CN108982223B - 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法 - Google Patents

金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法 Download PDF

Info

Publication number
CN108982223B
CN108982223B CN201811092580.6A CN201811092580A CN108982223B CN 108982223 B CN108982223 B CN 108982223B CN 201811092580 A CN201811092580 A CN 201811092580A CN 108982223 B CN108982223 B CN 108982223B
Authority
CN
China
Prior art keywords
necking
strain
moment
radius
round bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811092580.6A
Other languages
English (en)
Other versions
CN108982223A (zh
Inventor
管志平
孟祥瑞
李志刚
马品奎
宋家旺
管晓芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201811092580.6A priority Critical patent/CN108982223B/zh
Publication of CN108982223A publication Critical patent/CN108982223A/zh
Application granted granted Critical
Publication of CN108982223B publication Critical patent/CN108982223B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及了一种金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法,该方法构建出金属圆棒试样单轴拉伸失稳颈缩逐级扩展的阶梯模型。只需要测量圆棒试样拉伸失稳后瞬时标距长度和颈缩处最小截面半径,基于颈缩阶梯模型计算每一时刻颈缩阶梯坐标,然后通过插值方法逼近颈缩轮廓曲线,再利用曲率公式计算此时刻颈缩处最小截面处的曲率半径,最后通过Bridgman法计算该时刻真实应力和真实应变。本发明省去现有方法中颈缩外轮廓曲率半径的试验测量环节,并且提高了大应变范围应力应变曲线的测量精度,对于金属材料力学性能测试具有重要意义。

Description

金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法
技术领域
本发明涉及金属材料力学性能测试与材料本构关系,具体涉及金属圆棒试样单轴拉伸试验大应变范围应力应变曲线的测量方法。
背景技术
单轴拉伸试验是金属材料力学性能测试的一种基本方法,通常由单轴拉伸试验获得材料的载荷瞬时标距长度曲线,然后假定试样标距范围内均匀变形,将载荷-瞬时标距长度曲线转换为应力-应变曲线。但是试样在载荷最大点之后开始颈缩,试样标距范围内不均匀变形。因此,拉伸失稳后由载荷-瞬时标距长度曲线直接转换为应力-应变曲线是不准确的,而且试样产生颈缩后逐渐由单轴应力状态向三轴应力状态转变。由于在载荷最大点之前对应的应变范围相对较小(一般在0.2以内),为测量更大应变范围的应力应变曲线,Bridgman法通过记录圆棒试样单轴拉伸失稳后的颈缩处最小截面半径ai和颈缩外轮廓曲线在最小截面处的曲率半径Ri,代入以下公式计算颈缩之后的应变εi和应力σi
Figure BDA0001804734920000011
Figure BDA0001804734920000012
其中a'0为圆棒试样的初始截面半径;Fi为i时刻测量的载荷值。实践证明:只要圆棒试样单轴拉伸颈缩处最小截面半径ai和颈缩外轮廓曲线在最小截面处的曲率半径Ri这两个参数的测量足够精确,由Bridgman法获取的大应变范围应力应变曲线就具有很高精度。但是,针对颈缩外轮廓曲线在最小截面处的曲率半径Ri的实际测量环节非常繁琐,测量成本很高,且测量精度很难保证,一般误差都在10~15%。基于此,Bridgman法虽然很早就提出,但其应用一直受到很大限制。
发明内容
本发明的目的,为了解决目前Bridgman法中颈缩外轮廓曲线在最小截面处的曲率半径Ri测量繁琐且误差大的难题,提出一种金属圆棒试样单轴拉伸试验大应变范围应力应变曲线测量方法,且无需直接测量颈缩外轮廓曲线在最小截面处的曲率半径Ri。首先将金属圆棒试样单轴拉伸颈缩最小截面部位简化为均匀圆柱体,根据韧性金属圆棒试样单轴拉伸失稳后颈缩扩展是材料颈缩最小截面部位的逐渐局部化变形过程,颈缩发展可视为前一时刻圆柱体中间占一定百分比的材料变形发展到当前时刻的圆柱体,由此逐渐积累构建金属圆棒试样单轴拉伸失稳颈缩逐级扩展的阶梯模型。只需要测量和记录圆棒试样拉伸失稳后瞬时标距长度和颈缩处最小截面半径,基于颈缩阶梯模型计算每一时刻颈缩阶梯坐标,然后通过插值方法逼近颈缩轮廓曲线,再利用曲率公式计算此时刻颈缩轮廓最小截面处的曲率半径,最后通过Bridgman法计算该时刻真实应力和真实应变。金属圆棒试样单轴拉伸试验失稳后不同时刻的应力应变计算结果构成材料大应变范围内应力应变曲线。
本发明所采用的技术方案具体步骤如下:
(1)进行金属圆棒试样单轴拉伸试验,测量并记录载荷最大点(颈缩点)之后直至断裂前的各时刻载荷Fi、瞬时标距长度li和颈缩处最小截面半径ai其中i=0~N,0和N分别对应载荷最大点(颈缩点)和断裂点时刻;
(2)金属圆棒试样在颈缩失稳后始终在最小颈缩处扩散变形,而最小颈缩处之外不参与变形。将时刻i对应的颈缩最小截面部位简化为半径为ai的均匀圆柱体,并与之前所有时刻的均匀圆柱体构成圆棒试样拉伸颈缩扩展的阶梯模型。基于体积不变定律,将均匀圆柱体半径ai与瞬时标距长度li和前一时刻的均匀圆柱体半径ai-1与瞬时标距长度li-1代入下式,
φili-1πai-1 2=(φili-1+li-li-1)πai 2 (3)
可计算出该时刻圆柱体占前一时刻圆柱体的百分比φi
Figure BDA0001804734920000021
其中0<φi<1;
(3)设时刻i的各圆柱体边界阶梯角点Pj的坐标(xj,yj),其中j=0~i-1,以开始颈缩时i=0试样标距的边界(即圆柱体边界角点)作为坐标原点,即P0坐标为(0,0),xi=yi=0,以试样长度方向为x轴,圆柱截面径向为y轴,则j=1~i-1时的Pj坐标(xj,yj)计算公式如下,
Figure BDA0001804734920000031
设Pi为i时刻颈缩最小截面部位圆柱体母线的中点,其坐标表示为
Figure BDA0001804734920000032
通过对i时刻各圆柱体边界阶梯角点Pi(j=1~i)进行插值,建立逼近此时刻i对应的颈缩轮廓曲线的插值函数f(x)的表达式,并保证插值函数f(x)在P1和Pi点的一阶导数为零,即f'(x1)=f'(xi)=0。利用曲率公式计算获得插值曲线在Pi点处的曲率半径Ri,即
Figure BDA0001804734920000033
(4)根据Bridgman法,将i时刻的载荷Fi、颈缩处最小截面半径ai和曲率半径Ri,代入公式(1)和(2),
Figure BDA0001804734920000034
Figure BDA0001804734920000035
计算得到时刻i对应的真实应变εi和真实应力σi
(5)重复以上(2)~(4)步骤,分别计算i=0~N时刻的真实应变εi和真实应力σi,从而获取金属圆棒试样从拉伸失稳至断裂结束范围内的应力应变曲线。
本发明的有益效果:
(1)采用本发明的方案,只需要测量和记录圆棒试样拉伸失稳后瞬时标距长度和颈缩处最小截面半径,与现有技术相比省去外轮廓曲率半径的繁琐测量环节,节省了测量时间和测量成本;
2)本发明通过插值方法逼近颈缩轮廓曲线,然后通过曲率半径公式计算颈缩处最小截面处的曲率半径,计算精度远高于现有方法中曲率半径的试验测量精度,因此本发明测量精度远高于现有方法的测量精度。另外,本发明测量公式易于实现程序化,具有操作性。
附图说明
图1为圆棒试样规格图。
图2为试样夹持引伸计的单轴拉伸颈缩图。
图3为单轴拉伸试验载荷位移曲线。
图4为圆棒试样颈缩阶梯模型和外轮廓插值曲线。
图5为单轴拉伸大应变范围应力应变曲线。
图6为输入的应力应变曲线和测量的应力应变曲线对比结果图
具体实施方式
下面结合具体示例及附图对本发明作进一步说明。
实施例一
(1)本发明以低碳钢圆棒试样为例,采用图1所示的圆棒试样进行单轴拉伸试验,圆棒试样初始横截面直径为10mm,标距段为50mm。如图2所示,采用引伸计测量并记录载荷最大点(颈缩点)之后直至断裂前的各时刻载荷Fi和瞬时标距长度li,形成如图3所示的载荷位移曲线,采用光学测量方法记录相应各时刻的颈缩处最小截面半径ai。其中i=0~N,0和N分别对应载荷最大点(颈缩点)和断裂点时刻;
(2)金属圆棒试样在颈缩失稳后始终在最小颈缩处扩散变形,而最小颈缩处之外不参与变形。如图4所示,将时刻i对应的颈缩最小截面部位简化为半径为ai的均匀圆柱体,并与之前所有时刻的均匀圆柱体构成圆棒试样拉伸颈缩扩展的阶梯模型。基于体积不变定律,将均匀圆柱体半径ai与瞬时标距长度li和前一时刻的均匀圆柱体半径ai-1与瞬时标距长度li-1代入下式,
φili-1πai-1 2=(φili-1+li-li-1)πai 2 (1)
可计算出该时刻圆柱体占前一时刻圆柱体的百分比φi,其中0<φi<1;
(3)设时刻i的各圆柱体边界阶梯角点Pj的坐标(xj,yj),其中j=0~i-1,以开始颈缩时i=0试样标距的边界(即圆柱体边界角点)作为坐标原点,即P0坐标为(0,0),xi=yi=0,以试样长度方向为x轴,圆柱截面径向为y轴,则j=1~i-1时的Pj坐标(xj,yj)计算公式如下,
Figure BDA0001804734920000051
设Pi为i时刻颈缩最小截面部位圆柱体母线的中点,其坐标表示为
Figure BDA0001804734920000052
通过对i时刻各圆柱体边界阶梯角点Pi(j=1~i)进行插值,建立逼近此时刻i对应的颈缩轮廓曲线的插值函数f(x)的表达式,并保证插值函数f(x)在P1和Pi点的一阶导数为零,即f'(x1)=f'(xi)=0。利用曲率公式计算获得插值曲线在Pi点处的曲率半径Ri,即
Figure BDA0001804734920000053
(4)根据Bridgman法,将i时刻的载荷Fi、颈缩处最小截面半径ai和曲率半径Ri,代入公式(1)和(2),
Figure BDA0001804734920000054
Figure BDA0001804734920000061
计算得到时刻i对应的真实应变εi和真实应力σi
(5)重复以上(2)~(4)步骤,分别计算i=0~N时刻的真实应变εi和真实应力σi,从而获取如图5所示的金属圆棒试样从拉伸失稳至断裂结束范围内的应力应变曲线。
实施例二
采用有限元分析软件ABAQUS进行仿真圆棒试样单轴拉伸过程,根据实施例一中单轴圆棒试样的尺寸和条件,建立了单轴拉伸试验过程的有限元模型,输入预设的应力应变曲线作为材料模型,仿真分析和实施例一的试验采用相同约束和加载条件,一端轴向固定,一端加载与试样件轴向方向相同速度载荷,仿真试验件的拉伸过程。按照拉伸试验获取数据的方式,取仿真结果试样标距段的两个截面位移之差,作为位移值,用仿真获得的标距段的界面的合力,作出位移和力的关系曲线,可以获得载荷最大点(颈缩点)之后直至断裂前的各时刻载荷Fi和瞬时标距长度li,通过颈缩处最小截面上的节点位移可以计算得到相应各时刻的颈缩处最小截面半径ai,其中i=0~N,0和N分别对应载荷最大点(颈缩点)和断裂点时刻。基于有限元模拟结果获取载荷最大点之后各时刻载荷Fi、瞬时标距长度li和颈缩处最小截面半径ai,按照实施例一中的步骤(2)、(3)、(4)、(5)计算获取应力应变曲线,与有限元输入的实施例一试验测量的应力应变曲线对比,如图6所示,可以看出两条曲线几乎重合,说明本发明技术方案获得的大应变范围内应力应变曲线精确度很高,从而证明了本发明技术方案的精确性和有效性。
实施例一和二步骤(3)中建立逼近此时刻i对应的颈缩轮廓曲线的插值函数f(x)的表达式时采用的插值方法为三次样条插值法,本实施例中直接使用现有的按照该方法编写的程序或代码。

Claims (2)

1.金属圆棒试样单轴拉伸试验大应变范围应力应变曲线的测量方法,其特征在于,该测量方法的具体步骤如下:
(1)进行金属圆棒试样单轴拉伸试验,测量并记录颈缩点之后直至断裂前的各时刻载荷Fi、瞬时标距长度li和颈缩处最小截面半径ai,其中i=0~N,0和N分别对应颈缩点和断裂点时刻;
(2)金属圆棒试样在颈缩失稳后始终在最小颈缩处扩散变形,而最小颈缩处之外不参与变形;将时刻i对应的颈缩最小截面部位简化为半径为ai的均匀圆柱体,并与之前所有时刻的均匀圆柱体构成圆棒试样拉伸颈缩扩展的阶梯模型;基于体积不变定律,将均匀圆柱体半径ai与瞬时标距长度li和前一时刻的均匀圆柱体半径ai-1与瞬时标距长度li-1代入下式,
Figure FDA0002624677330000011
可计算出该时刻圆柱体占前一时刻圆柱体的百分比φi,其中0<φi<1;
(3)设时刻i的各圆柱体边界阶梯角点Pj的坐标(xj,yj),其中j=0~i-1,以开始颈缩时i=0试样标距的边界作为坐标原点,即P0坐标为(0,0),xi=yi=0,以试样长度方向为x轴,圆柱截面径向为y轴,则j=1~i-1时的Pj坐标(xj,yj)计算公式如下,
Figure FDA0002624677330000012
设Pj=i为i时刻颈缩最小截面部位圆柱体母线的中点,其坐标表示为
Figure FDA0002624677330000013
通过对i时刻各圆柱体边界阶梯角点Pj(j=1~i)进行插值,建立逼近此时刻i对应的颈缩轮廓曲线的插值函数f(x)的表达式,并保证插值函数f(x)在Pj=1和Pj=i点的一阶导数为零,即f'(x1)=f'(xi)=0;利用曲率公式计算获得插值曲线在Pj=i点处的曲率半径Ri,即
Figure FDA0002624677330000014
(4)根据Bridgman法,将i时刻的载荷Fi、颈缩处最小截面半径ai、曲率半径Ri和圆棒试样的初始截面半径a'0代入公式(1)和(2),
Figure FDA0002624677330000021
Figure FDA0002624677330000022
计算得到时刻i对应的真实应变εi和真实应力σi
(5)重复步骤(2)~(4),分别计算i=0~N时刻的真实应变εi和真实应力σi,从而获取金属圆棒试样从拉伸失稳至断裂结束范围内的应力应变曲线。
2.根据权利要求1所述的金属圆棒试样单轴拉伸试验大应变范围应力应变曲线的测量方法,其特征在于,通过对i时刻各圆柱体边界阶梯角点Pj(j=1~i)进行插值,建立逼近此时刻i对应的颈缩轮廓曲线的插值函数f(x)的表达式所采用的插值方法为三次样条插值法。
CN201811092580.6A 2018-09-19 2018-09-19 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法 Expired - Fee Related CN108982223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811092580.6A CN108982223B (zh) 2018-09-19 2018-09-19 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811092580.6A CN108982223B (zh) 2018-09-19 2018-09-19 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法

Publications (2)

Publication Number Publication Date
CN108982223A CN108982223A (zh) 2018-12-11
CN108982223B true CN108982223B (zh) 2020-10-16

Family

ID=64546395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811092580.6A Expired - Fee Related CN108982223B (zh) 2018-09-19 2018-09-19 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法

Country Status (1)

Country Link
CN (1) CN108982223B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982222B (zh) * 2018-09-19 2020-10-16 吉林大学 金属板试样单轴拉伸试验大应变范围应力应变的测量方法
CN109342181B (zh) * 2018-12-18 2024-02-13 中国工程物理研究院化工材料研究所 脆性材料三向拉应力试验方法及可更换式粘接拉伸工装
CN109883824B (zh) * 2019-01-21 2021-05-04 吉林大学 金属圆棒试样单轴拉伸应力应变的圆弧反推测量方法
CN109870354B (zh) * 2019-01-21 2021-06-01 吉林大学 金属圆棒试样单轴拉伸断后伸长率自动测量方法
CN109883823B (zh) * 2019-01-21 2021-05-11 吉林大学 金属圆棒试样单轴拉伸应力应变的双曲线反推测量方法
CN109883825A (zh) * 2019-01-22 2019-06-14 吉林大学 金属圆棒试样单轴拉伸大应变范围硬化曲线的测量方法
CN110146378B (zh) * 2019-05-31 2021-08-06 中铁大桥科学研究院有限公司 一种水泥基材料单轴拉伸测定装置及测定方法
CN110702513B (zh) * 2019-10-15 2021-06-18 吉林大学 一种金属棒材大应变范围硬化曲线的试验测量方法
CN115584966B (zh) * 2022-10-28 2023-08-01 中国地质科学院地质力学研究所 一种利用三轴岩石力学实验获得三维地应力的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051768A (ja) * 2006-08-28 2008-03-06 Shinji Tanimura 材料シミュレーションシステム、材料シミュレーション方法、および、材料シミュレーションプログラム
CN101975693A (zh) * 2010-10-11 2011-02-16 肖锋 单轴拉伸试验的数据测量和计算方法
CN102221503A (zh) * 2011-06-08 2011-10-19 西南交通大学 单轴拉伸全程真应力-真应变曲线测试技术
KR101163916B1 (ko) * 2010-10-20 2012-07-09 한국생산기술연구원 응력-변형률 곡선을 획득하는 방법 및 그 장치
CN103792143A (zh) * 2014-02-12 2014-05-14 奇瑞汽车股份有限公司 一种单轴拉伸全程真应力应变曲线的快速获取方法
CN107271279A (zh) * 2017-06-16 2017-10-20 西南石油大学 一种金属材料真应力真应变测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051768A (ja) * 2006-08-28 2008-03-06 Shinji Tanimura 材料シミュレーションシステム、材料シミュレーション方法、および、材料シミュレーションプログラム
CN101975693A (zh) * 2010-10-11 2011-02-16 肖锋 单轴拉伸试验的数据测量和计算方法
KR101163916B1 (ko) * 2010-10-20 2012-07-09 한국생산기술연구원 응력-변형률 곡선을 획득하는 방법 및 그 장치
CN102221503A (zh) * 2011-06-08 2011-10-19 西南交通大学 单轴拉伸全程真应力-真应变曲线测试技术
CN103792143A (zh) * 2014-02-12 2014-05-14 奇瑞汽车股份有限公司 一种单轴拉伸全程真应力应变曲线的快速获取方法
CN107271279A (zh) * 2017-06-16 2017-10-20 西南石油大学 一种金属材料真应力真应变测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
金属拉伸不均匀塑性变形行为的定量分析;牛晓玲;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20171015(第10期);第二章、第三章、第四章 *
金属棒试样拉伸和扭转试验应变范围和力学特性对比;陈俊甫 等;《吉林大学学报(工学版)》;20180730;第48卷(第4期);第1153-1160页 *

Also Published As

Publication number Publication date
CN108982223A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108982223B (zh) 金属圆棒试样单轴拉伸试验大应变范围应力应变的测量方法
CN108982222B (zh) 金属板试样单轴拉伸试验大应变范围应力应变的测量方法
CN109342189B (zh) 一种拉扭组合多轴断裂实验系统及实验方法
CN110501224B (zh) 一种测定材料真实应力应变曲线的试验与计算方法
CN109883823B (zh) 金属圆棒试样单轴拉伸应力应变的双曲线反推测量方法
Kamaya et al. A procedure for determining the true stress–strain curve over a large range of strains using digital image correlation and finite element analysis
JP3977805B2 (ja) 物性値評価のための有限要素解を使用する球形圧入試験機
CN110702513B (zh) 一种金属棒材大应变范围硬化曲线的试验测量方法
CN109883825A (zh) 金属圆棒试样单轴拉伸大应变范围硬化曲线的测量方法
Wang et al. An experimental-numerical combined method to determine the true constitutive relation of tensile specimens after necking
CN104596846A (zh) 一种在金属材料压缩试验中修正弹性模量及应力-应变曲线的方法
CN108133082B (zh) 一种基于有限元模拟确定压痕应变法中应力测量常数的方法
CN103792143A (zh) 一种单轴拉伸全程真应力应变曲线的快速获取方法
CN110411837B (zh) 一种测定材料标距效应曲线的试验与计算方法
US11175206B2 (en) Tube pure shear loading device and method
Hyun et al. On acquiring true stress–strain curves for sheet specimens using tensile test and FE analysis based on a local necking criterion
CN109883824B (zh) 金属圆棒试样单轴拉伸应力应变的圆弧反推测量方法
Samal et al. Estimation of fracture behavior of thin walled nuclear reactor fuel pins using Pin-Loading-Tension (PLT) test
CN113764056B (zh) 一种获得材料多应变率下高精度硬化模型参数的方法
CN109900561B (zh) 一种固体推进剂粘弹性泊松比-应变率主曲线构造方法
CN108548720B (zh) I型裂纹弹塑性理论公式获取延性材料j阻力曲线的方法
CN109870354B (zh) 金属圆棒试样单轴拉伸断后伸长率自动测量方法
CN115270548A (zh) 环焊接头焊缝金属全应力应变测试方法、设备及存储介质
CN113533435B (zh) 一种电位法与复型法相结合的曲线裂纹扩展监测方法
Zhao et al. Study on determination of true stress and strain of low carbon steel based on tensile test

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201016

Termination date: 20210919