CN110698191A - 一种具有紫外高反射生物陶瓷材料 - Google Patents

一种具有紫外高反射生物陶瓷材料 Download PDF

Info

Publication number
CN110698191A
CN110698191A CN201911035078.6A CN201911035078A CN110698191A CN 110698191 A CN110698191 A CN 110698191A CN 201911035078 A CN201911035078 A CN 201911035078A CN 110698191 A CN110698191 A CN 110698191A
Authority
CN
China
Prior art keywords
ultraviolet
biological ceramic
ceramic material
high reflection
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911035078.6A
Other languages
English (en)
Other versions
CN110698191B (zh
Inventor
汪涛
王阳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201911035078.6A priority Critical patent/CN110698191B/zh
Publication of CN110698191A publication Critical patent/CN110698191A/zh
Application granted granted Critical
Publication of CN110698191B publication Critical patent/CN110698191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种具有紫外高反射生物陶瓷材料,成分包括Ca10‑xZnx(PO4)6(OH)2(x:0.5‑2)。选取钙盐和磷酸盐作为反应剂,以锌盐作为掺杂剂,经过掺杂反应后,再经后处理,从而获得本发明的纳米掺锌钙磷生物陶瓷。微观形貌为纳米颗粒状,呈现非晶或弱结晶结构,产物的平均粒径为30‑200nm。材料具有超高紫外反射率,特别是最优成分Ca9Zn(PO4)6(OH)2,其UVA和UVB平均反射率近100%,UVC平均反射率约为90%。

Description

一种具有紫外高反射生物陶瓷材料
技术领域
本发明涉及生物陶瓷材料,特别涉及一种具有紫外高反射生物陶瓷材料。
背景技术
紫外光被划分为UVA、UVB和UVC,波长范围分别为400-315nm、315-280nm和280-190nm。适量的紫外照射有利于人体中维生素D的合成。然而,过量的紫外线照射则会导致皮肤过敏、烧伤甚至是皮肤癌等病症的发生。近几年来,由于臭氧层不断遭到破坏,皮肤癌的发病率增高,人们越来越强烈地意识到紫外线对人体的伤害。因而,研究高紫外反射性能的材料具有重要的现实应用价值。
目前对于紫外线的防护主要在于利用材料的物理和化学性能对紫外线进行反射或者吸收以达到减少紫外线对皮肤的刺激。有机防晒剂虽然与化妆品能很好的相容,但存在为减少皮肤接触紫外线而提高添加量,同时这又会增加发生光致癌以及产生化学性过敏等问题。而且,有机吸收剂对紫外线的波长范围有很强的选择性,导致有机防晒剂必须混合使用,不但使产品成本上升,还要考虑各有机防晒剂单体间叠加效应是否使紫外吸收功能正常发挥等一系列问题。可见,有机紫外线吸收剂仅能屏蔽一种紫外线,主要是UVB,而且或多或少具有一定的毒性,对特殊人群存在化学过敏的问题,并对海洋环境造成严重污染。
杨漫君等人对各种商用防晒霜进行了紫外光谱分析,得出大部分的防晒霜对于UVB比UVA的防护效果要好,其防晒能力随时间的延长逐渐降低(杨漫君,陈维捷,李佼洋,etal.防晒霜的紫外光谱分析及防护持久性评估[J].物理实验,2016,36(4):37-41.)。
随着无机材料的超细化发展直到现在的纳米级,无机纳米防晒剂才越来越受到重视。纳米TiO2、ZnO、Fe2O3等无机纳防晒剂吸收紫外线的效果比有机紫外线吸收剂强,吸收范围也要广,吸收紫外线的同时还能透过可见光。无机材料的副作用少等优点使防晒产品的趋势是越来越多的采用物理紫外线防护材料。但同时刘晓闰等人对TiO2的毒性进行了归纳分析,得出TiO2尺寸越小越容易透过皮肤进入人体,对人体细胞毒性越大(刘晓闰,唐萌.纳米二氧化钛的毒性研究与安全性展望[J].东南大学学报(医学版),2011,30(6):945-952.)。
公开号为CN 102361623 A的中国专利,名称为一个关于羟基磷灰石作为部分添加剂,该专利提出加入羟基磷灰石对于防晒剂的紫外反射能力有一定的提高。但其并未对具体金属掺杂羟基磷灰石的物相、形貌及其紫外反射能力进行描述。此外,现有技术中的生物陶瓷材料非晶磷灰石(ACP)结构不稳定,受热条件下会使得非晶磷灰石(ACP)容易向结晶态的羟基磷灰石转变,因此一般干燥温度不超过100℃。
综上可得,现有的有机、无极防晒材料多为紫外吸收型材料,因而具有吸收饱和度,对紫外线的耗散能力普遍不高,同时也存在致敏、纳米生物毒性等潜在生物危害性。
发明内容
发明目的:本发明目的是提供一种紫外反射能力强、时效性强、具有良好生物相容性、稳定性好的生物陶瓷材料。
技术方案:本发明提供一种具有紫外高反射生物陶瓷材料,成分包括Ca10-xZnx(PO4)6(OH)2(x:0.5-2)。锌盐的掺杂量为5%-20%,所述的掺杂量为Zn2+/(Zn2++Ca2+)摩尔比,当Zn2+/(Zn2++Ca2+)=5%时,x为0.5;当Zn2+/(Zn2++Ca2+)=20%时,x为2。
进一步地,x为1,所述生物材料的组成为Ca9Zn(PO4)6(OH)2,该组成的生物材料具有超高的紫外反射效果,UVA和UVB平均反射率近100%,UVC平均反射率约为90%。
进一步地,其晶体结构为非晶结构。
进一步地,其晶体结构为弱结晶,结晶度<40%。
进一步地,其平均粒径为30-200nm。
进一步地,其制备方法为:以钙盐和磷酸盐作为反应剂,以锌盐作为掺杂剂,经过掺杂、反应后,再经洗涤、过滤和冷冻干燥,即得。
进一步地,所述干燥温度不超过400℃。
进一步地,具有紫外高反射生物陶瓷材料为纳米颗粒状。
本发明的技术原理解释如下:
本发明技术方案利用锌离子取代了羟基磷灰石中的钙离子,从而改变其相组成、结晶度以及微观形貌,然后经去离子水洗涤、过滤和冷冻干燥而成。
本发明选取钙盐和磷酸盐作为反应剂,以锌盐作为掺杂剂,经过掺杂反应后,再经后处理,从而获得具有非晶态或弱结晶的纳米掺锌钙磷生物陶瓷。通过调整工艺参数,可以得到非晶态程度和微观形貌不同的陶瓷材料。锌作为一种人体所需元素,通过其取代羟基磷灰石中的钙,实现对产物的物相和形貌的改变,从而对紫外反射率进行调控。因锌离子取代钙离子后进入羟基磷灰石结构中,使原羟基磷灰石在液相形核结晶的过程中受到抑制,不能有效的转变成结晶体,从而形成非晶态结构或弱结晶结构,同时也改变了微观形貌。而这种结构和形貌的变化,让掺杂后的纳米掺锌钙磷生物陶瓷具备了未掺杂羟基磷灰石的特殊紫外反射能力。具体来说,1.由于锌的掺杂导致羟基磷灰石中的电子能级状态发生改变,当材料受到紫外光照射的时候,受到光子的激发,材料中的电子更容易发生电子能级的跃迁,从而实现紫外光的反射,提高紫外反射率;2.纳米颗粒状比针状更有利于紫外光的反射。
材料的紫外反射率与材料本身的成分、结构和物相有关。当Zn的掺杂量处于5%-20%时,结晶度<40%,获得具有颗粒状的形貌,平均粒径在30-200nm。此时材料具有高紫外反射率。当掺杂量<5%时,材料的结晶度>40%,获得具有针状的形貌,其粒径>200nm。因Zn掺杂量过少,对HA中原子能级状态的改变较小,同时形成针状微观形貌和过大的粒径,这些因素造成材料对紫外光没有显著的反射特性。当掺杂量>20%时,其原子的混乱度增大,因而形成很多的空位,这些空位会对紫外线产生吸收效应,从而会降低其紫外反射率。紫外反射率会出现升高再降低的情况,并在锌掺杂量为10%的时候,紫外反射效果最好。所以本发明中Zn的掺杂量为5%-20%。
本发明的材料干燥时加热到400℃,依然能维持非晶态,结构稳定,并且其物相形貌和紫外反射率均未发生明显变化。
有益效果:
(1)本发明的锌掺杂钙磷生物陶瓷最佳适应对象为UVA,UVB和UVC。因其对紫外防护的原理是反射紫外光,不存在饱和度的问题,防晒时效性强。同时,因为材料本身具有生物活性,所以对人体安全,生物相容性好,对环境没有污染;
(2)本发明的锌掺杂钙磷生物陶瓷,通过冷冻干燥使其获得非晶结构。这种特定的掺杂非晶结构,使得掺杂后的钙磷生物陶瓷具备了未掺杂的超高紫外反射特性,能够对紫外线起到很好的防护作用,其UVA和UVB平均反射率近100%,UVC平均反射率约为90%;
(3)本发明的制备方法简单,反应时间短,且原料来源广泛,适合大规模的产业化生产,为紫外防护提供一种新型有效的材料。
附图说明
图1为采用本发明方法制备的具有紫外高反射生物陶瓷材料的宏观照片;
图2为采用本发明方法制备的具有紫外高反射生物陶瓷材料的扫描电子显微镜图片;
图3为采用本发明方法制备的具有紫外高反射生物陶瓷材料的X射线衍射图片;
图4采用本发明方法制备的具有紫外高反射生物陶瓷材料与其他材料的紫外反射率对比图片。
具体实施方式
实施例1(产品为生物陶瓷最优组:(10Zn生物陶瓷))
采用化学沉淀法制备具有紫外高反射生物陶瓷材料,具体操作步骤如下:
(1)化学试剂的准备
本发明中采用的化学试剂均为分析纯,以保证制备过程中无其他杂质出现。
(2)反应溶液配置
(a)将Zn(NO3)2和Ca(NO3)2按照摩尔比为10∶90溶于去离子水中,配成含Ca2+/Zn2+的混合溶液,置于容器中搅拌均匀;
(b)取(NH4)2HPO4溶于去离子水中,配成含PO4 3-的溶液。用NH3H2O将其溶液调至PH=10,备用;
(3)锌掺杂反应
(a)将上述步骤(2)中Ca2+/Zn2+的混合溶液进行水浴加热反应;
(b)待水浴反应温度升高至60℃,将上述步骤(2)中PO4 3-盐溶液缓慢滴加至上述混合溶液中,持续滴加,并保持溶液PH=10;
(4)陈化过程
经过2h的完全反应后,将步骤(3)中的混合溶液取出,至于密封容器内,陈化24小时;
(5)后处理
完成陈化后,将步骤(4)中的混合液取出,用去离子水进行反复清洗,重复3次。然后将清洗干净的样品置于冷冻干燥机进行干燥,24h完全干燥后,进行研磨,过筛,即可得到锌掺杂的非晶钙磷生物陶瓷粉体;
(6)灭菌处理
对步骤(5)中得到的粉体进行灭菌处理,用钴60辐射灭菌(辐照剂量为30KGy),从而得到具有超高紫外反射非晶钙磷生物陶瓷材料。
对超高紫外反射非晶钙磷生物陶瓷材料进行结构、成分和性能表征,表征结果如图1-图4所示:
其中Zn/Ca=10∶90(x为1),(Zn+Ca)/P=1.67,比值均为摩尔比,由图1可见制得的超高紫外反射生物陶瓷材料呈白色粉状。由图2可见,其微观形貌呈现纳米颗粒状,平均粒径为50-100nm。由图3可见,锌掺杂钙磷生物陶瓷为非晶态。由图4可见,10Zn生物陶瓷与纳米TiO2相比和现有的防晒产品相比具有超高的紫外反射率,UVA和UVB平均反射率近100%,UVC平均反射率约为90%。
实施例2((5Zn生物陶瓷))
其中Zn/Ca=5∶95(x为0.5),(Zn+Ca)/P=1.67,比值均为摩尔比,其余步骤如实施例1。所获得的锌掺杂钙磷生物陶瓷具有不完整的非晶结构,其结晶度为40%,具有类针状的微观形貌,平均粒径为100-200nm,UVA和UVB平均反射率近100%,UVC平均反射率约为70%。
实施列3(20Zn生物陶瓷)
采用溶胶凝胶法进行制备,以Ca(NO3)2、P2O5和Zn(NO3)2作为为反应物,其中Zn/Ca=20∶80(x为2),(Zn+Ca)/P=1.67,比值均为摩尔比。将P2O5溶液缓慢滴加到Zn(NO3)2和Ca(NO3)2的混合溶液中,在反应温度60℃条件下持续加热24h,然后进行洗涤干燥研磨。将所得粉末在400℃温度下进行2h煅烧,即得所需样品。所获得的锌掺杂钙磷生物陶瓷具有完整的非晶结构,具有颗粒状的微观形貌,平均粒径为30-100nm,UVA和UVB平均反射率约为90%,UVC平均反射率约为75%。
实施例4:紫外发射率测试
使用带有积分球的紫外可见光光度仪对样品进行紫外反射率测试。用硫酸钡作为参比样品,将实施例1-3的产品、纳米TiO2和两组市售防晒霜产品分别在模具中进行制样将上述各样品装入圆盘状模具,用有机玻璃圆柱按压,得到表面平整的测试样品,然后置于仪器中,选择波长范围(200-400nm)进行测试,最后即可得到所测样品的紫外反射率数据。由图可知,本发明产品的紫外反射率远远高于其他组。

Claims (8)

1.一种具有紫外高反射生物陶瓷材料,其特征在于:成分包括Ca10-xZnx(PO4)6(OH)2(x:0.5-2)。
2.根据权利要求1所述的具有紫外高反射生物陶瓷材料,其特征在于:所述x为1。
3.根据权利要求1所述的具有紫外高反射生物陶瓷材料,其特征在于:其晶体结构为非晶结构。
4.根据权利要求1所述的具有紫外高反射生物陶瓷材料,其特征在于:其晶体结构为弱结晶,结晶度<40%。
5.根据权利要求1所述的具有紫外高反射生物陶瓷材料,其特征在于:其平均粒径为30-200nm。
6.根据权利要求1所述的具有紫外高反射生物陶瓷材料,其特征在于:其制备方法为:以钙盐和磷酸盐作为反应剂,以锌盐作为掺杂剂,经过掺杂、反应后,再经洗涤、过滤和冷冻干燥,即得。
7.根据权利要求6述的具有紫外高反射生物陶瓷材料,其特征在于:所述干燥温度不超过400℃。
8.根据权利要求1述的具有紫外高反射生物陶瓷材料,其特征在于:为纳米颗粒状。
CN201911035078.6A 2019-10-28 2019-10-28 一种具有紫外高反射生物陶瓷材料 Active CN110698191B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911035078.6A CN110698191B (zh) 2019-10-28 2019-10-28 一种具有紫外高反射生物陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911035078.6A CN110698191B (zh) 2019-10-28 2019-10-28 一种具有紫外高反射生物陶瓷材料

Publications (2)

Publication Number Publication Date
CN110698191A true CN110698191A (zh) 2020-01-17
CN110698191B CN110698191B (zh) 2021-01-05

Family

ID=69202532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911035078.6A Active CN110698191B (zh) 2019-10-28 2019-10-28 一种具有紫外高反射生物陶瓷材料

Country Status (1)

Country Link
CN (1) CN110698191B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2244088B2 (de) * 1971-09-11 1979-11-22 N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) Verfahren zur Herstellung eines lumineszierenden Erdalkalihalophosphats
JPH06321748A (ja) * 1993-05-12 1994-11-22 Sekisui Plastics Co Ltd アパタイト複合粒子
JPH1160220A (ja) * 1997-08-05 1999-03-02 Sekisui Plastics Co Ltd 非晶質リン酸カルシウム系複合粒子と化粧料
WO2003033582A1 (fr) * 2001-10-17 2003-04-24 Rhodia Electronics And Catalysis Compositions anti-uv a base de phosphates de cerium et de titane et leur preparation
CN101012343A (zh) * 2007-02-14 2007-08-08 长兴光学材料(苏州)有限公司 一种抗紫外线涂料组合物及抗紫外线薄膜
CN101215153A (zh) * 2008-01-04 2008-07-09 华南理工大学 一种非晶态生物活性超细粉体的制备方法
CN102040210A (zh) * 2010-10-21 2011-05-04 华南理工大学 一种高紫外及高红外反射材料及其制备方法
CN102361623A (zh) * 2009-03-23 2012-02-22 意大利嘉利化工有限责任公司 包含羟基磷灰石作为物理日光滤光剂的防晒组合物
CN102639159A (zh) * 2009-08-04 2012-08-15 生物材料细胞公司 离子取代的磷酸钙颗粒
CN103819991A (zh) * 2013-11-29 2014-05-28 四川理工学院 一种适用于恐龙化石的新型保护材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2244088B2 (de) * 1971-09-11 1979-11-22 N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) Verfahren zur Herstellung eines lumineszierenden Erdalkalihalophosphats
JPH06321748A (ja) * 1993-05-12 1994-11-22 Sekisui Plastics Co Ltd アパタイト複合粒子
JPH1160220A (ja) * 1997-08-05 1999-03-02 Sekisui Plastics Co Ltd 非晶質リン酸カルシウム系複合粒子と化粧料
WO2003033582A1 (fr) * 2001-10-17 2003-04-24 Rhodia Electronics And Catalysis Compositions anti-uv a base de phosphates de cerium et de titane et leur preparation
CN101012343A (zh) * 2007-02-14 2007-08-08 长兴光学材料(苏州)有限公司 一种抗紫外线涂料组合物及抗紫外线薄膜
CN101215153A (zh) * 2008-01-04 2008-07-09 华南理工大学 一种非晶态生物活性超细粉体的制备方法
CN102361623A (zh) * 2009-03-23 2012-02-22 意大利嘉利化工有限责任公司 包含羟基磷灰石作为物理日光滤光剂的防晒组合物
CN102639159A (zh) * 2009-08-04 2012-08-15 生物材料细胞公司 离子取代的磷酸钙颗粒
CN102040210A (zh) * 2010-10-21 2011-05-04 华南理工大学 一种高紫外及高红外反射材料及其制备方法
CN103819991A (zh) * 2013-11-29 2014-05-28 四川理工学院 一种适用于恐龙化石的新型保护材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUMIAKI MIYAJI ET AL.: "Formation and structure of zinc-substituted calcium hydroxyapatite", 《MATERIALS RESEARCH BULLETIN》 *
李志刚: "《光谱数据处理与定量分析技术》", 31 July 2017, 北京邮电大学出版社 *
祁景玉: "《材料科学与技术》", 31 July 2008, 同济大学出版社 *
肖锋 等: "干燥方法对化学沉淀法合成HA粉体团聚的影响", 《硅酸盐通报》 *

Also Published As

Publication number Publication date
CN110698191B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
Munawar et al. Zn0. 9Ce0. 05M0. 05O (M= Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity
Ren et al. Ce and Er Co-doped TiO2 for rapid bacteria-killing using visible light
Nabi et al. Green synthesis of spherical TiO2 nanoparticles using Citrus Limetta extract: Excellent photocatalytic water decontamination agent for RhB dye
Mueen et al. ZnO/CeO 2 nanocomposite with low photocatalytic activity as efficient UV filters
Khan et al. A modified sol-gel synthesis to yield a stable Fe3+/ZnO photocatalyst: Degradation of water pollutants and mechanistic insights under UV and visible light
KR101265781B1 (ko) 결정질 이산화티타늄 코어-비정질 이산화티타늄 쉘 형태의 이산화티타늄 광촉매, 그 제조방법 및 상기 이산화티타늄 광촉매를 포함한 친수성 코팅제
Tahmasebizad et al. Photocatalytic activity and antibacterial behavior of TiO 2 coatings co-doped with copper and nitrogen via sol–gel method
Yu et al. Preparation and characterization of N–TiO2 photocatalyst with high crystallinity and enhanced photocatalytic inactivation of bacteria
Dawson et al. Influence of calcination parameters on the synthesis of N-doped TiO2 by the polymeric precursors method
Rajhi et al. Synthesis, structural, optical, dielectric properties, gamma radiation attenuation, and antimicrobial activity of V-doped hydroxyapatite nanorods
CN105343941A (zh) 一种表面改性生物医用镍钛合金及其制备方法和应用
KR101814001B1 (ko) 코어-쉘 타입의 판상형 나노입자 및 이의 제조방법
CN113476320B (zh) 一种防晒化妆品组合物及其制备方法
Rise et al. Synthesis and characterization of ZnO nanorods-Zn2SiO4 nanoparticles-PMMA nanocomposites for UV-C protection
Rao et al. Effect of Fe doped and capping agent–structural, optical, luminescence, and antibacterial activity of ZnO nanoparticles
Ikram et al. Improved catalytic activity and bactericidal behavior of novel chitosan/V 2 O 5 co-doped in tin-oxide quantum dots
CN110698191B (zh) 一种具有紫外高反射生物陶瓷材料
Sankeetha et al. Interaction of BiVO4 anchored 2D hexagonal boron nitride nanocomposite for photocatalytic water pollutants degradation and phytotoxicity assessment
Piccirillo et al. Increased UV absorption properties of natural hydroxyapatite‐based sunscreen through laser ablation modification in liquid
JP2003026422A (ja) 金属酸化物及び/又は金属過酸化物の微粒子分散ゾルとその製造方法並びに微粒子粉体
CN107746071B (zh) 一种稀土元素掺杂的纳米氧化锌及其制备方法
Nisansala et al. Zinc Oxide Nanostructures in the Textile Industry
CN108210979B (zh) 一种医用杀菌纤维敷料
Lavrynenko et al. Morphology, phase and chemical composition of the nanostructures formed in the systems containing lanthanum, cerium, and silver
KR20160088441A (ko) 광촉매 및 광촉매의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant