CN110673623A - 一种基于双环pd控制算法控制的四旋翼无人机着陆方法 - Google Patents

一种基于双环pd控制算法控制的四旋翼无人机着陆方法 Download PDF

Info

Publication number
CN110673623A
CN110673623A CN201911066729.8A CN201911066729A CN110673623A CN 110673623 A CN110673623 A CN 110673623A CN 201911066729 A CN201911066729 A CN 201911066729A CN 110673623 A CN110673623 A CN 110673623A
Authority
CN
China
Prior art keywords
control
attitude
aerial vehicle
unmanned aerial
quad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911066729.8A
Other languages
English (en)
Other versions
CN110673623B (zh
Inventor
宋志强
方武
刘孝赵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Trade and Commerce
Original Assignee
Suzhou Institute of Trade and Commerce
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Trade and Commerce filed Critical Suzhou Institute of Trade and Commerce
Priority to CN201911066729.8A priority Critical patent/CN110673623B/zh
Publication of CN110673623A publication Critical patent/CN110673623A/zh
Application granted granted Critical
Publication of CN110673623B publication Critical patent/CN110673623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于双环PD控制算法控制的四旋翼无人机着陆方法,通过设计四旋翼无人机着陆时的位置控制律u1和姿态控制律,控制四旋翼无人机着陆时的位置坐标和三个姿态的欧拉角;设计基于双环的PD控制的着陆算法,外环控制位置,内环控制姿态;将外环产生的中间指令信号θd和ψd传递给内环,内环通过其内环控制律实现对两个指令信号的跟踪,闭环系统的稳定性通过调整内外环增益系数得到保证;PD控制器在工程上容易实现,可用于实时性较高的场合,具有算法简单、参数易调整等特点,可用于实时性较高的场合。

Description

一种基于双环PD控制算法控制的四旋翼无人机着陆方法
技术领域
本发明属于四旋翼无人机控制领域,具体涉及一种基于双环PD控制算法控制的四旋翼无人机着陆方法。
背景技术
近年来,无人机(UAV)越来越多地应用于民用领域,在环保、电力、交通、测绘、安防、农业等领域均有无人机的身影;随着现代技术的进步,特别是人工智能技术的快速发展,未来无人机+行业应用的模式具有广阔的应用前景;
目前无人机的智能化水平还有待提高,许多应用背后都有无人机操作员在控制无人机,要提高无人机的自动化和智能化水平,还需科研工作者进行大量研究,无人机的自主着陆问题是无人机智能化应用必须解决的关键技术问题,相比无人机航路规划、导航等已有较多的研究,自主着陆方面的研究还相对较少;
在现有的关于无人机的自主着陆的主要理论有:张建宏等针对固定翼无人机,采用在线稳定逆研究无人机自主精确着陆问题;高杨军等提出一种内外环混合迭代的滑模控制策略,双环都采用混合迭代滑模控制算法以克服滑模控制的缺点;豆清波等针对小型伞降无人机回收的特点,设计该类无人机全机着陆试验系统并进行着陆试验;针对固定翼无人机在着陆过程中速度和下沉率不断增大的问题,采用鲁棒伺服和PID相结合的控制方法设计着陆控制律并进行仿真试验;针对轮式无人机,根据自适应内模控制原理,以地速与下沉率为控制目标,设计着陆纵向飞行控制律;吴政隆等在分析固定翼无人机着陆阶段运行特性基础上,设计基于光流的自主着陆控制律,并用Simulink进行仿真;以上控制算法通常要依赖GPS导航或惯导系统,由于GPS的缺点,基于视觉的自主着陆吸引了大批研究人员,张小正等基于视觉导航方法,设计圆环型地标并基于此地标研究无人机着陆位姿估计方法;
综上,目前我国在固定翼无人机的着陆算法设计方面已有较多研究;但对于多旋翼无人机的自主着陆的研究和相关理论数据还相对较少,四旋翼无人机在起飞和着陆时不需要跑道,另外其可悬停的特性对于监测领域具有非常强的吸引力,其应用领域非常广,因此,对于四旋翼无人机的自主着陆控制研究,用以解决目前四旋翼无人机的着陆问题具有现实意义。
发明内容
为了克服上述现有技术的缺陷,本发明的目的在于提供一种基于双环PD控制算法控制的四旋翼无人机着陆方法,通过设计基于双环的PD控制的着陆算法,外环控制位置,内环控制姿态;将外环产生的中间指令信号θd和ψd传递给内环,内环通过其内环控制律实现对两个指令信号的跟踪,闭环系统的稳定性通过调整内外环增益系数得到保证;在工程上容易实现,可用于实时性较高的场合,实用性高。
为了实现上述目的,本发明所采用的技术方案如下:
一种基于双环PD控制算法控制的四旋翼无人机着陆方法,包括以下步骤:
步骤一:建立四旋翼无人机MIMO系统的动力学模型;
步骤二:通过步骤一的动力学模型设计外环位置控制律u1,以实现x→xd,y→yd,zd→0;
步骤三:根据步骤一的动力学模型设计内环姿态控制律,使θ→θd,ψ→ψd,φ→φd,φd→0;
步骤四:分别利用位置控制律u1和姿态控制律控制的位置子系统和姿态子系统控制四旋翼无人机着陆时的位置和姿态,实现四旋翼无人机的自主着陆;
其中:(x,y,z)为UAV质心在惯性坐标系中的位置坐标,(θ,ψ,φ)为无人机三个姿态的欧拉角,分别为俯仰角、偏航角和滚转角,(xd,yd)为四旋翼无人机着陆时的位置坐标,(θddd)为四旋翼无人机着陆时的三个姿态的欧拉角。
进一步的,步骤一所述的四旋翼无人机MIMO系统的动力学模型具体为:
Figure BDA0002259600350000031
其中:(x,y,z)为UAV质心在惯性坐标系中的位置坐标,(θ,ψ,
Figure BDA0002259600350000032
)为无人机三个姿态的欧拉角,分别为俯仰角、偏航角和滚转角,g为重力加速度,l为无人机半径长度,m为UAV之负载总质量,Ii为围绕每个轴之转动惯量,Ki为阻力系数,
Figure BDA0002259600350000041
为UAV质心位置一阶导数,
Figure BDA0002259600350000042
分别代表四旋翼无人机在x、y、z方向的线速度,
Figure BDA0002259600350000043
为四旋翼无人机在飞行时三个姿态欧拉角的一阶导数,
Figure BDA0002259600350000044
分别代表四旋翼无人的欧拉角角速度、偏航角角速度、滚转角角速度,
Figure BDA0002259600350000045
为UAV质心位置二阶导数,
Figure BDA0002259600350000046
为四旋翼无人机在飞行时三个姿态欧拉角的二阶导数。
进一步的,步骤二所述位置控制律u1设计的具体步骤为:
S1.由公式(1)定义:
Figure BDA0002259600350000047
S2.对于第一个位置子系统采用基于前馈补偿的PD控制算法设计控制律:
Figure BDA0002259600350000049
其中:
Figure BDA00022596003500000410
为四旋翼无人机飞行在某一位置时该点在x轴上的加速度,
Figure BDA00022596003500000411
为前馈补充项,
Figure BDA00022596003500000412
为PD控制,即比例、微分控制;令xe=x-xd,则
Figure BDA00022596003500000413
则第一个位置子系统
Figure BDA00022596003500000414
可化简为
Figure BDA00022596003500000415
kp1为x分量比例系数、kd1为x分量微分系数、xe为无人机x方向的误差,根据二阶系统Hurwitz判据,需要满足kp1>0,可取kp1=4.0,kd1=4.0;
S3.对于第二个位置子系统
Figure BDA0002259600350000052
采用基于前馈补偿的PD控制算法设计控制律:
Figure BDA0002259600350000053
其中:
Figure BDA0002259600350000054
为四旋翼无人机飞行在某一位置时该点在y轴上的加速度,
Figure BDA0002259600350000055
为前馈补充项,
Figure BDA0002259600350000056
为PD控制,即比例、微分控制;令ye=y-yd,则则第二个位置子系统
Figure BDA0002259600350000058
可化简为
Figure BDA0002259600350000059
kp2为y分量比例系数、kd2为y分量微分系数、ye为无人机y方向的误差,根据二阶系统Hurwitz判据,需要满足kp2>0,
Figure BDA00022596003500000510
要使系统稳定,取kp2=4.0,kd2=4.0;
S4.对于第三个位置子系统采用基于前馈补偿的PD控制算法设计控制律:
Figure BDA00022596003500000512
其中:
Figure BDA00022596003500000513
为四旋翼无人机飞行在某一位置时该点在z轴上的加速度,
Figure BDA00022596003500000514
为前馈补充项,为PD控制,即比例、微分控制;令ze=z-zd,则
Figure BDA00022596003500000516
则第二个位置子系统
Figure BDA00022596003500000517
可化简为
Figure BDA00022596003500000518
kp3为z分量比例系数、kd3为z分量微分系数、ze为无人机z方向的误差,根据二阶系统Hurwitz判据,需要满足kp3>0,
Figure BDA00022596003500000519
要使系统稳定,可取kp3=4.0,kd3=4.0;
S5.假定满足控制律公式(3)-(5)所需要的姿态角度为θd和ψd,由公式(2)可得:
Figure BDA0002259600350000061
由u1z=u1 cosφcosψd,可得将其代入公式(6)可得:
Figure BDA0002259600350000063
其中:若X>1时,取θd=π/2;若X<-1时,取θd=-π/2。
进一步的,步骤三所述的姿态控制律设计的具体步骤为:
S1.取θe=θ-θd,采用前馈补偿的PD控制算法设计第一个姿态角子系统
Figure BDA0002259600350000064
设计控制律:
Figure BDA0002259600350000065
其中:
Figure BDA0002259600350000066
为四旋翼无人机飞行在某一姿态时其俯仰角θ的加速度,
因θe=θ-θd,等式两遍求导,则
Figure BDA0002259600350000067
则第一个姿态角子系统可化简为
Figure BDA0002259600350000069
kp4为比例系数、kd4为微分系数、θe为俯仰角误差,根据二阶系统Hurwitz判据,需要满足kp4>0,
Figure BDA0002259600350000071
要使系统稳定,取kp4=16,kd4=16;
S2.取ψe=ψ-ψd,采用前馈补偿的PD控制算法设计第二个姿态角子系统
Figure BDA0002259600350000072
姿态控制律为:
Figure BDA0002259600350000073
其中:
Figure BDA0002259600350000074
为四旋翼无人机飞行在某一姿态时其偏航角Ψ的加速度,因ψe=ψ-ψd,等式两遍求导,则
Figure BDA0002259600350000075
则第二个姿态角子系统
Figure BDA0002259600350000076
可化简得到
Figure BDA0002259600350000077
kp5为比例系数、kd5为微分系数,ψe为俯仰角误差,根据二阶系统Hurwitz判据,需要满足kp4>0,
Figure BDA0002259600350000078
要使系统稳定,取kp5=16,kd5=16;
S3.取
Figure BDA0002259600350000079
采用前馈补偿的PD控制算法设计第三个姿态角子系统
Figure BDA00022596003500000710
姿态控制律为:
其中:
Figure BDA00022596003500000712
为四旋翼无人机飞行在某一姿态时其滚转角φ的加速度,因
Figure BDA00022596003500000713
等式两遍求导,则
Figure BDA00022596003500000714
则第三个姿态角子系统可化简得到
Figure BDA00022596003500000715
kp6为比例系数、kd6为微分系数,φe为滚转角误差,根据二阶系统Hurwitz判据,需要满足kp6>0,
Figure BDA00022596003500000716
要使系统稳定,取kp6=16,kd6=16。
进一步的,步骤四所述的基于内外环控制率控制的位置子系统和姿态子系统控制四旋翼无人机着陆时的位置和姿态,实现四旋翼无人机的自主着陆的具体过程为:
S1.指令信号发生器将四旋翼无人机自主着陆时的质心位置(xd,yd,zd)和姿态的欧拉角(θddd)分别发送到外环位置子系统控制器和内环姿态子系统控制器;
S2.外环位置子系统控制器利用位置控制率计算出位置控制律u1和中间指令信号θd和ψd,并将位置控制律u1发送给外环位置子系统,中间指令信号θd和ψd发送给内环姿态子系统,内环通过其内环控制律实现对两个指令信号的跟踪;同时内环姿态子系统控制器计算出姿态控制律u2、u3、u4,并将姿态控制律u2、u3、u4发送给内环姿态子系统;
S3.姿态子系统收到姿态控制律u2、u3、u4后,经计算得到给定的姿态的欧拉角(θddd)对应在惯性坐标系中姿态的欧拉角(θ,ψ,
Figure BDA0002259600350000081
),控制四旋翼无人机着陆时的姿态;同时,位置子系统收到位置控制律u1后,经计算得到给定的质心位置(xd,yd,zd)对应在惯性坐标系中的位置坐标(x,y,z),控制四旋翼无人机着陆时的位置。
本发明的有益效果是:本发明公开了一种基于双环PD控制算法控制的四旋翼无人机着陆方法,通过设计基于双环的PD控制的着陆算法,外环控制位置,内环控制姿态;将外环产生的中间指令信号θd和ψd传递给内环,内环通过其内环控制律实现对两个指令信号的跟踪,闭环系统的稳定性通过调整内外环增益系数得到保证;PD控制器在工程上容易实现,具有可用于实时性较高的场合,实用性高的特点。
附图说明
图1为本发明控制系统框图。
图2为本发明三个位置状态收敛曲线图。
图3-1为本发明俯仰角收敛曲线图。
图3-2为本发明偏航角收敛曲线图。
图3-3为本发明滚转角收敛曲线图。
图4为本发明系统存在白噪声时x,y,z三个位置状态收敛曲线图。
具体实施方式
为了使本领域的普通技术人员能更好的理解本发明的技术方案,下面结合附图和实施例对本发明的技术方案做进一步的描述。
参照附图1-2所示的一种基于双环PD控制算法控制的四旋翼无人机着陆方法,包括以下步骤:
步骤一:建立四旋翼无人机MIMO系统的动力学模型;
步骤二:通过步骤一的动力学模型设计外环位置控制律u1,以实现x→xd,y→yd,zd→0;
步骤三:根据步骤一的动力学模型设计内环姿态控制律,使θ→θd,ψ→ψd,φ→φd,φd→0;
步骤四:分别利用位置控制律u1和姿态控制律控制的位置子系统和姿态子系统控制四旋翼无人机着陆时的位置和姿态,实现四旋翼无人机的自主着陆;
其中:(x,y,z)为UAV质心在惯性坐标系中的位置坐标,(θ,ψ,φ)为无人机三个姿态的欧拉角,分别为俯仰角、偏航角和滚转角,(xd,yd)为四旋翼无人机着陆时的位置坐标,(θddd)为四旋翼无人机着陆时的三个姿态的欧拉角。
步骤一所述的四旋翼无人机MIMO系统的动力学模型具体为:
其中:(x,y,z)为UAV质心在惯性坐标系中的位置坐标,(θ,ψ,
Figure BDA0002259600350000102
)为无人机三个姿态的欧拉角,分别为俯仰角、偏航角和滚转角,g为重力加速度,l为无人机半径长度,m为UAV之负载总质量,Ii为围绕每个轴之转动惯量,Ki为阻力系数,
Figure BDA0002259600350000103
为UAV质心位置一阶导数,分别代表四旋翼无人机在x、y、z方向的线速度,
Figure BDA0002259600350000105
为四旋翼无人机在飞行时三个姿态欧拉角的一阶导数,
Figure BDA0002259600350000106
分别代表四旋翼无人的欧拉角角速度、偏航角角速度、滚转角角速度,
Figure BDA0002259600350000107
为UAV质心位置二阶导数,
Figure BDA0002259600350000108
为四旋翼无人机在飞行时三个姿态欧拉角的二阶导数。
进一步的,步骤二所述位置控制律u1设计的具体步骤为:
S1.由公式(1)定义:
Figure BDA0002259600350000111
S2.对于第一个位置子系统
Figure BDA0002259600350000112
采用基于前馈补偿的PD控制算法设计控制律:
Figure BDA0002259600350000113
其中::
Figure BDA0002259600350000114
为四旋翼无人机飞行在某一位置时该点在x轴上的加速度,为前馈补充项,为PD控制,即比例、微分控制;令xe=x-xd,则
Figure BDA0002259600350000117
则第一个位置子系统
Figure BDA0002259600350000118
可化简为kp1为x分量比例系数、kd1为x分量微分系数、xe为无人机x方向的误差,根据二阶系统Hurwitz判据,需要满足kp1>0,
Figure BDA00022596003500001110
可取kp1=4.0,kd1=4.0;
S3.对于第二个位置子系统
Figure BDA00022596003500001111
采用基于前馈补偿的PD控制算法设计控制律:
其中:
Figure BDA00022596003500001113
为四旋翼无人机飞行在某一位置时该点在y轴上的加速度,
Figure BDA00022596003500001114
为前馈补充项,
Figure BDA00022596003500001115
为PD控制,即比例、微分控制;令ye=y-yd,则
Figure BDA00022596003500001116
则第二个位置子系统
Figure BDA00022596003500001117
可化简为kp2为y分量比例系数、kd2为y分量微分系数、ye为无人机y方向的误差,根据二阶系统Hurwitz判据,需要满足kp2>0,
Figure BDA00022596003500001119
要使系统稳定,取kp2=4.0,kd2=4.0;
S4.对于第三个位置子系统
Figure BDA0002259600350000121
采用基于前馈补偿的PD控制算法设计控制律:
Figure BDA0002259600350000122
其中:
Figure BDA0002259600350000123
为四旋翼无人机飞行在某一位置时该点在z轴上的加速度,为前馈补充项,
Figure BDA0002259600350000125
为PD控制,即比例、微分控制;令ze=z-zd,则
Figure BDA0002259600350000126
则第二个位置子系统
Figure BDA0002259600350000127
可化简为
Figure BDA0002259600350000128
kp3为z分量比例系数、kd3为z分量微分系数、ze为无人机z方向的误差,根据二阶系统Hurwitz判据,需要满足kp3>0,
Figure BDA0002259600350000129
要使系统稳定,可取kp3=4.0,kd3=4.0;
S5.假定满足控制律公式(3)-(5)所需要的姿态角度为θd和ψd,由可公式(2)可得:
Figure BDA00022596003500001210
由u1z=u1 cosφcosψd,可得将其代入公式(6)可得:
Figure BDA00022596003500001212
其中:若X>1时,取θd=π/2;若X<-1时,取θd=-π/2。
进一步的,步骤三所述的姿态控制律设计的具体步骤为:
S1.取θe=θ-θd,采用前馈补偿的PD控制算法设计第一个姿态角子系统设计控制律:
其中:
Figure BDA0002259600350000133
为四旋翼无人机飞行在某一姿态时其俯仰角θ的加速度,因θe=θ-θd,等式两遍求导,则
Figure BDA0002259600350000134
则第一个姿态角子系统
Figure BDA0002259600350000135
可化简为
Figure BDA0002259600350000136
kp4为比例系数、kd4为微分系数、θe为俯仰角误差,根据二阶系统Hurwitz判据,需要满足kp4>0,
Figure BDA0002259600350000137
要使系统稳定,取kp4=16,kd4=16;
S2.取ψe=ψ-ψd,采用前馈补偿的PD控制算法设计第二个姿态角子系统
Figure BDA0002259600350000138
姿态控制律为:
Figure BDA0002259600350000139
其中:
Figure BDA00022596003500001310
为四旋翼无人机飞行在某一姿态时其偏航角Ψ的加速度,因ψe=ψ-ψd,等式两遍求导,则
Figure BDA00022596003500001311
则第二个姿态角子系统
Figure BDA00022596003500001312
可化简得到kp5为比例系数、kd5为微分系数,ψe为俯仰角误差,根据二阶系统Hurwitz判据,需要满足kp4>0,
Figure BDA00022596003500001314
要使系统稳定,取kp5=16,kd5=16;
S3.取
Figure BDA00022596003500001315
采用前馈补偿的PD控制算法设计第三个姿态角子系统姿态控制律为:
Figure BDA0002259600350000141
其中:
Figure BDA0002259600350000142
为四旋翼无人机飞行在某一姿态时其滚转角φ的加速度,因等式两遍求导,则
Figure BDA0002259600350000144
则第三个姿态角子系统可化简得到kp6为比例系数、kd6为微分系数,φe为滚转角误差,根据二阶系统Hurwitz判据,需要满足kp6>0,
Figure BDA0002259600350000146
要使系统稳定,取kp6=16,kd6=16;
在公式(8)和公式(9)中,需要对中间指令信号θd和ψd求导,可采用有限时间收敛三阶微分器实现
Figure BDA0002259600350000147
进一步的,步骤四所述的基于内外环控制率控制的位置子系统和姿态子系统控制四旋翼无人机着陆时的位置和姿态,实现四旋翼无人机的自主着陆的具体过程为:
S1.指令信号发生器将四旋翼无人机自主着陆时的质心位置(xd,yd,zd)和姿态的欧拉角(θddd)分别发送到外环位置子系统控制器和内环姿态子系统控制器;
S2.外环位置子系统控制器利用位置控制率计算出位置控制律u1和中间指令信号θd和ψd,并将位置控制律u1发送给外环位置子系统,中间指令信号θd和ψd发送给内环姿态子系统,内环通过其内环控制律实现对两个指令信号的跟踪;同时内环姿态子系统控制器计算出姿态控制律u2、u3、u4,并将姿态控制律u2、u3、u4发送给内环姿态子系统;
S3.姿态子系统收到姿态控制律u2、u3、u4后,经计算得到给定的姿态的欧拉角(θddd)对应在惯性坐标系中姿态的欧拉角(θ,ψ,
Figure BDA0002259600350000151
),控制四旋翼无人机着陆时的姿态;同时,位置子系统收到位置控制律u1后,经计算得到给定的质心位置(xd,yd,zd)对应在惯性坐标系中的位置坐标(x,y,z),控制四旋翼无人机着陆时的位置。
实施例1:如附图3-1、3-2和3-3所示,对步骤二和步骤三计算得到的(xd,yd)和(θddd)进行仿真模拟,具体是在Matlab R2017a下进行仿真,仿真时各参数取值如表1所示:
表1被控对象仿真参数
参数 说明
m 2 无人机总质量
l 0.2 无人机半径长度
g 9.8 重力加速度
K<sub>1</sub> 0.01 阻力系数1
K<sub>2</sub> 0.01 阻力系数2
K<sub>3</sub> 0.01 阻力系数3
K<sub>4</sub> 0.012 阻力系数4
K<sub>5</sub> 0.012 阻力系数5
I<sub>1</sub> 1.25 转动惯量1
I<sub>2</sub> 1.25 转动惯量2
I<sub>3</sub> 2.5 转动惯量3
仿真的具体步骤为:
S1.设被控对象之初始状态取[3 0 2 0 10 0],角度初始状态取[0 0 0 0π/6 0];
S2.采用位置控制律式(3)-式(5),姿态控制律式(8)-式(10),取xd=10,yd=8,zd=0,
Figure BDA0002259600350000161
系统在没有干扰的理想状态下,进行仿真计算,得到四旋翼无人机着陆时三个位置的收敛过程过程如附图2所示,四旋翼无人机着陆时三个姿态的收敛过程如附图3所示;
从附图2和附图3的收敛曲线可看出,四旋翼无人机着陆于(10,8,0),着陆过程平稳,收敛速度较快,三个位置收敛于期望值,没有出现超调现象,采用内环收敛速度大于外环收敛速度的方法,可保证闭环系统稳定性。
实施例2:与实施例1不同的是,在仿真过程中,系统中引入有限带宽白噪声,所得到的四旋翼无人机着陆时三个位置的收敛过过程如附图4所示;
从附图4的收敛曲线可看出,引入白噪声后,系统位置状态曲线总体收敛,存在超调但幅度较小,最终四旋翼无人机着陆于(10,8,0)附近。从仿真结果可看出,系统存在扰动情况下,双环PD控制算法也具有实用性。
从附图2-附图4可以得到,本申请通过设计基于双环的PD控制的着陆算法,外环控制位置,内环控制姿态;将外环产生的中间指令信号θd和ψd传递给内环,内环通过其内环控制律实现对两个指令信号的跟踪,闭环系统的稳定性通过调整内外环增益系数得到保证;PD控制器在工程上容易实现,可用于实时性较高的场合;有效保证了四旋翼无人机降落时的准确位置和姿态。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种基于双环PD控制算法控制的四旋翼无人机着陆方法,其特征在于,包括以下步骤:
步骤一:建立四旋翼无人机MIMO系统的动力学模型;
步骤二:通过步骤一的动力学模型设计外环位置控制律u1,以实现x→xd,y→yd,zd→0;
步骤三:根据步骤一的动力学模型设计内环姿态控制律,使θ→θd,ψ→ψd,φ→φd,φd→0;
步骤四:分别利用位置控制律u1和姿态控制律控制的位置子系统和姿态子系统控制四旋翼无人机着陆时的位置和姿态,实现四旋翼无人机的自主着陆;
其中:(x,y,z)为UAV质心在惯性坐标系中的位置坐标,(θ,ψ,φ)为无人机三个姿态的欧拉角,分别为俯仰角、偏航角和滚转角,(xd,yd)为四旋翼无人机着陆时的位置坐标,(θddd)为四旋翼无人机着陆时的三个姿态的欧拉角。
2.根据权利要求1所述的一种基于双环PD控制算法控制的四旋翼无人机着陆方法,其特征在于,步骤一所述的四旋翼无人机MIMO系统的动力学模型具体为:
Figure FDA0002259600340000021
其中:(x,y,z)为UAV质心在惯性坐标系中的位置坐标,
Figure FDA0002259600340000029
为无人机三个姿态的欧拉角,分别为俯仰角、偏航角和滚转角,g为重力加速度,l为无人机半径长度,m为UAV之负载总质量,Ii为围绕每个轴之转动惯量,Ki为阻力系数,为UAV质心位置一阶导数,
Figure FDA0002259600340000023
分别代表四旋翼无人机在x、y、z方向的线速度,
Figure FDA0002259600340000024
为四旋翼无人机在飞行时三个姿态欧拉角的一阶导数,
Figure FDA0002259600340000025
分别代表四旋翼无人的欧拉角角速度、偏航角角速度、滚转角角速度,
Figure FDA0002259600340000026
为UAV质心位置二阶导数,
Figure FDA0002259600340000027
为四旋翼无人机在飞行时三个姿态欧拉角的二阶导数。
3.根据权利要求2所述的一种基于双环PD控制算法控制的四旋翼无人机着陆方法,其特征在于,步骤二所述位置控制律u1设计的具体步骤为:
S1.由公式(1)定义:
Figure FDA0002259600340000028
S2.对于第一个位置子系统
Figure FDA0002259600340000031
采用基于前馈补偿的PD控制算法设计控制律:
Figure FDA0002259600340000032
其中:
Figure FDA0002259600340000033
为四旋翼无人机飞行在某一位置时该点在x轴上的加速度,
Figure FDA0002259600340000034
为前馈补充项,为PD控制,即比例、微分控制;令xe=x-xd,则
Figure FDA0002259600340000036
则第一个位置子系统
Figure FDA0002259600340000037
可化简为
Figure FDA0002259600340000038
kp1为x分量比例系数、kd1为x分量微分系数、xe为无人机x方向的误差,根据二阶系统Hurwitz判据,需要满足kp1>0,
Figure FDA0002259600340000039
可取kp1=4.0,kd1=4.0;
S3.对于第二个位置子系统
Figure FDA00022596003400000310
采用基于前馈补偿的PD控制算法设计控制律:
Figure FDA00022596003400000311
其中:
Figure FDA00022596003400000312
为四旋翼无人机飞行在某一位置时该点在y轴上的加速度,
Figure FDA00022596003400000313
为前馈补充项,为PD控制,即比例、微分控制;令ye=y-yd,则
Figure FDA00022596003400000315
则第二个位置子系统
Figure FDA00022596003400000316
可化简为
Figure FDA00022596003400000317
kp2为y分量比例系数、kd2为y分量微分系数、ye为无人机y方向的误差,根据二阶系统Hurwitz判据,需要满足kp2>0,
Figure FDA00022596003400000318
要使系统稳定,取kp2=4.0,kd2=4.0;
S4.对于第三个位置子系统
Figure FDA00022596003400000319
采用基于前馈补偿的PD控制算法设计控制律:
Figure FDA0002259600340000041
其中:
Figure FDA0002259600340000042
为四旋翼无人机飞行在某一位置时该点在z轴上的加速度,
Figure FDA0002259600340000043
为前馈补充项,
Figure FDA0002259600340000044
为PD控制,即比例、微分控制;令ze=z-zd,则
Figure FDA0002259600340000045
则第二个位置子系统
Figure FDA0002259600340000046
可化简为kp3为z分量比例系数、kd3为z分量微分系数、ze为无人机z方向的误差,根据二阶系统Hurwitz判据,需要满足kp3>0,
Figure FDA0002259600340000048
要使系统稳定,可取kp3=4.0,kd3=4.0;
S5.假定满足控制律公式(3)-(5)所需要的姿态角度为θd和ψd,由公式(2)可得:
Figure FDA0002259600340000049
由u1z=u1cosφcosψd,可得
Figure FDA00022596003400000410
将其代入公式(6)可得:
Figure FDA00022596003400000411
其中:若X>1时,取θd=π/2;若X<-1时,取θd=-π/2。
4.根据权利要求2所述的一种基于双环PD控制算法控制的四旋翼无人机着陆方法,其特征在于,步骤三所述的姿态控制律设计的具体步骤为:
S1.取θe=θ-θd,采用前馈补偿的PD控制算法设计第一个姿态角子系统设计控制律:
Figure FDA0002259600340000052
其中:
Figure FDA0002259600340000053
为四旋翼无人机飞行在某一姿态时其俯仰角θ的加速度,
因θe=θ-θd,等式两遍求导,则
Figure FDA0002259600340000054
则第一个姿态角子系统
Figure FDA0002259600340000055
可化简为
Figure FDA0002259600340000056
kp4为比例系数、kd4为微分系数、θe为俯仰角误差,根据二阶系统Hurwitz判据,需要满足kp4>0,要使系统稳定,取kp4=16,kd4=16;
S2.取ψe=ψ-ψd,采用前馈补偿的PD控制算法设计第二个姿态角子系统
Figure FDA0002259600340000058
姿态控制律为:
Figure FDA0002259600340000059
其中:
Figure FDA00022596003400000510
为四旋翼无人机飞行在某一姿态时其偏航角Ψ的加速度,因ψe=ψ-ψd,等式两遍求导,则
Figure FDA00022596003400000511
则第二个姿态角子系统
Figure FDA00022596003400000512
可化简得到
Figure FDA00022596003400000513
kp5为比例系数、kd5为微分系数,ψe为俯仰角误差,根据二阶系统Hurwitz判据,需要满足kp4>0,
Figure FDA00022596003400000514
要使系统稳定,取kp5=16,kd5=16;
S3.取
Figure FDA00022596003400000516
采用前馈补偿的PD控制算法设计第三个姿态角子系统
Figure FDA00022596003400000515
姿态控制律为:
Figure FDA0002259600340000061
其中:
Figure FDA0002259600340000062
为四旋翼无人机飞行在某一姿态时其滚转角φ的加速度,因
Figure FDA0002259600340000063
等式两遍求导,则
Figure FDA0002259600340000064
则第三个姿态角子系统可化简得到kp6为比例系数、kd6为微分系数,φe为滚转角误差,根据二阶系统Hurwitz判据,需要满足kp6>0,要使系统稳定,取kp6=16,kd6=16。
5.根据权利要求1所述的一种基于双环PD控制算法控制的四旋翼无人机着陆方法,其特征在于,步骤四所述的基于内外环控制率控制的位置子系统和姿态子系统控制四旋翼无人机着陆时的位置和姿态,实现四旋翼无人机的自主着陆的具体过程为:
S1.指令信号发生器将四旋翼无人机自主着陆时的质心位置(xd,yd,zd)和姿态的欧拉角(θddd)分别发送到外环位置子系统控制器和内环姿态子系统控制器;
S2.外环位置子系统控制器利用位置控制率计算出位置控制律u1和中间指令信号θd和ψd,并将位置控制律u1发送给外环位置子系统,中间指令信号θd和ψd发送给内环姿态子系统,内环通过其内环控制律实现对两个指令信号的跟踪;同时内环姿态子系统控制器计算出姿态控制律u2、u3、u4,并将姿态控制律u2、u3、u4发送给内环姿态子系统;
S3.姿态子系统收到姿态控制律u2、u3、u4后,经计算得到给定的姿态的欧拉角(θddd)对应在惯性坐标系中姿态的欧拉角
Figure FDA0002259600340000067
控制四旋翼无人机着陆时的姿态;同时,位置子系统收到位置控制律u1后,经计算得到给定的质心位置(xd,yd,zd)对应在惯性坐标系中的位置坐标(x,y,z),控制四旋翼无人机着陆时的位置。
CN201911066729.8A 2019-11-04 2019-11-04 一种基于双环pd控制算法控制的四旋翼无人机着陆方法 Active CN110673623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911066729.8A CN110673623B (zh) 2019-11-04 2019-11-04 一种基于双环pd控制算法控制的四旋翼无人机着陆方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911066729.8A CN110673623B (zh) 2019-11-04 2019-11-04 一种基于双环pd控制算法控制的四旋翼无人机着陆方法

Publications (2)

Publication Number Publication Date
CN110673623A true CN110673623A (zh) 2020-01-10
CN110673623B CN110673623B (zh) 2022-11-22

Family

ID=69085767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911066729.8A Active CN110673623B (zh) 2019-11-04 2019-11-04 一种基于双环pd控制算法控制的四旋翼无人机着陆方法

Country Status (1)

Country Link
CN (1) CN110673623B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290424A (zh) * 2020-03-26 2020-06-16 南方医科大学南方医院 用于医院血液样本运输的无人机姿态控制方法及无人机
CN111948935A (zh) * 2020-08-03 2020-11-17 曾喆昭 一种欠驱动vtol飞行器的自耦pd控制理论方法
CN112835374A (zh) * 2021-01-08 2021-05-25 上海航天控制技术研究所 一种适用于大空域的自适应稳定控制方法
CN116520877A (zh) * 2023-04-12 2023-08-01 华中科技大学 一种四旋翼无人机狭窄管道内自主定位及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080147254A1 (en) * 2004-06-02 2008-06-19 David William Vos Systems and Methods for Controlling Dynamic Systems
CN105173051A (zh) * 2015-09-15 2015-12-23 北京天航华创科技股份有限公司 一种平流层飞艇的制导控制一体化及控制分配方法
US20170153650A1 (en) * 2015-11-30 2017-06-01 Metal Industries Research & Development Centre Multiple rotors aircraft and control method
CN108363298A (zh) * 2018-01-17 2018-08-03 合肥工业大学 一种基于四元数描述的四旋翼无人机快速收敛控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080147254A1 (en) * 2004-06-02 2008-06-19 David William Vos Systems and Methods for Controlling Dynamic Systems
CN105173051A (zh) * 2015-09-15 2015-12-23 北京天航华创科技股份有限公司 一种平流层飞艇的制导控制一体化及控制分配方法
US20170153650A1 (en) * 2015-11-30 2017-06-01 Metal Industries Research & Development Centre Multiple rotors aircraft and control method
CN108363298A (zh) * 2018-01-17 2018-08-03 合肥工业大学 一种基于四元数描述的四旋翼无人机快速收敛控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐堂等: "四旋翼无人机姿态非线性控制研究", 《计算机仿真》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290424A (zh) * 2020-03-26 2020-06-16 南方医科大学南方医院 用于医院血液样本运输的无人机姿态控制方法及无人机
CN111290424B (zh) * 2020-03-26 2020-11-06 南方医科大学南方医院 用于医院血液样本运输的无人机姿态控制方法及无人机
CN111948935A (zh) * 2020-08-03 2020-11-17 曾喆昭 一种欠驱动vtol飞行器的自耦pd控制理论方法
CN112835374A (zh) * 2021-01-08 2021-05-25 上海航天控制技术研究所 一种适用于大空域的自适应稳定控制方法
CN112835374B (zh) * 2021-01-08 2022-11-18 上海航天控制技术研究所 一种适用于大空域的自适应稳定控制方法
CN116520877A (zh) * 2023-04-12 2023-08-01 华中科技大学 一种四旋翼无人机狭窄管道内自主定位及控制方法
CN116520877B (zh) * 2023-04-12 2024-04-26 华中科技大学 一种四旋翼无人机狭窄管道内自主定位及控制方法

Also Published As

Publication number Publication date
CN110673623B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN110673623B (zh) 一种基于双环pd控制算法控制的四旋翼无人机着陆方法
CN107957730B (zh) 一种无人飞行器稳定飞行控制方法
Bai et al. Robust control of quadrotor unmanned air vehicles
CN108845588B (zh) 一种基于非线性制导的四旋翼飞行器轨迹跟踪控制方法
CN109062042B (zh) 一种旋翼飞行器的有限时间航迹跟踪控制方法
CN110427043B (zh) 基于作业飞行机器人重心偏移的位姿控制器设计方法
CN112346470A (zh) 一种基于改进自抗扰控制的四旋翼姿态控制方法
CN107807663A (zh) 基于自适应控制的无人机编队保持控制方法
CN109283932B (zh) 一种基于积分反步滑模的四旋翼飞行器姿态控制方法
CN109991991A (zh) 一种无人直升机鲁棒容错跟踪方法
CN105425812B (zh) 一种基于双模型下的无人机自动着舰轨迹控制方法
CN110456816B (zh) 一种基于连续终端滑模的四旋翼轨迹跟踪控制方法
CN112578805B (zh) 一种旋翼飞行器的姿态控制方法
Poultney et al. Integral backstepping control for trajectory and yaw motion tracking of quadrotors
Yildiz et al. Adaptive nonlinear hierarchical control of a quad tilt-wing UAV
CN113359472A (zh) 一种四旋翼无人机自适应鲁棒轨迹跟踪控制方法
CN107678442B (zh) 一种基于双模型下的四旋翼自主着船控制方法
Khebbache et al. Robust stabilization of a quadrotor aerial vehicle in presence of actuator faults
Kumar et al. Longitudinal control of agile fixed-wing UAV using backstepping
CN116203840A (zh) 可重复使用运载器自适应增益调度控制方法
CN114089780B (zh) 一种面向城市空间的多旋翼无人机路径规划方法
Kwon et al. EKF based sliding mode control for a quadrotor attitude stabilization
Housny et al. Robust sliding mode control for quadrotor UAV
CN114967724A (zh) 一种四旋翼无人机目标环绕抗干扰控制方法
CN114115335A (zh) 一种基于跟踪微分器的多四旋翼无人机安全编队控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant