CN110702513A - 一种金属棒材大应变范围硬化曲线的试验测量方法 - Google Patents

一种金属棒材大应变范围硬化曲线的试验测量方法 Download PDF

Info

Publication number
CN110702513A
CN110702513A CN201910977325.8A CN201910977325A CN110702513A CN 110702513 A CN110702513 A CN 110702513A CN 201910977325 A CN201910977325 A CN 201910977325A CN 110702513 A CN110702513 A CN 110702513A
Authority
CN
China
Prior art keywords
strain
sample
curve
true
round bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910977325.8A
Other languages
English (en)
Other versions
CN110702513B (zh
Inventor
管志平
陈俊甫
高丹
管晓芳
王慧远
王珵
马品奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910977325.8A priority Critical patent/CN110702513B/zh
Publication of CN110702513A publication Critical patent/CN110702513A/zh
Application granted granted Critical
Publication of CN110702513B publication Critical patent/CN110702513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种金属棒材大应变范围硬化曲线的试验测量方法,首先进行圆棒试样扭转试验确定均匀扭转范围,随后在均匀扭转范围内将试样进行不同水平的预扭转变形,并计算相应的预应变。再随后进行圆棒试样单轴拉伸试验,将无、有扭转试样分别进行单轴拉伸试验,通过无扭转试样拉伸结果确定材料颈缩发生之前的有效硬化曲线,通过有预扭转试样确定试样在不同预应变水平下的真应力真应变曲线,并将其沿应变轴平移,平移的量为对应的预扭转变形所累积的预应变。最后提取各平移之后的真应力真应变曲线中最大载荷点所对应的真应力和总塑性应变数据,同无预扭转试样所确定的拉伸颈缩前硬化曲线一起拟合,最终确定金属圆棒试样大应变范围下的硬化曲线。

Description

一种金属棒材大应变范围硬化曲线的试验测量方法
技术领域
本发明属于金属材料力学性能测试技术领域,具体涉及金属棒材大应变范围硬化曲线的 试验测量方法。
背景技术
有限元仿真技术被广泛的应用于模拟金属塑性成形过程,其模拟精度取决于所输入的本 构关系,尤其是涵盖大应变范围的硬化曲线。单轴拉伸试验是获取金属棒材硬化曲线的一种 基本方法,通常假定试样标距范围内均匀变形,将载荷-位移曲线转换为真应力-真应变曲线。 但是在载荷最大点之后,试样在颈缩部位局部变形,颈缩部位承受三向拉应力。事实上,试 样颈缩之后载荷虽然下降了,但材料在整个颈缩过程中却仍在不断硬化,真实的应力也应该 是不断增加的。因此,颈缩之后由载荷-位移曲线直接转换而来的真应力-真应变曲线并不能 代表材料的真实硬化曲线。针对这个问题,目前主要有三种解决方案,即硬化模型外推法, 理论模型法和有限元迭代反推法。硬化模型外推法一般基于拉伸试验所得到的颈缩前的小应 变范围硬化曲线,采用Hollomon、Swift、Voce等硬化模型将硬化曲线外推至大应变范围, 但仅基于拉伸的数据外推所得到的大应变硬化曲线由于缺少试验数据支撑,往往具有较大的 误差。理论模型法如Bridgman法通过记录圆棒试样单轴拉伸失稳后的颈缩处最小截面半径 和颈缩外轮廓曲线在最小截面处的曲率半径,代入Bridgman修正公式计算颈缩之后的塑性 应变和流动应力,用于确定颈缩之后的硬化曲线。但是,针对颈缩外轮廓曲线在最小截面处 的曲率半径的实际测量环节非常繁琐,测量成本高且效率低。而且,理论模型法是基于对颈 缩区域的几何近似而推导出来的,研究表明Bridgman法在精确获取颈缩轮廓几何参数的前 提下,该方法所获取的大应变范围(1.0左右)的硬化曲线仍然具有3~10%的误差。有限元 迭代反推法基于优化算法开展,但迭代过程通常需要多达上百次的有限元计算,虽可获得较 为精确的结果,但是计算代价太大。故当前测量材料大应变范围硬化的方法或多或少的存在 一定的缺陷。
发明内容
本发明的目的在于解决目前传统方法存在的问题,提出了一种金属棒材大应变范围硬化 曲线的试验测量方法。本发明所采用的技术方案具体步骤如下:
(1)进行圆棒试样扭转试验:首先取一根金属圆棒试样扭转至断裂以确定该试样的均 匀扭转范围,然后以π弧度为间隔将这根试样的均匀扭转范围等分成N+1份,确定N个预 扭转角,再取N根金属圆棒试样进行预扭转试验,分别扭至N个不同的预扭转角后停止扭转,并拆卸试样,这N个试样在预扭转实验后所累积的预应变εpre采用公式(1)计算
Figure BDA0002234067050000021
其中,a为圆棒试样直径,r为试样表面到中心轴线的距离,θ为预扭转角(弧度),L为圆棒试样标距长度,N为[1,7]之间的正整数。
(2)进行圆棒试样单轴拉伸试验:取一根无预扭转的金属圆棒试样和步骤(1)中所述 N根经过预扭转的金属圆棒试样分别进行单轴拉伸试验,通过力传感器和引伸计记录试样拉 伸直至断裂的标距段载荷位移曲线,计算工程应力-工程应变曲线并经由公式(2)和(3) 转换为真应力-真应变曲线,同时采用公式(4)去除无预扭转试样拉伸所得的真应力真应变 曲线的弹性应变部分,得到相应的真应力-塑性应变曲线
σ=s(1+e) (2)
ε=ln(1+e) (3)
Figure BDA0002234067050000022
其中,e为工程应变,s为工程应力,ε为真应变,σ为真应力,σs为屈服强度,εp为 塑性应变,E为弹性模量。
(3)确定材料大应变区间的硬化曲线:提取步骤(2)所述无预扭转圆棒试样开始拉伸 至最大载荷点的真应力-塑性应变曲线,随后提取步骤(2)所述各预扭转圆棒试样的拉伸最 大载荷点处的真应力,与之对应的应变为上述步骤(2)所确定的该点处的真应变与步骤(1) 所述公式(1)计算的扭转预应变之和,共计N组真应力和总应变数据点,通过上述步骤(2) 所述的真应变-塑性应变曲线和步骤(3)所确定的N组真应力和总应变数据点进行拟合,即 可确定金属圆棒试样大应变范围的硬化曲线。
本发明的有益效果:
(1)本发明方案通过扭转实验施加大应变范围的预应变,由于圆棒试样扭转硬化过程 中试样横截面形状尺寸始终保持不变且试样轴向无伸缩的特点,可以有效地累积均匀塑性变 形,因此一般材料在扭转状态下承受的极限均匀应变远大于单向拉伸状态;
(2)扭转试样整体几何尺寸无变化,可直接用于后续的拉伸试验,无需进行试样再加 工即可实现扭转与和拉伸试验的顺利衔接;
(3)与现有大应变硬化曲线测量方法相比,本发明方案无需测量拉伸全程各个时刻颈 缩处最小截面半径和颈缩外轮廓曲率半径,无需大量的有限元计算,操作简单且可行,为外 推大应变范围的硬化曲线提供合理的实验数据,是当前测量棒材大应变范围硬化曲线的一种 行之有效的方法。
附图说明
图1为圆棒试样尺寸图。
图2为无预扭转的低碳钢Q345圆棒试样拉伸试验所得到的工程以及真实应力应变曲线。
图3为低碳钢Q345圆棒试样扭转至断裂所得到的总扭转-扭转角曲线以及各预扭角度。
图4为四根低碳钢Q345圆棒试样分别预扭转至180度(π弧度),360度(2π弧度),540度(3π弧度),720度(4π弧度)之后进行拉伸试验所得到的工程应力应变曲线。
图5为一根无预扭转的低碳钢Q345圆棒试样拉伸试验所得到的开始拉伸至最大载荷点 的真应力-塑性应变曲线和四根预扭转圆棒试样的拉伸最大载荷点处的真应力和总应变(真 应变+预应变)数据点的voce模型拟合结果,即本发明方案所测量的大应变范围硬化曲线。
图6圆棒拉伸试验有限元模拟所采用的1/2模型。
图7为采用本发明方案测量的低碳钢Q345大应变范围硬化曲线应用于圆棒试样拉伸模 拟所输出的标距段载荷位移曲线和实验结果的的对比。
图8为黄铜合金H62圆棒试样扭转至断裂所得到的总扭转-扭转角曲线以及各预扭角度。
图9为无预扭转的黄铜合金H62圆棒试样拉伸所得工程应力应变曲线以及真应力真应 变曲线。
图10为三根黄铜合金H62圆棒试样分别预扭转至180度(π弧度),360度(2π弧度),540度(3π弧度)之后进行拉伸试验所得到的工程应力应变曲线。
图11为一根无预扭转的黄铜合金H62圆棒试样拉伸试验所得到的开始拉伸至最大载荷 点的真应力-塑性应变曲线和三根预扭转圆棒试样的拉伸最大载荷点处的真应力和总应变 (真应变+预应变)数据点的voce模型拟合结果,即本发明方案所测量的大应变范围硬化曲 线。
图12为采用本发明方案测量的黄铜合金H62大应变范围硬化曲线应用于圆棒试样拉伸 模拟所输出的标距段载荷位移曲线和实验结果的的对比。
图13为金属棒材大应变范围硬化曲线的试验测量方法流程图。
具体实施方式
下面结合具体实施例及附图对本发明作进一步说明。
实施例1
(1)本发明以低碳钢Q345圆棒试样为例具体阐释本发明方案的实施过程,圆棒试样 平行段横截面直径为5mm,标距段为20mm,具体细节如图1所示。首先进行圆棒试样扭转预应变试验,试样需扭转至断裂,扭转实验记录的扭矩扭转角如图2所示,最终确定材料断裂前的最大扭转角为840度(4.66πrad)。由于试样扭转之后还需进行拉伸试验,因此预扭转角度必须为πrad的整数倍以便于将试样在拉伸机上装夹,故将后续的圆棒试样分别扭转至πrad,2πrad,3πrad,4πrad,相应的预应变εpre采用公式(1)计算
Figure BDA0002234067050000041
其中,a为圆棒试样直径,r为试样表面到中心轴线的距离,θ为预扭转角(弧度),L为圆棒试样标距长度。最终计算所得到的等效预应变如表1所示。
表1:不同角度预扭转实验所累积的塑性变形
Figure BDA0002234067050000042
(2)进行圆棒试样单轴拉伸试验。取一根无预扭转的Q345试样和四根分别预扭转至π rad,2πrad,3πrad,4πrad的Q345试样进行拉伸试验,拉伸速度为3mm/min,通过力传感器和引伸计记录试样拉伸直至断裂的标距段载荷位移曲线,计算工程应力-工程应变曲线并 经由公式(2)和(3)转换为真应力-真应变曲线,图3为无预扭转试样拉伸所得工程应力应变曲线以及真应力真应变曲线,图4为四根预扭转试样的拉伸所得工程应力应变曲线。同时采用公式(4)去除无预扭转试样拉伸所得的真应力真应变曲线的弹性应变部分,得到相应的真应力-塑性应变曲线,图5为无预扭转试样的拉伸所得真应力-塑性应变曲线
σ=s(1+e) (2)
ε=ln(1+e) (3)
Figure BDA0002234067050000043
其中,e为工程应变,s为工程应力,ε为真应变,σ为真应力,σs为屈服强度,εp为 塑性应变,E为弹性模量。
(3)确定材料大应变区间的硬化曲线:提取步骤(2)所述无预扭转圆棒试样开始拉伸 至最大载荷点的真应力-塑性应变曲线,随后提取步骤(2)所述四根预扭转圆棒试样的拉伸 最大载荷点处的真应力,与之对应的应变为上述步骤(2)所确定的该点处的真应变与步骤 (1)所述公式(1)计算的扭转预应变之和,共计四组真应力和总应变数据点,通过上述步 骤(2)所述的真应变-塑性应变曲线和步骤(3)所确定的四组真应力和总应变数据点进行 拟合,确定的硬化模型参数的值如表2所示,最终确定材料在大应变区间的硬化曲线如图5 所示。
σflow=σ0+Aεp+B(1-exp(-Cεp)) (5)
其中,σflow为流动应力,σ0为试样的屈服强度,εp为塑性应变,A、B和C为硬化模 型参数。
表2:Voce硬化模型拟合参数
Figure BDA0002234067050000051
(4)在有限元软件Abaqus/Standard中根据圆棒试样的几何尺寸建立有限元模型,拉伸 模型采用C3D8R网格划分,对模型中部进行网格加密,如图6所示。仿真分析采用和试样 相同的边界和加载条件,即一端轴向固定,一端按到试验位移施加位移边界条件。按照拉伸 试验获取数据的方式,取仿真结果试样标距段的两个截面位移之差,作为位移值,用仿真获 得的标距段的界面的合力,输出模拟载荷-位移曲线。将采用本发明方案所测量的Q345圆棒 试样的硬化曲线输入到有限元中作为材料模型进行圆棒试样的单轴拉伸模拟,输出对应的模 拟载荷位移曲线,同实验载荷位移曲线一并绘制于图7中进行对比
从上述实施例结果图7中可以看出,对于常规低碳钢材料Q345,本发明方案可测量硬 化曲线的有效应变范围高达0.6,是常规拉伸实验所获取的有效应变范围(0.04)的15倍之 多。基于本发明技术方案所确定硬化曲线的模拟载荷位移曲线和实验载荷位移曲线基本重合, 最大误差不超过3%,基本满足工业应用的需求,从而证明了本发明技术方案的精确性和有 效性。
实施例2
(1)本发明以黄铜合金H62圆棒试样为例具体阐释本发明方案的实施过程,圆棒试样 平行段横截面直径为5mm,标距段为20mm,具体细节如图1所示。首先进行圆棒试样扭转预应变试验,试样需扭转至断裂,扭转实验记录的扭矩扭转角如图8所示,最终确定材料断裂前的最大扭转角为600度(3.33πrad)。由于试样扭转之后还需进行拉伸试验,因此预扭转角度必须为πrad的整数倍以便于将试样在拉伸机上装夹,故将后续的圆棒试样分别扭转至πrad,2πrad,3πrad,相应的预应变εpre采用公式(1)计算
其中,a为圆棒试样直径,r为试样表面到中心轴线的距离,θ为预扭转角(弧度),L为圆棒试样标距长度。最终计算所得到的等效预应变如表3所示。
表3:不同角度预扭转实验所累积的塑性变形
Figure BDA0002234067050000062
(2)进行圆棒试样单轴拉伸试验。取一根无预扭转的H62试样和三根分别预扭转至πrad, 2πrad,3πrad的H62试样进行拉伸试验,拉伸速度为3mm/min,通过力传感器和引伸计记 录试样拉伸直至断裂的标距段载荷位移曲线,计算工程应力-工程应变曲线并经由公式(2) 和(3)转换为真应力-真应变曲线,图9为无预扭转试样拉伸所得工程应力应变曲线以及真 应力真应变曲线,图10为三根预扭转试样的拉伸所得工程应力应变曲线。同时采用公式(4) 去除无预扭转试样拉伸所得的真应力真应变曲线的弹性应变部分,得到相应的真应力-塑性 应变曲线,图11为无预扭转试样的拉伸所得真应力-塑性应变曲线
σ=s(1+e) (2)
ε=ln(1+e) (3)
Figure BDA0002234067050000063
其中,e为工程应变,s为工程应力,ε为真应变,σ为真应力,σs为屈服强度,εp为 塑性应变,E为弹性模量。
(3)确定材料大应变区间的硬化曲线:提取步骤(2)所述无预扭转圆棒试样开始拉伸 至最大载荷点的真应力-塑性应变曲线,随后提取步骤(2)所述三根预扭转圆棒试样的拉伸 最大载荷点处的真应力,与之对应的应变为上述步骤(2)所确定的该点处的真应变与步骤 (1)所述公式(1)计算的扭转预应变之和,共计三组真应力和总应变数据点,通过上述步 骤(2)所述的真应变-塑性应变曲线和步骤(3)所确定的三组真应力和总应变数据点进行 拟合,确定的硬化模型参数的值如表4所示,最终确定材料在大应变区间的硬化曲线如图 11所示。
σflow=σ0+Aεp+B(1-exp(-Cεp)) (5)
其中,σflow为流动应力,σ0为试样的屈服强度,εp为塑性应变,A、B和C为硬化模 型参数。
表4:Voce硬化模型拟合参数
Figure BDA0002234067050000071
(4)在有限元软件Abaqus/Standard中根据圆棒试样的几何尺寸建立有限元模型,拉伸 模型采用C3D8R网格划分,对模型中部进行网格加密,如图6所示。仿真分析采用和试样 相同的边界和加载条件,即一端轴向固定,一端按到试验位移施加位移边界条件。按照拉伸 试验获取数据的方式,取仿真结果试样标距段的两个截面位移之差,作为位移值,用仿真获 得的标距段的界面的合力,输出模拟载荷-位移曲线。将采用本发明方案所测量的H62圆棒 试样的硬化曲线输入到有限元中作为材料模型进行圆棒试样的单轴拉伸模拟,输出对应的模 拟载荷位移曲线,同实验载荷位移曲线一并绘制于图12中进行对比
从上述实施例结果图12中可以看出,对于黄铜合金H62,本发明方案可测量硬化曲线 的有效应变范围高达0.58,是常规拉伸实验所获取的有效应变范围(0.18)的3倍之多。基 于本发明技术方案所确定硬化曲线的模拟载荷位移曲线和实验载荷位移曲线基本重合,最大 误差不超过2%,基本满足工业应用的需求,从而证明了本发明技术方案的精确性和有效性。

Claims (3)

1.一种金属棒材大应变范围硬化曲线的试验测量方法,其特征在于,该测量方法的具体步骤如下:
步骤一,进行圆棒试样扭转试验:首先取一根金属圆棒试样扭转至断裂以确定该试样的均匀扭转范围,然后以π弧度为间隔将这根试样的均匀扭转范围等分成N+1份,确定N个预扭转角,再取N根金属圆棒试样进行预扭转试验,分别扭至N个不同的预扭转角后停止扭转,并拆卸试样,这N个试样在预扭转实验后所累积的预应变εpre采用公式(1)计算
Figure FDA0002234067040000011
其中,a为圆棒试样直径,r为试样表面到中心轴线的距离,θ为预扭转角(弧度),L为圆棒试样标距长度,N为1~7之间的正整数。
步骤二,进行圆棒试样单轴拉伸试验:取一根无预扭转的金属圆棒试样和步骤一中所述N根经过预扭转的金属圆棒试样分别进行单轴拉伸试验,通过力传感器和引伸计记录试样拉伸直至断裂的标距段载荷位移曲线,计算工程应力-工程应变曲线并经由公式(2)和(3)转换为真应力-真应变曲线,同时采用公式(4)去除无预扭转试样拉伸所得的真应力真应变曲线的弹性应变部分,得到相应的真应力-塑性应变曲线
σ=s(1+e) (2)
ε=ln(1+e) (3)
Figure FDA0002234067040000012
其中,e为工程应变,s为工程应力,ε为真应变,σ为真应力,σs为屈服强度,εp为塑性应变,E为弹性模量。
步骤三,确定材料大应变区间的硬化曲线:提取步骤二所述无预扭转圆棒试样开始拉伸至最大载荷点的真应力-塑性应变曲线,随后提取步骤二所述N根经过预扭转圆棒试样的拉伸最大载荷点处的真应力,与之对应的应变为该点处的真应变与步骤一所述公式(1)计算的扭转预应变之和,共计N组真应力和总应变数据点,通过上述步骤二所述的真应变-塑性应变曲线和N组真应力和总应变数据点进行拟合,即可确定金属圆棒试样大应变范围的硬化曲线。
2.根据权利要求1所述的一种金属棒材大应变范围硬化曲线的试验测量方法,其特征在于,步骤一,中的预扭转角度为π弧度的整数倍。
3.根据权利要求1所述的一种金属棒材大应变范围硬化曲线的试验测量方法,其特征在于,上述步骤三所述的N组真应力和总应变数据点的选取方式为:提取各预扭转圆棒试样的拉伸最大载荷点处的真应力,与之对应的应变为该点处的真应变与步骤一所述公式(1)计算扭转预应变之和,共计N组真应力和总应变数据点。
CN201910977325.8A 2019-10-15 2019-10-15 一种金属棒材大应变范围硬化曲线的试验测量方法 Active CN110702513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910977325.8A CN110702513B (zh) 2019-10-15 2019-10-15 一种金属棒材大应变范围硬化曲线的试验测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910977325.8A CN110702513B (zh) 2019-10-15 2019-10-15 一种金属棒材大应变范围硬化曲线的试验测量方法

Publications (2)

Publication Number Publication Date
CN110702513A true CN110702513A (zh) 2020-01-17
CN110702513B CN110702513B (zh) 2021-06-18

Family

ID=69198923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910977325.8A Active CN110702513B (zh) 2019-10-15 2019-10-15 一种金属棒材大应变范围硬化曲线的试验测量方法

Country Status (1)

Country Link
CN (1) CN110702513B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272551A (zh) * 2020-02-17 2020-06-12 本钢板材股份有限公司 一种高速拉伸试验数据曲线处理方法
CN111339703A (zh) * 2020-02-27 2020-06-26 中国科学院金属研究所 大应变条件下材料硬化行为的虚拟预测方法
CN112129631A (zh) * 2020-09-16 2020-12-25 浙江久立特材科技股份有限公司 一种基于全尺寸应变强化的冷变形模具工作曲线设计方法
CN112485113A (zh) * 2020-11-17 2021-03-12 核工业西南物理研究院 一种小尺寸样品的材料拉伸性能测试方法及装置
CN112649135A (zh) * 2021-01-13 2021-04-13 交通运输部公路科学研究所 一种钢丝宏观残余应力评估方法
CN113376014A (zh) * 2021-05-27 2021-09-10 武汉钢铁有限公司 金属材料本构关系的获取方法、装置、设备和存储介质

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916679A (en) * 1973-05-24 1975-11-04 Centre Rech Metallurgique Apparatus for determining the properties of superplastic materials
RU2082146C1 (ru) * 1994-10-11 1997-06-20 Сибирский физико-технический институт при Томском государственном университете Способ определения предела выносливости металлических материалов
JP3345427B2 (ja) * 1996-06-29 2002-11-18 ティッセン シュタール アクチェンゲゼルシャフト 板状金属等の金属材料の二軸成形挙動を確定するための測定方法
US20050126666A1 (en) * 2003-12-15 2005-06-16 Zhu Yuntian T. Method for preparing ultrafine-grained metallic foil
CN101025392A (zh) * 2007-03-23 2007-08-29 王宇峥 力学性能试验数据测定方法及系统
US20080028866A1 (en) * 2006-08-03 2008-02-07 Snecma Method for evaluating the fatigue strength of welded joints
CN101196450A (zh) * 2007-12-25 2008-06-11 北京有色金属研究总院 金属丝材拉伸力学性能测试装置
CN101303280A (zh) * 2008-04-11 2008-11-12 北京联合大学 采用曲线平移法处理材料载荷变形曲线的方法
CN101526453A (zh) * 2009-04-20 2009-09-09 南京工业大学 定量测定纳晶材料不均匀变形的方法
CN101603820A (zh) * 2009-07-23 2009-12-16 中国林业科学研究院木材工业研究所 一种木材微观结构特征变化实时检测系统
JP5932290B2 (ja) * 2011-10-20 2016-06-08 株式会社テラバイト 塑性に伴う体積変化に関係するパラメータを考慮した機械特性作成方法
CN104181031B (zh) * 2014-09-09 2017-01-04 西南交通大学 一种点接触式微动疲劳试验装置及试验方法
CN106610357A (zh) * 2016-12-02 2017-05-03 燕山大学 一种金属材料屈服面的测定方法
CN107917773A (zh) * 2017-12-29 2018-04-17 爱德森(厦门)电子有限公司 一种管棒形材料残余应力无压痕应变测定装置及方法
EP3379237A1 (de) * 2017-03-25 2018-09-26 Kammrath & Weiss GmbH Probenmanipulator zur rotierenden zug- oder druckbeanspruchung sowie entsprechendes verfahren
CN108982223A (zh) * 2018-09-19 2018-12-11 吉林大学 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法
CN109100220A (zh) * 2018-07-10 2018-12-28 成都微力特斯科技有限公司 获取构元单轴应力-应变关系的测试方法
CN109520922A (zh) * 2018-12-26 2019-03-26 山东中车风电有限公司 一种螺栓摩擦系数和扭矩系数的测试装置及测试方法
CN109580388A (zh) * 2019-01-21 2019-04-05 广西大学 一种岩土材料剪切屈服面与体积屈服面的测定方法
CN109716100A (zh) * 2016-07-11 2019-05-03 方向凡 材料样品、用于确定样品几何形状的方法、用于测定材料特性和/或材料特征值的方法、材料的应力应变曲线和产品
CN109883823A (zh) * 2019-01-21 2019-06-14 吉林大学 金属圆棒试样单轴拉伸应力应变的双曲线反推测量方法
CN109883825A (zh) * 2019-01-22 2019-06-14 吉林大学 金属圆棒试样单轴拉伸大应变范围硬化曲线的测量方法
CN110160892A (zh) * 2019-07-04 2019-08-23 四川大学 一种用扭转实验测量各向异性岩石变形常数的方法

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916679A (en) * 1973-05-24 1975-11-04 Centre Rech Metallurgique Apparatus for determining the properties of superplastic materials
RU2082146C1 (ru) * 1994-10-11 1997-06-20 Сибирский физико-технический институт при Томском государственном университете Способ определения предела выносливости металлических материалов
JP3345427B2 (ja) * 1996-06-29 2002-11-18 ティッセン シュタール アクチェンゲゼルシャフト 板状金属等の金属材料の二軸成形挙動を確定するための測定方法
US20050126666A1 (en) * 2003-12-15 2005-06-16 Zhu Yuntian T. Method for preparing ultrafine-grained metallic foil
US20080028866A1 (en) * 2006-08-03 2008-02-07 Snecma Method for evaluating the fatigue strength of welded joints
CN101025392A (zh) * 2007-03-23 2007-08-29 王宇峥 力学性能试验数据测定方法及系统
CN101196450A (zh) * 2007-12-25 2008-06-11 北京有色金属研究总院 金属丝材拉伸力学性能测试装置
CN101303280A (zh) * 2008-04-11 2008-11-12 北京联合大学 采用曲线平移法处理材料载荷变形曲线的方法
CN101526453A (zh) * 2009-04-20 2009-09-09 南京工业大学 定量测定纳晶材料不均匀变形的方法
CN101603820A (zh) * 2009-07-23 2009-12-16 中国林业科学研究院木材工业研究所 一种木材微观结构特征变化实时检测系统
JP5932290B2 (ja) * 2011-10-20 2016-06-08 株式会社テラバイト 塑性に伴う体積変化に関係するパラメータを考慮した機械特性作成方法
CN104181031B (zh) * 2014-09-09 2017-01-04 西南交通大学 一种点接触式微动疲劳试验装置及试验方法
CN109716100A (zh) * 2016-07-11 2019-05-03 方向凡 材料样品、用于确定样品几何形状的方法、用于测定材料特性和/或材料特征值的方法、材料的应力应变曲线和产品
CN106610357A (zh) * 2016-12-02 2017-05-03 燕山大学 一种金属材料屈服面的测定方法
EP3379237A1 (de) * 2017-03-25 2018-09-26 Kammrath & Weiss GmbH Probenmanipulator zur rotierenden zug- oder druckbeanspruchung sowie entsprechendes verfahren
CN107917773A (zh) * 2017-12-29 2018-04-17 爱德森(厦门)电子有限公司 一种管棒形材料残余应力无压痕应变测定装置及方法
CN109100220A (zh) * 2018-07-10 2018-12-28 成都微力特斯科技有限公司 获取构元单轴应力-应变关系的测试方法
CN108982223A (zh) * 2018-09-19 2018-12-11 吉林大学 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法
CN109520922A (zh) * 2018-12-26 2019-03-26 山东中车风电有限公司 一种螺栓摩擦系数和扭矩系数的测试装置及测试方法
CN109580388A (zh) * 2019-01-21 2019-04-05 广西大学 一种岩土材料剪切屈服面与体积屈服面的测定方法
CN109883823A (zh) * 2019-01-21 2019-06-14 吉林大学 金属圆棒试样单轴拉伸应力应变的双曲线反推测量方法
CN109883825A (zh) * 2019-01-22 2019-06-14 吉林大学 金属圆棒试样单轴拉伸大应变范围硬化曲线的测量方法
CN110160892A (zh) * 2019-07-04 2019-08-23 四川大学 一种用扭转实验测量各向异性岩石变形常数的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEN, JUNFU 等: "Experimental extrapolation of hardening curve for cylindrical specimens via pre-torsion tension tests", 《JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN》 *
CORREA,ECS 等: "The effect of sequential tensile and cyclic torsion straining on work hardening of steel and brass", 《JOURNAL OF MATERIALS PROCESSING TECHNOLOGY》 *
刘瑞堂: "预扭转低合金钢的强塑性配合", 《机械工程材料》 *
杜贵成 等: "《建筑力学(第2版)》", 28 February 2018, 东北财经大学出版社 *
胡桂娟: "拉扭加载下金属材料的塑性行为", 《中国博士学位论文全文数据库工程科技I辑》 *
邵宝庆: "低碳钢扭转硬化拉伸强度的实验研究", 《应用力学学报》 *
陈俊甫 等: "金属棒试样拉伸和扭转试验应变范围和力学特性对比", 《吉林大学学报(工学版)》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272551A (zh) * 2020-02-17 2020-06-12 本钢板材股份有限公司 一种高速拉伸试验数据曲线处理方法
CN111272551B (zh) * 2020-02-17 2022-08-05 本钢板材股份有限公司 一种高速拉伸试验数据曲线处理方法
CN111339703A (zh) * 2020-02-27 2020-06-26 中国科学院金属研究所 大应变条件下材料硬化行为的虚拟预测方法
CN112129631A (zh) * 2020-09-16 2020-12-25 浙江久立特材科技股份有限公司 一种基于全尺寸应变强化的冷变形模具工作曲线设计方法
CN112485113A (zh) * 2020-11-17 2021-03-12 核工业西南物理研究院 一种小尺寸样品的材料拉伸性能测试方法及装置
CN112485113B (zh) * 2020-11-17 2023-04-21 核工业西南物理研究院 一种小尺寸样品的材料拉伸性能测试方法及装置
CN112649135A (zh) * 2021-01-13 2021-04-13 交通运输部公路科学研究所 一种钢丝宏观残余应力评估方法
CN113376014A (zh) * 2021-05-27 2021-09-10 武汉钢铁有限公司 金属材料本构关系的获取方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN110702513B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN110702513B (zh) 一种金属棒材大应变范围硬化曲线的试验测量方法
CN103175735B (zh) 材料拉伸真实本构曲线测试技术
CN109883825A (zh) 金属圆棒试样单轴拉伸大应变范围硬化曲线的测量方法
CN108982223B (zh) 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法
CN109883823B (zh) 金属圆棒试样单轴拉伸应力应变的双曲线反推测量方法
Wang et al. An Experimental‐Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking
CN107917773A (zh) 一种管棒形材料残余应力无压痕应变测定装置及方法
CN108982222B (zh) 金属板试样单轴拉伸试验大应变范围应力应变的测量方法
CN113420391B (zh) 一种获得复杂应力状态下材料高精度硬化模型参数的方法
CN110749510B (zh) 基于有限元仿真检测金属材料弯曲性能的方法
CN108844824B (zh) 一种基于圆锥形压头的已知材料残余应力测定方法
CN113764056B (zh) 一种获得材料多应变率下高精度硬化模型参数的方法
CN111090957A (zh) 一种高温结构危险点应力-应变计算方法
CN108548720B (zh) I型裂纹弹塑性理论公式获取延性材料j阻力曲线的方法
JP2013053993A (ja) 疲労強度測定方法
CN110160892B (zh) 一种用扭转实验测量各向异性岩石变形常数的方法
CN113108985B (zh) 芯丝嵌光栅智能钢绞线拉力值修正计算方法
CN107084888B (zh) 一种应变诱导裂纹优化可锻造性最佳温度范围的方法
Wu et al. Some observations on yield surfaces for 304 stainless steel at large prestrain
CN111623909A (zh) 一种双叉臂二力杆的受力测试方法
CN113281171B (zh) 一种金属材料拉伸颈缩过程中应力分布测试方法
Zhao et al. Study on determination of true stress and strain of low carbon steel based on tensile test
Vladimír et al. The methodology of transformation of the nominal loading process into a root of notch
CN107621407B (zh) 一种基于r语言的金属拉伸试验方法
JP2019082985A (ja) 非線形応力ひずみ解析装置、非線形応力ひずみ解析方法、及び非線形応力ひずみ解析プログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant