CN110698077B - 一种铯铅卤素钙钛矿厚膜及其制备与应用 - Google Patents

一种铯铅卤素钙钛矿厚膜及其制备与应用 Download PDF

Info

Publication number
CN110698077B
CN110698077B CN201910847897.4A CN201910847897A CN110698077B CN 110698077 B CN110698077 B CN 110698077B CN 201910847897 A CN201910847897 A CN 201910847897A CN 110698077 B CN110698077 B CN 110698077B
Authority
CN
China
Prior art keywords
cesium
perovskite
lead
thick film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910847897.4A
Other languages
English (en)
Other versions
CN110698077A (zh
Inventor
牛广达
唐江
潘伟程
杨波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201910847897.4A priority Critical patent/CN110698077B/zh
Publication of CN110698077A publication Critical patent/CN110698077A/zh
Application granted granted Critical
Publication of CN110698077B publication Critical patent/CN110698077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5007Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
    • C04B41/5011Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing halogen in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/13Deposition methods from melts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明属于以半导体材料制备的辐射探测技术领域,公开了一种铯铅卤素钙钛矿厚膜及其制备与应用,其中制备方法具体是:(1)将铯铅卤素钙钛矿材料分散在基底上,然后加热使温度升至铯铅卤素钙钛矿的熔点以上,直至铯铅卤素钙钛矿完全熔化成液态;(2)将石英片覆盖在液态的钙钛矿材料上,使被石英片覆盖的液态钙钛矿材料在所述基底上均匀分散;(3)将温度以0.1~5℃/min的速率缓慢降低进行冷却,然后将石英片揭掉,即可得到粘连在基底上的钙钛矿厚膜。本发明通过对制备方法的整体工艺流程设计(包括温度控制程序)等进行改进,能够获得高性能、取向一致、稳定的、高灵敏度大面积厚膜,解决现有技术存在的工艺复杂、灵敏度低、取向不一致等问题。

Description

一种铯铅卤素钙钛矿厚膜及其制备与应用
技术领域
本发明属于以半导体材料制备的辐射探测技术领域,更具体地,涉及一种铯铅卤素钙钛矿厚膜及其制备与应用,其中制备方法制得的准单晶铯铅卤素钙钛矿厚膜尤其能够作为功能材料应用于辐射探测器中。
背景技术
辐射成像探测器广泛应用于医疗卫生、公共安全和高端制造业等行业。用于探测放射性射线的探测器一般有气体探测器、闪烁探测器、半导体探测器等类型,其中半导体探测器能得到最好的能量分辨率。由于X射线折射率为1导致X射线难以聚焦,因此需要和成像尺寸相匹配的大面积半导体厚膜。
近年来,有机无机杂化铅基钙钛矿半导体由于其高X射线吸收系数,载流子收集效率高等优势,在X射线探测领域取得了一系列进展(Nature 550,87–91,2017;Nat.Photon11,436,2017),已经实现了高灵敏度X射线检测,但是有机离子的存在降低了材料的稳定性,随后发现的铯铅卤素钙钛矿用铯离子取代有机离子,提高了材料的稳定性。但是制备铯铅卤素钙钛矿厚膜的工艺存在厚度不够,晶粒太小,取向不一致等问题,限制了铯铅卤素钙钛矿在辐射成像领域的应用。
发明内容
针对现有技术的以上缺陷或改进需求,本发明的目的在于提供一种铯铅卤素钙钛矿厚膜及其制备与应用,其中通过对制备方法的整体工艺流程设计(包括温度控制程序)等进行改进,能够获得高性能、取向一致、稳定的、高灵敏度大面积的准单晶铯铅卤素钙钛矿厚膜,解决现有技术存在的工艺复杂、灵敏度低、取向不一致等问题。制备得到的铯铅卤素钙钛矿具有上下贯穿的大尺寸晶粒(具有准单晶特性)和一致的取向,保证了厚膜的辐射探测应用时载流子的高效传输。
为实现上述目的,按照本发明的一个方面,提供了一种铯铅卤素钙钛矿厚膜的制备方法,其特征在于,包括以下步骤:
(1)将铯铅卤素钙钛矿材料置于基底上,然后加热使温度升至铯铅卤素钙钛矿的熔点以上,直至铯铅卤素钙钛矿完全熔化成液态;
(2)保持温度维持在铯铅卤素钙钛矿的熔点以上,将石英片覆盖在液态的钙钛矿材料上,使被石英片覆盖的液态钙钛矿材料在所述基底上均匀分散;
(3)将温度以0.1~5℃/min的速率缓慢降低进行冷却,然后将石英片揭掉,利用石英片与铯铅卤素钙钛矿之间的惰性,即可得到粘连在基底上的钙钛矿厚膜,该钙钛矿厚膜即为厚度不低于1um的铯铅卤素钙钛矿厚膜。
按照本发明的另一方面,提供了一种铯铅卤素钙钛矿厚膜的制备方法,其特征在于,包括以下步骤:
(1)将铯铅卤素钙钛矿材料放置具有凹槽的石英片上,然后加热使温度升至铯铅卤素钙钛矿的熔点以上,直至铯铅卤素钙钛矿完全熔化成液态,这些液态钙钛矿材料将完全填充所述石英片的凹槽;
(2)保持温度维持在铯铅卤素钙钛矿的熔点以上,将基底覆盖在液态的钙钛矿材料上,使液态钙钛矿材料在被基底和石英片包围形成的凹槽空间内均匀分散;
(3)将温度以0.1~5℃/min的速率缓慢降低进行冷却,然后将石英片取下,利用石英片与铯铅卤素钙钛矿之间的惰性,即可得到粘连在基底上的钙钛矿厚膜,该钙钛矿厚膜即为厚度不低于1um的铯铅卤素钙钛矿厚膜。
作为本发明的进一步优选,所述步骤(1)中,所述铯铅卤素钙钛矿为铯铅碘CsPbI3、铯铅溴CsPbBr3、铯铅氯CsPbCl3、或铯铅碘溴CsPbIxBr(3-x);所述铯铅碘溴CsPbIxBr(3-x)中,0<x<3。
作为本发明的进一步优选,所述基底为FTO透明导电玻璃基底、或氮化硼基底。
作为本发明的进一步优选,所述步骤(2)中采用的所述石英片的表面经过抛光处理,具有干净光滑的表面。
按照本发明的另一方面,本发明提供了利用上述制备方法制备得到的铯铅卤素钙钛矿厚膜。
作为本发明的进一步优选,所述铯铅卤素钙钛矿厚膜的表面粗糙度小于100nm,晶粒大于50um。
作为本发明的进一步优选,所述铯铅卤素钙钛矿厚膜的面积不低于2.5cm×2.5cm。
按照本发明的又一方面,本发明提供了上述铯铅卤素钙钛矿厚膜在辐射探测中的应用。
通过本发明所构思的以上技术方案,与现有技术相比,通过对制备方法的整体工艺流程设计进行控制,可以通过改变原料铯铅卤素钙钛矿材料(如铯铅卤素钙钛矿粉末)的质量来改变膜的厚度,通过将其熔化,定形凝固的方法,避免了溶剂的使用,从而避免了溶剂挥发过程中带来的气孔。最终通过将惰性材料石英片来获得平整的表面。这种方法制备的铯铅卤素钙钛矿具有上下贯穿的大尺寸晶粒和一致的取向,保证了厚膜的辐射探测应用时载流子的高效传输。
钙钛矿辐射探测多选择MAPbI3等有机无机杂化钙钛矿,但是由于多采用溶液法制备厚膜,所以在厚膜制备时存在溶剂挥发导致的孔洞问题,而以CsPbBr3为代表的铯铅卤素钙钛矿多用于生长晶体测试高能gamma辐射探测,本发明利用CsPbBr3存在熔点的特点,配合惰性的石英片,将CsPbBr3熔化再结晶定形的方法,避免了溶剂的使用,制备出大面积厚膜(面积尤其可不低于2.5cm×2.5cm,甚至可以达到20cm×20cm),得到的厚膜同时能够进一步用于辐射探测。
本发明采用石英片作为惰性材料,利用石英片与铯铅卤素钙钛矿之间的惰性,能够避免石英片与钙钛矿厚膜之间的粘连。而其他材料,如云母、BN、石墨等,它们与CsPbBr3为代表的铯铅卤素钙钛矿之间具有粘附性,不体现出惰性,因此无法使用。
利用本发明,在保证原料充足的情况下,能够得到厚度大于1um的铯铅卤素钙钛矿厚膜,尤其能够得到厚度大于50um的铯铅卤素钙钛矿厚膜,并且,该钙钛矿厚膜还具有粗糙度小于100nm、晶粒大于50um,且取向一致的特性,在辐射探测领域尤其具有较大的应用前景。
附图说明
图1是依照本发明制备厚膜的表面原子力显微镜,从而得到表面粗糙度。
图2是依照本发明制备厚膜的截面扫描电子显微镜示意图。
图3是依照本发明制备厚膜的X射线衍射。
图4是依照本发明制备的辐射探测器X射线探测IT曲线。
图5是依照本发明制备的辐射探测器不同电压下的光电流曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明中铯铅卤素钙钛矿厚膜的制备方法,总体来说,是先将铯铅卤素钙钛矿原料均匀的分散在基底上,然后加热到钙钛矿熔点以上,待钙钛矿完全熔化之后,将干净光滑的石英片盖在钙钛矿上,对整体降温,将石英片轻轻取走得到铯铅卤素钙钛矿厚膜。
以下为具体实施例:
实施案例1:
本实例将介绍FTO基底上240um铯铅溴钙钛矿厚膜的制备:
取(0.5g)铯铅溴(CsPbBr3)粉末,再将粉末均匀铺在2.5cm×2.5cm的FTO上,将FTO和粉末加热到600℃,持续5min,铯铅溴(CsPbBr3)粉末熔化成液态后,将同炉升温的石英片覆盖在液态铯铅溴上,然后以5℃/min速度降温到室温,然后揭开石英片得到FTO基底上铯铅溴厚膜。
实施案例2:
本实例将介绍FTO基底上480um铯铅溴钙钛矿厚膜的制备:
取(1g)铯铅溴(CsPbBr3)粉末,再将粉末均匀铺在2.5cm×2.5cm的FTO上,将FTO和粉末加热到600℃,持续5min,铯铅溴(CsPbBr3)粉末熔化成液态后,将石英覆盖在液态铯铅溴上,然后以5℃/min速度降温到室温,然后揭开石英片得到FTO基底上铯铅溴厚膜。
实施案例3:
本实例将介绍FTO基底上240um铯铅碘钙钛矿厚膜的制备:
取(0.6g)铯铅碘(CsPbI3)粉末,再将粉末均匀铺在2.5cm×2.5cm的FTO上,将FTO和粉末加热到570℃,持续5min,铯铅碘(CsPbI3)粉末熔化成液态后,将石英覆盖在液态铯铅碘上,然后以5℃/min速度降温到室温,然后揭开石英片得到FTO基底上铯铅碘厚膜。
实施案例4:
本实例将介绍FTO基底上240um铯铅溴碘钙钛矿厚膜的制备:
取(0.6g)铯铅溴碘(CsPbBr2I)粉末,再将粉末均匀铺在2.5cm×2.5cm的FTO上,将FTO和粉末加热到580℃,持续5min,铯铅溴碘(CsPbBr2I)粉末熔化成液态后,将石英覆盖在液态铯铅溴碘上,然后以5℃/min速度降温到室温,然后揭开石英片得到FTO基底上铯铅溴碘厚膜。
实施案例5:
本实例将介绍BN(氮化硼)基底上240um铯铅碘钙钛矿厚膜的制备:
取(0.6g)铯铅碘(CsPbI3)粉末,再将粉末均匀铺在2.5cm×2.5cm的BN上,将BN和粉末加热到570℃,持续5min,铯铅碘(CsPbI3)粉末熔化成液态后,将石英覆盖在液态铯铅碘上,然后以5℃/min速度降温到室温,然后揭开石英片得到BN基底上铯铅碘厚膜。
图1所示对应实例1所得的钙钛矿厚膜(图1中的a、b、c、d分别对应厚膜的不同区域),由图1可以看出,钙钛矿厚膜具有平整的表面,粗糙度为67nm。
图2所示对应实例1所得的钙钛矿厚膜,由图2可以看出,钙钛矿厚膜的厚度达到240um,且晶粒上下贯穿;晶粒尺寸大,能够体现准单晶的特性。
图3所示对应实例1所得的钙钛矿厚膜,由图3可以看出,钙钛矿厚膜具有单一的取向,且峰宽只有0.07°,因此膜具有良好的结晶性。
另外,除上述实施例所采用的后覆盖石英片的制备方法外,还可以采用具有凹槽的石英片,先将铯铅卤素钙钛矿原材料放置在石英片的凹槽内,然后升温使铯铅卤素钙钛矿熔化,接着将基底覆盖在液态的钙钛矿材料上,使液态钙钛矿材料在被基底和石英片包围形成的凹槽空间内均匀分散,冷却后取下石英片也得铯铅卤素钙钛矿厚膜。这种凹槽设计的石英片能够保证熔化后液体的不外流。
本发明得到的铯铅卤素钙钛矿厚膜可进一步用于构建辐射探测器器件,例如,在FTO玻璃基底上的CsPbBr3厚膜蒸发上80nm厚的金电极,制备结构为FTO/CsPbBr3/Au的辐射探测器件结构。
上述辐射探测器具有比较大的灵敏度,图4所示对应该辐射探测器在电场强度4.2V mm-1下,灵敏度达到23349μC Gyair -1cm-2,同时从IT曲线看,基线平稳,具有良好的探测性能,并且,从图4中可以看出,随着X射线辐射剂量的降低,探测器的电流也相应降低。图5所示对应该辐射探测器在不同电压下工作,对于不同的剂量具有良好的线性响应。
上述实施例仅以粉末原材料为例,基于本发明也可以采用其他宏观形貌的原材料(如块材等)。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种铯铅卤素钙钛矿厚膜的制备方法,其特征在于,包括以下步骤:
(1)将铯铅卤素钙钛矿材料放置具有凹槽的石英片上,然后加热使温度升至铯铅卤素钙钛矿的熔点以上,直至铯铅卤素钙钛矿完全熔化成液态,这些液态钙钛矿材料将完全填充所述石英片的凹槽;
(2)保持温度维持在铯铅卤素钙钛矿的熔点以上,将基底覆盖在液态的钙钛矿材料上,使液态钙钛矿材料在被基底和石英片包围形成的凹槽空间内均匀分散;
(3)将温度以0.1~5℃/min的速率缓慢降低进行冷却,然后将石英片取下,利用石英片与铯铅卤素钙钛矿之间的惰性,即可得到粘连在基底上的钙钛矿厚膜,该钙钛矿厚膜即为厚度不低于1μm的铯铅卤素钙钛矿厚膜。
2.如权利要求1所述铯铅卤素钙钛矿厚膜的制备方法,其特征在于,所述步骤(1)中,所述铯铅卤素钙钛矿为铯铅碘CsPbI3、铯铅溴CsPbBr3、铯铅氯CsPbCl3、或铯铅碘溴CsPbIxBr(3-x);所述铯铅碘溴CsPbIxBr(3-x)中,0<x<3。
3.如权利要求1所述铯铅卤素钙钛矿厚膜的制备方法,其特征在于,所述基底为FTO透明导电玻璃基底、或氮化硼基底。
CN201910847897.4A 2019-09-09 2019-09-09 一种铯铅卤素钙钛矿厚膜及其制备与应用 Active CN110698077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910847897.4A CN110698077B (zh) 2019-09-09 2019-09-09 一种铯铅卤素钙钛矿厚膜及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910847897.4A CN110698077B (zh) 2019-09-09 2019-09-09 一种铯铅卤素钙钛矿厚膜及其制备与应用

Publications (2)

Publication Number Publication Date
CN110698077A CN110698077A (zh) 2020-01-17
CN110698077B true CN110698077B (zh) 2020-11-17

Family

ID=69194821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910847897.4A Active CN110698077B (zh) 2019-09-09 2019-09-09 一种铯铅卤素钙钛矿厚膜及其制备与应用

Country Status (1)

Country Link
CN (1) CN110698077B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466987B (zh) * 2020-11-03 2022-12-02 华中科技大学 一种基于铯铅溴辐射探测器的溴气氛围后处理方法
CN112531110B (zh) * 2020-11-24 2023-04-07 华中科技大学鄂州工业技术研究院 一种MAPbI3厚膜的表面处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508956A (en) * 1962-01-15 1970-04-28 Ppg Industries Inc Treatment of glass surfaces
CN107195710A (zh) * 2017-05-31 2017-09-22 苏州大学 一种基于一步法制备高发光效率无机钙钛矿薄膜的方法
WO2017195191A1 (en) * 2016-05-08 2017-11-16 Yeda Research And Development Co. Ltd. Process for the preparation of halide perovskite and perovskite-related materials
CN109888049A (zh) * 2019-02-02 2019-06-14 上海大学 无机钙钛矿厚膜复合材料半导体器件及其制备方法
CN110016646A (zh) * 2019-03-25 2019-07-16 华中科技大学 一种用于高能射线探测的铅基卤素钙钛矿膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3887765T2 (de) * 1987-03-25 1994-09-22 Sumitomo Electric Industries Verfahren zur Herstellung einer dicken supraleitenden Schicht.
JP3391307B2 (ja) * 1999-08-16 2003-03-31 株式会社村田製作所 圧電セラミックスの製造方法
KR102626917B1 (ko) * 2016-11-24 2024-01-18 삼성전자주식회사 나노결정, 그 제조방법 및 광전자 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508956A (en) * 1962-01-15 1970-04-28 Ppg Industries Inc Treatment of glass surfaces
WO2017195191A1 (en) * 2016-05-08 2017-11-16 Yeda Research And Development Co. Ltd. Process for the preparation of halide perovskite and perovskite-related materials
CN107195710A (zh) * 2017-05-31 2017-09-22 苏州大学 一种基于一步法制备高发光效率无机钙钛矿薄膜的方法
CN109888049A (zh) * 2019-02-02 2019-06-14 上海大学 无机钙钛矿厚膜复合材料半导体器件及其制备方法
CN110016646A (zh) * 2019-03-25 2019-07-16 华中科技大学 一种用于高能射线探测的铅基卤素钙钛矿膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Hot-Pressing of Bi-Pb-Sr-Ca-Cu-O Superconducting Thick Film;Norimitsu Murayama et al.;《Japanese Journal of Applied Physics》;19900630;第875-877页 *
"Ultralarge All-Inorganic Perovskite Bulk Single Crystal for High-Performance Visible–Infrared Dual-Modal Photodetectors";Jizhong Song et al.;《ADVANCED OPTICAL MATERIALS》;20170509;全文 *

Also Published As

Publication number Publication date
CN110698077A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
Cao et al. Preparation of lead-free two-dimensional-layered (C8H17NH3) 2SnBr4 perovskite scintillators and their application in X-ray imaging
Li et al. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging
Tao et al. A lead-free hybrid iodide with quantitative response to X-ray radiation
Kim et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging
Xu et al. Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity
EP3350836B1 (en) Method for producing a radiation detector and radiation detector
US7482602B2 (en) Scintillator plate for radiation and production method of the same
Sun et al. Single-crystal perovskite detectors: development and perspectives
Mao et al. Organic–inorganic hybrid cuprous halide scintillators for flexible X-ray imaging
CN110698077B (zh) 一种铯铅卤素钙钛矿厚膜及其制备与应用
CN109585477B (zh) 平板探测器结构及其制备方法
TW202143252A (zh) 透明導電層及透明導電性膜
Zhang et al. Sensitive and Fast Direct Conversion X‐Ray Detectors Based on Single‐Crystalline HgI2 Photoconductor and ZnO Nanowire Vacuum Diode
EP1667275B1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2008209124A (ja) シンチレータパネル
KR101312888B1 (ko) 방사선 검출기의 제조 방법 및 방사선 검출기 및 방사선 촬상 장치
WO2024164679A1 (zh) 一种基于钙钛矿的同轴纤维状x射线探测器及其制备方法
Shi et al. CsPbX3 Based X‐Ray Detectors
Tie et al. Antisolvent-assisted synthesis of bismuth halide perovskite polycrystal alloys for sensitive X-ray detection
JP5055421B2 (ja) 放射線画像変換パネル及び放射線画像変換パネルの製造方法、並びに放射線画像検出装置
CN105144400A (zh) 太阳能发电模块
CN108735830A (zh) 基于肖特基电极和碘化铅的自驱动辐射探测器及制备方法
Cheng et al. Dense Perovskite Thick Film Enabled by Saturated Solution Filling for Sensitive X-ray Detection and Imaging
JP2009047577A (ja) シンチレータパネル及びその作製方法
Xu et al. Highly Stable and Sensitive (PEA) 2PbBr4/CsPbBr3 Single‐Crystal Heterojunction X‐Ray Detector with Ultra‐Low Detection Limit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant