合材料,由于普鲁士蓝类似物的限域作用,进而导致铜纳米团簇的荧光强度增强,而在复合材料中,铜纳米团簇仍然是保持分散状态。

Description

一种增强铜纳米团簇荧光强度的方法
技术领域
本发明属于金属纳米团簇材料技术领域,具体涉及一种增强铜纳米团簇荧光强度的方法。
背景技术
荧光金属纳米团簇作为一种新型的荧光纳米材料备受关注。金属纳米团簇是指在一定的分子层保护作用下,由几个到几百个金属原子构成的分子级聚集体。由于其独特的物理、电学和光学性质,金属纳米团簇在单分子光电、催化、生物成像和传感器等领域显示出广泛的应用前景。目前,大多数的研究主要集中于金、银及其合金纳米团簇。众所周知,与金和银相比,铜在地壳中的含量更为丰富且价格低廉,因此被广泛应用于人类日常生活中。然而,关于铜纳米团簇的研究还相对较少,这是由于铜纳米团簇的稳定性及其荧光强度的原因。
最新的研究显示,将低荧光的金纳米团簇加入甲醇后聚集形成高荧光的金纳米团簇聚集体,再加入Zn2+和二甲基咪唑,形成了金团簇和ZIF-8的复合材料,其原理是:Zn2+和金团簇的末端羧酸或含氮的基团之间的配位作用。ZIF-8使得金团簇仍然保持着聚集体的状态,利用聚集诱导发光的机理,使得该复合材料的荧光强度明显增强;也有合成谷胱甘肽保护的Au25与ZIF-8的复合材料,利用的原理也是金团簇的配体谷胱甘肽与Zn2+之间的配位作用。上述的荧光材料大多是采用金纳米团簇作为原料,且荧光强度的增强程度有限,此外,在合成过程中使用甲醇等溶剂,不利于环保的要求;根据材料显示,金纳米团簇为橙色,在使用过程中有局限性。因此,研发一种能够替代金、银等贵金属纳米团簇的铜纳米团簇荧光材料、增强铜纳米团簇的荧光强度的荧光材料具有重要的现实意义。
发明内容
本发明的目的就在于为了解决上述问题而提供一种结构简单,设计合理的一种增强铜纳米团簇荧光强度的方法。
本发明通过以下技术方案来实现上述目的:
一种增强铜纳米团簇荧光强度的方法,包括以下步骤:
步骤S1:铜纳米团簇粉末的合成
取铜盐和含羧基的配位剂于超纯水中,调节pH,加入不良溶剂、还原剂混合均匀后,对产生的沉淀进行离心干燥,获得铜纳米团簇粉末;
步骤S2:铜纳米团簇-普鲁士蓝类似物复合材料的合成
取步骤S1获得铜纳米团簇粉末分散在去离子水中,按比例加入金属盐溶液,混合均匀后加入过渡金属氰化物,室温下静置,离心洗涤后获得该铜纳米团簇复合材料粉末。
作为本发明的进一步优化方案,所述步骤S1中铜盐为硫酸铜、硝酸铜、氯化铜、醋酸铜或氰化亚铜,所述含羧基的配位剂为谷胱甘肽、半胱氨酸、巯基乙酸、巯基丙酸、对巯基苯甲酸、甘氨酸或蛋白质,所述不良溶剂为乙醇、异丙醇或丙醇,所述还原剂为水合肼、硼氢化钠、氰基硼氢化钠、柠檬酸钠或抗坏血酸;所述pH调至4。
作为本发明的进一步优化方案,所述步骤S2中金属盐溶液中的金属离子种类为Fe3+、Ni2+、Co2+、Mn2+或Zn2+,所述金属盐溶液中的盐的种类为硝酸盐、氯化盐、硫酸盐或醋酸盐。
作为本发明的进一步优化方案,所述步骤S2中铜纳米团簇粉末的添加量为1-10mg,所述金属盐的添加量为0.3-3mmol。
作为本发明的进一步优化方案,所述步骤S2中铜纳米团簇与金属盐溶液的混合条件为:超声或搅拌下混合5-60min。
作为本发明的进一步优化方案,所述步骤S2中过渡金属氰化物为K3[Fe(CN)6]、K3[Co(CN)6]、Na3[Fe(CN)6]或Na3[Co(CN)6],所述金属盐与所述过渡金属氰化物的摩尔比为3:1-5。
作为本发明的进一步优化方案,所述步骤S2中静置时间为3-24h。
一种利用上述任一方法制备的铜纳米团簇复合材料,该铜纳米团簇复合材料在生物成像、生物标记和荧光检测领域的应用。
本发明的有益效果在于:
1)本发明通过将铜纳米团簇与过渡金属盐溶液、过渡金属氰化物相互结合,原位生成铜纳米团簇与普鲁士蓝类似物的复合材料,由于普鲁士蓝类似物的限域作用,进而导致铜纳米团簇的荧光强度增强,而在复合材料中,铜纳米团簇仍然是保持分散状态;
2)本发明通过制备铜纳米团簇与普鲁士蓝类似物的复合材料,可以替代金纳米团簇在生物成像、标记和荧光检测领域的应用,降低成本,且该方法是在水相中合成,室温反应,合成方法简单且环保,避免对环境造成污染和破坏;
3)本发明中的铜纳米团簇复合材料的合成中,可选用不同的配体合成出不同荧光发光的纳米团簇,在普鲁士蓝类似物的作用下,进一步增强铜纳米团簇的荧光强度,不仅可以拓展纳米团簇的荧光发光范围,而且可以增强荧光强度,使其适用于不同的领域;
4)本发明方法简单,稳定性高,设计合理,便于实现。
附图说明
图1是铜纳米团簇与铜纳米团簇-普鲁士蓝类似物的复合材料在360nm激发下的荧光发射光谱图;
图2中a是铜纳米团簇的TEM图,b,c分别为铜纳米团簇-普鲁士蓝类似物的复合材料的SEM与TEM图,d为铜纳米簇-普鲁士蓝类似物的复合材料的XRD图谱;
图3是两种不同配体的铜纳米团簇-普鲁士蓝类似物的复合材料的荧光发射光谱,内插图为相应的光学颜色照片。
具体实施方式
下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请做出一些非本质的改进和调整。
实施例1
1、材料
本实施例所用方法如无特别说明均为本领域的技术人员所知晓的常规方法,所用的试剂等材料,如无特别说明,均为市售购买产品。
2、方法
2.1铜纳米团簇粉末的合成
取铜盐和含羧基的配位剂于超纯水中,调节pH至4,加入不良溶剂、还原剂混合均匀后,对产生的沉淀进行离心干燥,获得铜纳米团簇粉末。
需要说明的是,所述铜盐为硫酸铜、硝酸铜、氯化铜、醋酸铜或氰化亚铜,所述含羧基的配位剂为谷胱甘肽、半胱氨酸、巯基乙酸、巯基丙酸、对巯基苯甲酸、甘氨酸或蛋白质,所述不良溶剂为乙醇、异丙醇或丙醇,所述还原剂为水合肼、硼氢化钠、氰基硼氢化钠、柠檬酸钠或抗坏血酸。
2.2铜纳米团簇-普鲁士蓝类似物复合材料的合成
取1-10mg上述获得铜纳米团簇粉末分散在去离子水中,加入0.3-3mmol金属盐,混合均匀后加入过渡金属氰化物,所述金属盐与过渡金属氰化物的摩尔比为3:1-5,室温下静置3-24h,离心洗涤后获得该铜纳米团簇复合材料粉末。
所述过渡金属氰化物为K3[Fe(CN)6]、K3[Co(CN)6]、Na3[Fe(CN)6]或Na3[Co(CN)6]。
2.3铜纳米团簇和铜纳米团簇-普鲁士蓝类似物复合材料的表征分析
如图1所示,为铜纳米团簇和铜纳米团簇-普鲁士蓝类似物复合材料在360nm激发下的荧光发射光谱图,其中,铜纳米团簇选用的配位剂为L-半胱氨酸,铜纳米团簇-普鲁士蓝类似物复合材料合成中,采用上述铜纳米团簇与氯化钴和K3[Fe(CN)6],可以清楚的发现,在铜纳米团簇配体相同的情况下,铜纳米团簇-普鲁士蓝类似物复合材料的荧光强度远远强于铜纳米团簇的荧光强度,下表1为上述两种材料的具体荧光强度数值对比表,其中样品1为铜纳米团簇,样品2为铜纳米团簇-普鲁士蓝类似物复合材料,其结果如下:
Figure BDA0002242674010000061
由上表1可知,铜纳米团簇-普鲁士蓝类似物复合材料的荧光强度为铜纳米团簇的8.8倍,说明通过过渡金属盐、过渡金属氰化物相互结合,原位生成铜纳米团簇-普鲁士蓝类似物复合材料具有更强的荧光强度。
如图2所示,为上述铜纳米团簇及铜纳米团簇-普鲁士蓝类似物复合材料的表征图,其中图a为铜纳米团簇的TEM图,从图中可以看出铜纳米团簇分散性良好,尺寸均一,平均粒径大约为1.5nm;图b、c分别为铜纳米团簇-普鲁士蓝类似物复合材料的SEM和TEM图片,从SEM图中,可以看出整个复合材料的粒径大约为200nm,从TEM图中,可以看出铜团簇在其中的分散性仍然良好,并且铜团簇没有聚集,粒径仍为1.5nm左右。图d为铜纳米团簇-普鲁士蓝类似物复合材料的XRD图谱,经过比对,发现其与Co3[Fe(CN)6]2·10H2O(JCPDS No.46-0907)的标准XRD图谱一致,这也表明利用上述方法合成的物质确实为铜纳米团簇-普鲁士蓝类似物复合材料,并且铜纳米团簇的存在对普鲁士蓝类似物的结构没有影响。
2.4不同配体合成出的铜纳米团簇-普鲁士蓝类似物复合材料的发光颜色的对比
如图3展示了以谷胱甘肽和L-半胱氨酸分别作为配体合成的铜纳米团簇-普鲁士蓝类似物复合材料的荧光发射光谱(已归一化),以及在360nm激发光下的颜色对比,其中,两种材料所使用的金属盐及过渡金属氰化物相同,均为氯化镍和K3[Co(CN)6]。图中,CuNCs-I,Cu NCs-II分别指的是以谷胱甘肽、L-半胱氨酸为配体的铜纳米团簇-普鲁士蓝类似物复合材料,从图中可以看出,两种不同配体可以合成出具有不同发光的复合材料。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (8)

1.一种增强铜纳米团簇荧光强度的方法,其特征在于,包括以下步骤:
步骤S1:铜纳米团簇粉末的合成
取铜盐和含羧基的配位剂于超纯水中,调节pH,加入不良溶剂、还原剂混合均匀后,对产生的沉淀进行离心干燥,获得铜纳米团簇粉末;
步骤S2:铜纳米团簇-普鲁士蓝类似物复合材料的合成
取步骤S1获得铜纳米团簇粉末分散在去离子水中,按比例加入金属盐溶液,混合均匀后加入过渡金属氰化物,室温下静置,离心洗涤后获得该铜纳米团簇复合材料粉末。
2.根据权利要求1所述的一种增强铜纳米团簇荧光强度的方法,其特征在于:所述步骤S1中铜盐为硫酸铜、硝酸铜、氯化铜、醋酸铜或氰化亚铜,所述含羧基的配位剂为谷胱甘肽、半胱氨酸、巯基乙酸、巯基丙酸、对巯基苯甲酸、甘氨酸或蛋白质,所述不良溶剂为乙醇、异丙醇或丙醇,所述还原剂为水合肼、硼氢化钠、氰基硼氢化钠、柠檬酸钠或抗坏血酸;所述pH调至4。
3.根据权利要求1所述的一种增强铜纳米团簇荧光强度的方法,其特征在于:所述步骤S2中金属盐溶液中的金属离子种类为Fe3+、Ni2+、Co2+、Mn2+或Zn2+,所述金属盐溶液中的盐的种类为硝酸盐、氯化盐、硫酸盐或醋酸盐。
4.根据权利要求1所述的一种增强铜纳米团簇荧光强度的方法,其特征在于:所述步骤S2中铜纳米团簇粉末的添加量为1-10mg,所述金属盐的添加量为0.3-3mmol。
5.根据权利要求1所述的一种增强铜纳米团簇荧光强度的方法,其特征在于:所述步骤S2中铜纳米团簇与金属盐溶液的混合条件为:超声或搅拌下混合5-60min。
6.根据权利要求1所述的一种增强铜纳米团簇荧光强度的方法,其特征在于:所述步骤S2中过渡金属氰化物为K3[Fe(CN)6]、K3[Co(CN)6]、Na3[Fe(CN)6]或Na3[Co(CN)6],所述金属盐与所述过渡金属氰化物的摩尔比为3:1-5。
7.根据权利要求1所述的一种增强铜纳米团簇荧光强度的方法,其特征在于:所述步骤S2中静置时间为3-24h。
8.一种利用权利要求1-7任一方法制备的铜纳米团簇复合材料,其特征在于:该铜纳米团簇复合材料在生物成像、生物标记和荧光检测领域的应用。
CN201911005616.7A 2019-10-22 2019-10-22 一种增强铜纳米团簇荧光强度的方法 Active CN110724156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911005616.7A CN110724156B (zh) 2019-10-22 2019-10-22 一种增强铜纳米团簇荧光强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911005616.7A CN110724156B (zh) 2019-10-22 2019-10-22 一种增强铜纳米团簇荧光强度的方法

Publications (2)

Publication Number Publication Date
CN110724156A true CN110724156A (zh) 2020-01-24
CN110724156B CN110724156B (zh) 2022-03-15

Family

ID=69220682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911005616.7A Active CN110724156B (zh) 2019-10-22 2019-10-22 一种增强铜纳米团簇荧光强度的方法

Country Status (1)

Country Link
CN (1) CN110724156B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253936A (zh) * 2020-03-30 2020-06-09 吉林大学 一种金属纳米簇荧光粉、其制备方法及led
CN111715890A (zh) * 2020-06-29 2020-09-29 太原师范学院 一种聚乙烯吡咯烷酮-铜纳米团簇的制备方法、产品及应用
CN113061261A (zh) * 2021-03-30 2021-07-02 深圳第三代半导体研究院 一种铜纳米簇荧光粉及其制备方法
CN116814249A (zh) * 2023-06-25 2023-09-29 江南大学 一种基于钴离子和铜纳米发光团簇构建手性纳米探针的方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298115A1 (en) * 2008-05-29 2009-12-03 Chung Yuan Christian University Fluorescent Gold Nanocluster and Method for Forming the Same
CN107603604A (zh) * 2017-10-18 2018-01-19 福建医科大学 一种铜纳米团簇荧光材料及其制备方法
US20180055083A1 (en) * 2016-08-23 2018-03-01 Goldred Nanobiotech Co., Ltd. Process for forming a solution containing gold nanoclusters binding with ligands
CN107903891A (zh) * 2017-12-01 2018-04-13 天津科技大学 一种铜纳米团簇自组装体的制备方法及应用
CN108329904A (zh) * 2018-01-25 2018-07-27 暨南大学 一种半胱胺修饰铜纳米团簇溶液荧光探针及制备与应用
CN108535230A (zh) * 2018-04-12 2018-09-14 淮北师范大学 基于蛋壳膜平台红色荧光铜纳米团簇原位合成方法及应用
CN109211862A (zh) * 2018-10-23 2019-01-15 山西大学 一种红色荧光铜纳米团簇探针的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298115A1 (en) * 2008-05-29 2009-12-03 Chung Yuan Christian University Fluorescent Gold Nanocluster and Method for Forming the Same
US20180055083A1 (en) * 2016-08-23 2018-03-01 Goldred Nanobiotech Co., Ltd. Process for forming a solution containing gold nanoclusters binding with ligands
CN107603604A (zh) * 2017-10-18 2018-01-19 福建医科大学 一种铜纳米团簇荧光材料及其制备方法
CN107903891A (zh) * 2017-12-01 2018-04-13 天津科技大学 一种铜纳米团簇自组装体的制备方法及应用
CN108329904A (zh) * 2018-01-25 2018-07-27 暨南大学 一种半胱胺修饰铜纳米团簇溶液荧光探针及制备与应用
CN108535230A (zh) * 2018-04-12 2018-09-14 淮北师范大学 基于蛋壳膜平台红色荧光铜纳米团簇原位合成方法及应用
CN109211862A (zh) * 2018-10-23 2019-01-15 山西大学 一种红色荧光铜纳米团簇探针的制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DING W C. ET AL: ""Water-soluble gold nanoclusters with pH-dependentfluorescence and high colloidal stability over a wide pH rangeviaco-reduction of glutathione and citrate"", 《RSC ADV》 *
FENG K. ET AL: ""Sub-nanometer Cu(I) clusters: coordination modulated (Sevs. S) atom-packing mode and emission"", 《DALTON TRANS》 *
任娟等: "金团簇的荧光性质及其生物应用", 《化学通报》 *
朱琳等: "Au_(25)纳米团簇合成与应用研究进展", 《广州化学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253936A (zh) * 2020-03-30 2020-06-09 吉林大学 一种金属纳米簇荧光粉、其制备方法及led
CN111715890A (zh) * 2020-06-29 2020-09-29 太原师范学院 一种聚乙烯吡咯烷酮-铜纳米团簇的制备方法、产品及应用
CN113061261A (zh) * 2021-03-30 2021-07-02 深圳第三代半导体研究院 一种铜纳米簇荧光粉及其制备方法
CN116814249A (zh) * 2023-06-25 2023-09-29 江南大学 一种基于钴离子和铜纳米发光团簇构建手性纳米探针的方法及应用
CN116814249B (zh) * 2023-06-25 2024-03-26 江南大学 一种基于钴离子和铜纳米发光团簇构建手性纳米探针的方法及应用

Also Published As

Publication number Publication date
CN110724156B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN110724156B (zh) 一种增强铜纳米团簇荧光强度的方法
Fu et al. Surface modification of small platinum nanoclusters with alkylamine and alkylthiol: an XPS study on the influence of organic ligands on the Pt 4f binding energies of small platinum nanoclusters
Zhang et al. Facile fabrication of ultrafine copper nanoparticles in organic solvent
Huang et al. Synthesis and Characterization of Bovine Serum Albumin‐Conjugated Copper Sulfide Nanocomposites
CN102634780B (zh) 一种在固体基底材料上覆盖银纳米颗粒聚集体的方法
EP2830795B1 (en) Nano aggregates of molecular ultra small clusters of noble metals and a process for the preparation thereof
WO2020147753A1 (zh) 丝胶蛋白包裹的金属纳米簇的制备及荧光探针
KR20120115298A (ko) 구리 나노와이어의 성장을 위한 조성물 및 방법
US20180055083A1 (en) Process for forming a solution containing gold nanoclusters binding with ligands
WO2004078641A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
CN108841374B (zh) 一种基于金属有机框架合成超稳定高荧光铜纳米簇的方法
TWI575108B (zh) 製備芯殼結構奈米線之方法
CN112457499B (zh) 一种稀土基金属有机框架荧光纳米材料及其制备方法与应用
CN105505383A (zh) 一种荧光铜纳米簇的合成方法
CN105328203B (zh) 1‑h‑1,2,4‑三氮唑‑3‑硫醇‑牛血清白蛋白‑金纳米团簇荧光材料及其制备方法
Han et al. Ultra-stable L-proline protected copper nanoclusters and their solvent effect
JP2006022394A (ja) 金属銅微粒子の製造方法
Hu et al. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes
CN101254939B (zh) 一种通过碱腐蚀反应制备氧化锌纳米空心球的方法
KR101368404B1 (ko) 금속 나노입자 및 이의 제조방법
Dong et al. Aggregation, dissolution and cyclic regeneration of Ag nanoclusters based on pH-induced conformational changes of polyethyleneimine template in aqueous solutions
JPH10195505A (ja) 金属超微粒子およびその製造方法
Wang et al. Synthesis and structural investigation of Pd/Ag bimetallic nanoparticles prepared by the solvothermal method
CN108568519A (zh) 一种银纳米复合材料的制备方法和应用
Wei et al. One‐Step Synthesis of High‐Quality Water‐Soluble CdSe Quantum Dots Capped by N‐Acetyl‐L‐cysteine via Hydrothermal Method and Their Characterization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant