CN110680927B - 一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法 - Google Patents

一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法 Download PDF

Info

Publication number
CN110680927B
CN110680927B CN201911051900.8A CN201911051900A CN110680927B CN 110680927 B CN110680927 B CN 110680927B CN 201911051900 A CN201911051900 A CN 201911051900A CN 110680927 B CN110680927 B CN 110680927B
Authority
CN
China
Prior art keywords
nps
zif
polyethylene glycol
oleic acid
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911051900.8A
Other languages
English (en)
Other versions
CN110680927A (zh
Inventor
雷建都
刘彦雪
杨子萱
李玉成
孔天骄
宗宇恒
罗敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Forestry University
Original Assignee
Beijing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Forestry University filed Critical Beijing Forestry University
Priority to CN201911051900.8A priority Critical patent/CN110680927B/zh
Publication of CN110680927A publication Critical patent/CN110680927A/zh
Application granted granted Critical
Publication of CN110680927B publication Critical patent/CN110680927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Radiology & Medical Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明公开了一种zif‑8纳米球同时负载Au NPs和Fe3O4 NPs的方法。具体步骤如下:(1)柠檬酸钠还原法制备13nm金纳米粒子,用聚乙二醇mPEG‑SH稳固;(2)铁(III)乙酰丙酮(Fe(acac)3)与油酸‑乙醇反应制备12nm油酸稳定的Fe3O4 NPs,用聚乙二醇mPEG‑COOH稳固;(3)将(1)与(2)同时加入到硝酸锌中,搅拌均匀,再加入二甲基咪唑,反应制备zif‑8同时负载Au NPs和Fe3O4 NPs的纳米球。通过本发明制备的zif‑8纳米球具有光热性能和磁共振成像作用,可以用于生物探针、磁靶向等多种用途,尤其适用于癌症的磁靶向给药和细胞内光热治疗。该方法获得的包埋两种纳米粒子于zif‑8中的技术易于控制载入的Au NPs和Fe3O4 NPs的量,产率高,可实现大规模制备。

Description

一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法
技术领域
本发明涉及新型材料领域,具体涉及一种zif-8纳米球同时负载Au NPs和Fe3O4NPs的方法。
背景技术
金属有机骨架(MOF)具有其较大的内表面积、均匀可调的纳米腔和稳定的形貌,广泛用于气体存储、催化、光热、纳滤膜以及药物输送。近年来,纳米尺寸 MOF(nanoMOF)的制备为其应用提供了更广阔的应用空间,尤其是药物递送领域的研究。研究发现,小尺寸的刚性纳米颗粒可以吸附在nanoMOF的表面上或嵌入nanoMOF的空腔中,从而产生具有新颖化学和物理特性的混合晶体,赋予它们光热特性或生物成像应用,例如超顺磁性γ-Fe2O3@MOF用于靶向药物递送和成像,磁性Fe3O4@IRMOF-3用于成像和MRI造影剂,极低频交变磁场Fe3O4/Gd2O3@ZIF-90用于MRI跟踪药物递送,Fe3O4@UiO-66-DOX用于磁共振(MR)成像,用于基因治疗的DNAzyme加载MOF,用于癌症成像的三峰 Fe3O4@PAAAuNCs/ZIF-8NPs。
在这里,我们报告了一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,没有公开关于如何通过zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法的相关研究。
发明内容
针对上述现有技术,本发明的目的是提供一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法。通过本发明制备的zif-8纳米球具有光热性能和磁共振成像作用,可以用于生物探针、磁靶向等多种用途,尤其适用于癌症的磁靶向给药和细胞内光热治疗。该方法获得的包埋两种纳米粒子于zif-8中的技术易于控制载入的Au NPs和Fe3O4 NPs的量,产率高,可实现大规模制备。
为实现上述目的,本发明采用如下技术方案:
(1)利用文献描述的经典方法柠檬酸钠还原法合成13nmAu NPs,简单的,将0.01%,300mL氯金酸至于带有回流冷凝管的500mL圆底烧瓶中,剧烈沸腾后开始搅拌加入1%,9mL柠檬酸三钠水溶液,反应20min,直到溶液变成红色,将所得Au NPs溶液迅速冰水冷却,备用;
(2)取(1)中Au NPs,加入聚乙二醇mPEG-SH,反应2h,16000rpm离心收集沉淀,并用去离子水分散洗涤3次,分散在甲醇中,获得聚乙二醇稳定的Au NPs;
(3)配置油酸-乙醇溶液,油酸与乙醇的体积比为3:47,另取适量Fe(acac)3加入油酸-乙醇溶液,混合搅拌10min,转移至钢衬的高压反应釜中,180摄氏度反应12h,待反应结束,将反应釜冷却至室温,取出沉淀物,10000rpm离心收集沉淀,并用乙醇多次洗涤,获得油酸稳定的Fe3O4 NPs;
(4)取(3)中油酸稳定的Fe3O4 NPs,加入聚乙二醇mPEG-COOH,反应6h, 10000rpm离心收集沉淀,甲醇多次洗涤,分散在甲醇中,获得聚乙二醇稳定的 Fe3O4 NPs;
(5)取硝酸锌和二甲基咪唑分别溶于甲醇中,另取(2)中聚乙二醇稳定的Au NPs和(4)中聚乙二醇稳定的Fe3O4 NPs分散在硝酸锌-甲醇溶液中,机械搅拌60s,然后加入二甲基咪唑-甲醇溶液,待反应结束,8000rpm离心收集沉淀,用甲醇反复洗涤去除未反应组分,获得zif-8同时负载Au NPs和Fe3O4 NPs的纳米球。优选的,步骤(1)中制备的Au NPs溶液的浓度为3-4nmol/L。
优选的,步骤(2)中聚乙二醇mPEG-SH的浓度为5-20μmol/L。
优选的,步骤(3)中Fe(acac)3-油酸-乙醇溶液浓度为0.01-0.05mmol/mL。
优选的,步骤(3)中油酸稳定的Fe3O4 NPs溶液的浓度为5μmol/L。
优选的,步骤(4)中聚乙二醇mPEG-COOH的浓度为5-20μmol/L。
优选的,步骤(5)中硝酸锌与二甲基咪唑的摩尔比为1:8。
更优选的,zif-8纳米球同时负载Au NPs和Fe3O4 NPs。
优选的,zif-8负载的两种纳米粒子制备的纳米球具有光热性能和磁共振成像作用。
优选的,zif-8负载的两种纳米粒子制备的纳米球可用于生物探针、磁靶向等多种用途,尤其适用于癌症的磁靶向给药和细胞内光热治疗。
本发明的有益效果:
1、本发明解决了现有技术的单一负载,同时负载两种不同功能的纳米粒子有利于更多功能化的设计及利用。
2、本发明的纳米粒子产率高,Au NPs和Fe3O4 NPs的负载量高,粒径均匀稳定,制备过程安全无毒。
3、zif-8同时负载Au NPs和Fe3O4 NPs的反应过程受反应时间影响,zif-8纳米粒子的粒径增大,负载量也增加,根据不同的实验设计可以选择不同的反应时间。
4.本发明zif-8同时负载Au NPs和Fe3O4 NPs的过程对设备要求低,高效,有很广阔的应用前景。
附图说明
图1为本发明zif-8纳米粒子的透射电镜形貌图;
图2为本发明zif-8纳米球同时负载Au NPs和Fe3O4 NPs的透射电镜形貌图;
图3为本发明zif-8纳米球同时负载Au NPs和Fe3O4 NPs的扫描电镜形貌图;
图4为本发明zif-8纳米球同时负载Au NPs和Fe3O4 NPs的BET图;
图5为本发明zif-8纳米球同时负载Au NPs和Fe3O4 NPs的孔径分布图;
图6为本发明zif-8纳米球同时负载Au NPs和Fe3O4 NPs的XRD图;
图7为本发明zif-8纳米球同时负载Au NPs和Fe3O4 NPs的TGA图。
具体实施方式
实施例一
(1)利用文献描述的经典方法柠檬酸钠还原法合成13nmAu NPs,简单的,将0.01%,300mL氯金酸至于带有回流冷凝管的500mL圆底烧瓶中,剧烈沸腾后开始搅拌加入1%,9mL柠檬酸三钠水溶液,反应20min,直到溶液变成红色,将所得Au NPs溶液迅速冰水冷却,备用;
(2)取(1)中Au NPs,加入50mL聚乙二醇mPEG-SH,反应2h,16000rpm 离心收集沉淀,并用去离子水分散洗涤3次,分散在甲醇中,获得聚乙二醇稳定的Au NPs;
(3)配置100mL油酸-乙醇溶液,油酸与乙醇的体积比为3:47,另取5mmol Fe(acac)3加入油酸-乙醇溶液,混合搅拌10min,转移至200mL钢衬的高压反应釜中,180摄氏度反应12h,待反应结束,将反应釜冷却至室温,取出沉淀物, 10000rpm离心收集沉淀,并用乙醇多次洗涤,获得油酸稳定的Fe3O4 NPs;
(4)取(3)中油酸稳定的Fe3O4 NPs,加入20mL聚乙二醇mPEG-COOH,反应6h,10000rpm离心收集沉淀,甲醇多次洗涤,分散在甲醇中,获得聚乙二醇稳定的Fe3O4 NPs;
(5)取硝酸锌和二甲基咪唑分别溶于甲醇中,另取(2)中聚乙二醇稳定的Au NPs和(4)中聚乙二醇稳定的Fe3O4 NPs分散在5mL硝酸锌-甲醇溶液中,机械搅拌60s,然后加入5mL二甲基咪唑-甲醇溶液,待反应结束,8000rpm离心收集沉淀,用甲醇反复洗涤去除未反应组分,获得zif-8同时负载Au NPs和Fe3O4 NPs 的纳米球。
实施例二
(1)利用文献描述的经典方法柠檬酸钠还原法合成13nmAu NPs,简单的,将0.01%,300mL氯金酸至于带有回流冷凝管的500mL圆底烧瓶中,剧烈沸腾后开始搅拌加入1%,9mL柠檬酸三钠水溶液,反应20min,直到溶液变成红色,将所得Au NPs溶液迅速冰水冷却,备用;
(2)取(1)中Au NPs,加入50mL聚乙二醇mPEG-SH,反应2h,16000rpm 离心收集沉淀,并用去离子水分散洗涤3次,分散在甲醇中,获得聚乙二醇稳定的Au NPs;
(3)配置100mL油酸-乙醇溶液,油酸与乙醇的体积比为3:47,另取1mmol Fe(acac)3加入油酸-乙醇溶液,混合搅拌10min,转移至200mL钢衬的高压反应釜中,180摄氏度反应12h,待反应结束,将反应釜冷却至室温,取出沉淀物, 10000rpm离心收集沉淀,并用乙醇多次洗涤,获得油酸稳定的Fe3O4 NPs;
(4)取(3)中油酸稳定的Fe3O4 NPs,加入50mL聚乙二醇mPEG-COOH,反应6h,10000rpm离心收集沉淀,甲醇多次洗涤,分散在甲醇中,获得聚乙二醇稳定的Fe3O4 NPs;
(5)取硝酸锌和二甲基咪唑分别溶于甲醇中,另取(2)中聚乙二醇稳定的Au NPs和(4)中聚乙二醇稳定的Fe3O4 NPs分散在10mL硝酸锌-甲醇溶液中,机械搅拌60s,然后加入10mL二甲基咪唑-甲醇溶液,待反应结束,8000rpm离心收集沉淀,用甲醇反复洗涤去除未反应组分,获得zif-8同时负载Au NPs和Fe3O4 NPs的纳米球。
实施例三
(1)利用文献描述的经典方法柠檬酸钠还原法合成13nmAu NPs,简单的,将0.01%,300mL氯金酸至于带有回流冷凝管的500mL圆底烧瓶中,剧烈沸腾后开始搅拌加入1%,9mL柠檬酸三钠水溶液,反应20min,直到溶液变成红色,将所得Au NPs溶液迅速冰水冷却,备用;
(2)取(1)中Au NPs,加入50mL聚乙二醇mPEG-SH,反应2h,16000rpm 离心收集沉淀,并用去离子水分散洗涤3次,分散在甲醇中,获得聚乙二醇稳定的Au NPs;
(3)配置100mL油酸-乙醇溶液,油酸与乙醇的体积比为3:47,另取3mmol Fe(acac)3加入油酸-乙醇溶液,混合搅拌10min,转移至200mL钢衬的高压反应釜中,180摄氏度反应12h,待反应结束,将反应釜冷却至室温,取出沉淀物, 10000rpm离心收集沉淀,并用乙醇多次洗涤,获得油酸稳定的Fe3O4 NPs;
(4)取(3)中油酸稳定的Fe3O4 NPs,加入20mL聚乙二醇mPEG-COOH,反应6h,10000rpm离心收集沉淀,甲醇多次洗涤,分散在甲醇中,获得聚乙二醇稳定的Fe3O4 NPs;
(5)取硝酸锌和二甲基咪唑分别溶于甲醇中,另取(2)中聚乙二醇稳定的Au NPs和(4)中聚乙二醇稳定的Fe3O4 NPs分散在50mL硝酸锌-甲醇溶液中,机械搅拌60s,然后加入50mL二甲基咪唑-甲醇溶液,待反应结束,8000rpm离心收集沉淀,用甲醇反复洗涤去除未反应组分,获得zif-8同时负载Au NPs和Fe3O4 NPs的纳米球。

Claims (7)

1.一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,其特征在于,由如下方法制备而成:
(1)利用柠檬酸钠还原法合成13nmAu NPs,将0.01%,300mL氯金酸置于 带有回流冷凝管的500mL圆底烧瓶中,剧烈沸腾后开始搅拌加入1%,9mL柠檬酸三钠水溶液,反应20min,直到溶液变成红色,将所得Au NPs溶液迅速冰水冷却,备用;
(2)取(1)中Au NPs,加入聚乙二醇mPEG-SH,反应2h,16000rpm离心收集沉淀,并用去离子水分散洗涤3次,分散在甲醇中,获得聚乙二醇稳定的Au NPs;
(3)配置油酸-乙醇溶液,油酸与乙醇的体积比为3:47,另取适量Fe(acac)3加入油酸-乙醇溶液,混合搅拌10min,转移至钢衬的高压反应釜中,180摄氏度反应12h,待反应结束,将反应釜冷却至室温,取出沉淀物,10000rpm离心收集沉淀,并用乙醇多次洗涤,获得油酸稳定的Fe3O4 NPs;
(4)取(3)中油酸稳定的Fe3O4 NPs,加入聚乙二醇mPEG-COOH,反应6h,10000rpm离心收集沉淀,甲醇多次洗涤,分散在甲醇中,获得聚乙二醇稳定的Fe3O4 NPs;
(5)取硝酸锌和二甲基咪唑分别溶于甲醇中,另取(2)中聚乙二醇稳定的Au NPs和(4)中聚乙二醇稳定的Fe3O4 NPs分散在硝酸锌-甲醇溶液中,机械搅拌60s,然后加入二甲基咪唑-甲醇溶液,待反应结束,8000rpm离心收集沉淀,用甲醇反复洗涤去除未反应组分,获得zif-8同时负载Au NPs和Fe3O4 NPs的纳米球。
2.根据权利要求1所述的一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,其特征在于,步骤(1)中制备的Au NPs溶液的浓度为3-4nmol/L。
3.根据权利要求1所述的一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,其特征在于,步骤(2)中聚乙二醇mPEG-SH的浓度为5-20μmol/L。
4.根据权利要求1所述的一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,其特征在于,步骤(3)中Fe(acac)3-油酸-乙醇溶液浓度为0.01-0.05mmol/mL。
5.根据权利要求1所述的一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,其特征在于,步骤(4)中聚乙二醇mPEG-COOH的浓度为5-20μmol/L。
6.根据权利要求1所述的一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,其特征在于,步骤(5)中硝酸锌与二甲基咪唑的摩尔比为1:8。
7.根据权利要求1所述的一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法,其特征在于,zif-8纳米球同时负载Au NPs和Fe3O4 NPs。
CN201911051900.8A 2019-10-30 2019-10-30 一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法 Active CN110680927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911051900.8A CN110680927B (zh) 2019-10-30 2019-10-30 一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911051900.8A CN110680927B (zh) 2019-10-30 2019-10-30 一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法

Publications (2)

Publication Number Publication Date
CN110680927A CN110680927A (zh) 2020-01-14
CN110680927B true CN110680927B (zh) 2022-07-01

Family

ID=69115111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911051900.8A Active CN110680927B (zh) 2019-10-30 2019-10-30 一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法

Country Status (1)

Country Link
CN (1) CN110680927B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111991564A (zh) * 2020-08-26 2020-11-27 上海市第一人民医院 一种结合于nk92细胞的靶向纳米探针及其制备方法和应用
CN111905738B (zh) * 2020-09-02 2021-07-30 南京大学 四氧化三铁包覆金刚石的类芬顿催化剂的制备方法
CN112972423A (zh) * 2021-03-11 2021-06-18 上海大学 一种基于级联反应的纳米酶与化疗药共载的仿生纳米药物载体及其制备方法和应用
CN115192737B (zh) * 2022-07-18 2023-08-29 苏州久蓝生物医药有限公司 一种mri造影剂及其制备方法
CN115282290B (zh) * 2022-07-20 2023-08-15 武汉理工大学 一种pH响应的Au@ZIF-8水相制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084240A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种贵金属纳米粒子处于双壳夹层的磁性核/壳/壳三重结构材料及其制备方法
CN104888234A (zh) * 2015-05-22 2015-09-09 暨南大学 纳米-金属有机骨架化合物负载siRNA在制备抗肿瘤药物中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084240A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种贵金属纳米粒子处于双壳夹层的磁性核/壳/壳三重结构材料及其制备方法
CN104888234A (zh) * 2015-05-22 2015-09-09 暨南大学 纳米-金属有机骨架化合物负载siRNA在制备抗肿瘤药物中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A combination of tri-modal cancer imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles;Ruixin Bian,et al.;《Biomaterials Science》;20150803;第3卷;1270-1278 *
Controlled synthesis of Fe3O4@ZIF-8 nanoparticles for drug delivery;Guihuan Chen,et al.;《CrystEngComm》;20181009;第20卷;7486-7491 *
GSH响应的Au@ZIF-8的合成、性能及其在肿瘤诊疗一体化中的应用;曹美;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20190831;B020-254 *
Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia;Runa Ghosh,et al.;《Journal of Materials Chemistry》;20110808;第21卷;13388-13398 *

Also Published As

Publication number Publication date
CN110680927A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN110680927B (zh) 一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法
Olsson et al. Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles
Gao et al. Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties
CN101717122B (zh) 一种微波法制备四氧化三铁纳米片的方法
Baruwati et al. Bulk synthesis of monodisperse ferrite nanoparticles at water− organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization
Shi et al. Preparation and characterization of core-shell structure Fe3O4@ C magnetic nanoparticles
CN111072070B (zh) 一种高饱和磁化超顺磁多孔铁氧体微球的制备方法
Marandi et al. Fe3O4@ TEA core-shell nanoparticles decorated palladium: A highly active and magnetically separable nanocatalyst for the Heck coupling reaction
KR101480169B1 (ko) 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자
CN113512423A (zh) 一种基于金属有机框架的荧光碳量子点及其制备方法
CN103623436A (zh) 生物相容性磁性稀土纳米颗粒、其制备及磁共振成像应用
Qin et al. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@ Mn2+-doped NaYF4: Yb/Er core@ shell monodisperse nanoparticles and their subsequent ligand exchange in water
US20150313994A1 (en) Surface-modified iron oxide particles for cancer ablation
Zheng et al. Controllable synthesis of monodispersed iron oxide nanoparticles by an oxidation-precipitation combined with solvothermal process
Faaliyan et al. Magnetite-silica nanoparticles with core-shell structure: Single-step synthesis, characterization and magnetic behavior
CN112341630B (zh) 使用超重力技术连续制备纳米金属-有机框架材料的方法
CN103933904B (zh) Fe3O4核SiO2壳纳米结构磁性颗粒负载量及壳厚调控方法
Xu et al. Doping engineering and functionalization of iron oxide nanoclusters for biomedical applications
Di et al. Fluorescent and paramagnetic core–shell hybrid nanoparticles for bi-modal magnetic resonance/luminescence imaging
CN103303981B (zh) 一种四氧化三铁纳米粒子及其制备方法和用途
Xiong et al. A facile method for the room-temperature synthesis of water-soluble magnetic Fe3O4 nanoparticles: Combination of in situ synthesis and decomposition of polymer hydrogel
CN103130937A (zh) 一种pam包覆的四氧化三铁功能化纳米材料的制备方法
Zahraei et al. Synthesis and characterization of chitosan coated manganese zinc ferrite nanoparticles as MRI contrast agents
Luengo et al. Doped-iron oxide nanocrystals synthesized by one-step aqueous route for multi-imaging purposes
Faham et al. Peg decorated glycine capped mn-ferrite nanoparticles synthesized by co-precipitation method for biomedical application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant