CN110669773A - The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana - Google Patents

The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana Download PDF

Info

Publication number
CN110669773A
CN110669773A CN201910986131.4A CN201910986131A CN110669773A CN 110669773 A CN110669773 A CN 110669773A CN 201910986131 A CN201910986131 A CN 201910986131A CN 110669773 A CN110669773 A CN 110669773A
Authority
CN
China
Prior art keywords
fopdcd5
gene
banana
pathogenicity
fusarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910986131.4A
Other languages
Chinese (zh)
Other versions
CN110669773B (en
Inventor
李云锋
聂燕芳
蒙姑
李华平
王振中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201910986131.4A priority Critical patent/CN110669773B/en
Publication of CN110669773A publication Critical patent/CN110669773A/en
Application granted granted Critical
Publication of CN110669773B publication Critical patent/CN110669773B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Agronomy & Crop Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention discloses an application of a gene FoPDCD5 in regulation and control of pathogenicity of banana vascular wilt, and belongs to the field of plant genetic engineering. The gene is knocked out from banana fusarium oxysporum by using a homologous recombination method to obtain a knock-out mutant delta Fopdcd 5; introducing a gene complementation vector into a delta Fopdcd5 protoplast by constructing the vector; the gene was complemented back into the knockout mutant by random insertion to obtain the complementing mutant Δ Fopdcd 5-com. Pathogenicity assays indicate that the pathogenicity of the knockout mutant Δ Fopdcd5 is significantly reduced; the pathogenicity of the anaplerotic mutant Δ Fopdcd5-com was restored to wild-type levels. The invention proves that the FoPDCD5 is necessary for generating conidia of the fusarium oxysporum f.sp.cubense, and coping with oxidative stress and pathogenicity. Contributes to deeply clarifying the pathogenic molecular mechanism of the banana fusarium wilt and provides a target gene for developing an effective bactericide.

Description

基因FoPDCD5在调控香蕉枯萎病菌致病力中的应用The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana

技术领域technical field

本发明属于植物基因工程领域,特别涉及一种基因FoPDCD5在调控香蕉枯萎病菌致病力中的应用。The invention belongs to the field of plant genetic engineering, and particularly relates to the application of a gene FoPDCD5 in regulating the pathogenicity of Fusarium wilt of banana.

背景技术Background technique

香蕉枯萎病是我国香蕉生产上最重要的病害之一,严重威胁香蕉产业的可持续性发展。香蕉枯萎病的病原为尖孢镰刀菌古巴专化型(Fusarium oxysporum f.sp.cubense,Foc),依据其对寄主易感性的不同可分为3个生理小种,其中以4号生理小种(Foc4)危害最为严重,几乎能危害目前所有的栽培品种。目前对香蕉枯萎病的防治主要以选育抗性品种为主,但由于栽培蕉多为三倍体,高度不育且没有种子,导致香蕉的常规杂交育种非常困难。充分挖掘香蕉枯萎病菌致病相关基因并开展其功能研究,有助于全面了解香蕉枯萎病菌的致病分子机理,并为香蕉枯萎病的防控提供理论基础。Banana fusarium wilt is one of the most important diseases in banana production in my country, which seriously threatens the sustainable development of banana industry. The pathogen of banana fusarium wilt is Fusarium oxysporum f.sp.cubense (Foc), which can be divided into 3 physiological races according to their different susceptibility to the host, among which the 4th physiological race (Foc4) is the most serious and can damage almost all cultivars at present. At present, the control of banana fusarium wilt is mainly based on the selection of resistant varieties. However, because most cultivated bananas are triploid, highly sterile and have no seeds, conventional cross-breeding of bananas is very difficult. Fully excavating the pathogenic genes of Fusarium wilt and carrying out functional research will help to fully understand the pathogenic molecular mechanism of Fusarium wilt and provide a theoretical basis for the prevention and control of Fusarium wilt.

PDCD5(Program Cell Death Protein 5)是一种凋亡加速蛋白,含有1个DNA-binding domain,在进化上具有高度保守性。目前关于PDCD5蛋白的研究主要集中在人癌细胞中,主要作用为调控程序性细胞死亡和免疫调节。关于PDCD5在植物病原真菌中的具体功能未见报道。在香蕉枯萎病菌蛋白质组学研究中,我们鉴定到一种预测的蛋白质ProgramCell Death Protein 5,predicted,其在香蕉枯萎病菌中的功能未知。PDCD5 (Program Cell Death Protein 5) is an apoptosis-accelerating protein that contains a DNA-binding domain and is highly conserved in evolution. The current research on PDCD5 protein mainly focuses on human cancer cells, and its main role is to regulate programmed cell death and immune regulation. There is no report on the specific function of PDCD5 in phytopathogenic fungi. In a proteomic study of Fusarium wilt, we identified a predicted protein, ProgramCell Death Protein 5, predicted, whose function in Fusarium wilt is unknown.

发明内容SUMMARY OF THE INVENTION

为了克服现有技术的缺点与不足,本发明的目的在于提供一种基因FoPDCD5在调控香蕉枯萎病菌致病力中的应用。In order to overcome the shortcomings and deficiencies of the prior art, the purpose of the present invention is to provide an application of a gene FoPDCD5 in regulating the pathogenicity of Fusarium wilt of banana.

本发明公开了一种香蕉枯萎病菌基因FoPDCD5及其编码蛋白PDCD5的新功能。基因FoPDCD5为SEQ ID NO:1所示的核苷酸序列,其所编码的蛋白PDCD5为SEQ ID NO:2所示的蛋白质;PDCD5蛋白含有1个DNA-binding domain。本发明通过构建基因敲除载体,将其导入香蕉枯萎病菌原生质体;利用同源重组方法将该基因从香蕉枯萎病菌中敲除,获得敲除突变体ΔFopdcd5;通过构建基因回补载体,将其导入ΔFopdcd5原生质体;利用随机插入的方法将该基因回补到敲除突变体中,获得回补突变体ΔFopdcd5-com。该基因的敲除突变体在分生孢子产生和应对氧化胁迫方面存在缺陷。致病性测定表明,敲除突变体ΔFopdcd5的致病性显著降低;回补突变体ΔFopdcd5-com的致病性则恢复到野生型水平。上述试验证明,香蕉枯萎病菌FoPDCD5为香蕉枯萎病菌的致病相关基因。The invention discloses a new function of a banana Fusarium wilt gene FoPDCD5 and its encoded protein PDCD5. The gene FoPDCD5 is the nucleotide sequence shown in SEQ ID NO: 1, and the encoded protein PDCD5 is the protein shown in SEQ ID NO: 2; the PDCD5 protein contains one DNA-binding domain. In the present invention, a gene knockout vector is constructed and introduced into the protoplast of Fusarium oxysporum wilt; the homologous recombination method is used to knock out the gene from Fusarium oxysporum wilt to obtain a knockout mutant ΔFopdcd5; The ΔFopdcd5 protoplast was introduced; the gene was backfilled into the knockout mutant by random insertion to obtain the complemented mutant ΔFopdcd5-com. Knockout mutants of this gene are defective in conidia production and response to oxidative stress. Pathogenicity assays showed that the pathogenicity of the knockout mutant ΔFopdcd5 was significantly reduced; the pathogenicity of the apoplectic mutant ΔFopdcd5-com was restored to the wild-type level. The above test proved that Fusarium oxysporum FoPDCD5 is a pathogenic related gene of Fusarium oxysporum.

本发明的目的通过下述技术方案实现:The object of the present invention is achieved through the following technical solutions:

本发明提供一种基因FoPDCD5在调控香蕉枯萎病菌致病力中的应用。The invention provides the application of a gene FoPDCD5 in regulating the pathogenicity of Fusarium wilt of banana.

进一步的,所述的基因FoPDCD5在调控香蕉枯萎病菌产孢量中的应用。Further, the application of the gene FoPDCD5 in regulating the sporulation of Fusarium oxysporum.

进一步的,所述的基因FoPDCD5在调控香蕉枯萎病菌抗胁迫中的应用;Further, the application of the described gene FoPDCD5 in regulating the stress resistance of Fusarium wilt;

优选的,所述的胁迫为氧化胁迫。Preferably, the stress is oxidative stress.

本发明提供一种基因FoPDCD5在防治由香蕉枯萎病菌导致的香蕉枯萎病中的应用。The invention provides the application of a gene FoPDCD5 in preventing and treating banana fusarium wilt caused by Fusarium wilt of banana.

本发明提供一种基因FoPDCD5作为用于植物病害防治药物的靶标的应用,所述的植物病害是由香蕉枯萎病菌导致的香蕉枯萎病。The present invention provides the application of a gene FoPDCD5 as a target for a plant disease control drug, wherein the plant disease is banana fusarium wilt caused by Fusarium oxysporum.

本发明再提供一种治疗由香蕉枯萎病菌导致的香蕉枯萎病的方法,包含阻断或抑制香蕉枯萎病菌中基因FoPDCD5的表达(例如利用该基因的反义RNA或siRNA等)。The present invention further provides a method for treating Fusarium wilt of banana caused by Fusarium wilt, comprising blocking or inhibiting the expression of gene FoPDCD5 in Fusarium wilt (for example, using antisense RNA or siRNA of the gene, etc.).

阻断或抑制香蕉枯萎病菌中基因FoPDCD5表达的药剂(例如利用该基因的反义RNA或siRNA等)在制备药物中的应用,所述药物用于控制由香蕉枯萎病菌导致的香蕉枯萎病。The application of an agent for blocking or inhibiting the expression of the gene FoPDCD5 in Fusarium oxysporum (for example, using antisense RNA or siRNA of the gene, etc.) in the preparation of a medicine for controlling Fusarium wilt disease of banana caused by Fusarium oxysporum.

其中,所述的香蕉枯萎病菌基因FoPDCD5,其氨基酸序列如SEQ ID NO:2所示,或者是如SEQ ID NO:2所示的氨基酸序列通过一个或多个氨基酸替换、插入、缺失而获得的仍具有控制香蕉枯萎病菌致病力功能的类似物;Wherein, the Fusarium oxysporum gene FoPDCD5, its amino acid sequence is as shown in SEQ ID NO:2, or the amino acid sequence shown in SEQ ID NO:2 is obtained by one or more amino acid replacement, insertion, deletion An analog that still has the function of controlling the virulence of Fusarium wilt of banana;

所述的基因FoPDCD5,其核苷酸序列为下列A、B、C之一:Described gene FoPDCD5, its nucleotide sequence is one of following A, B, C:

A、编码SEQ ID NO:2所示氨基酸序列的DNA序列;A. The DNA sequence encoding the amino acid sequence shown in SEQ ID NO: 2;

B、如SEQ ID NO:1所示的DNA序列;B. DNA sequence as shown in SEQ ID NO: 1;

C、以上A和B通过碱基插入、缺失、或替换而获得的仍具有控制香蕉枯萎病菌致病力功能的类似物;C, the above A and B obtained by base insertion, deletion or replacement and still have the analog that controls the virulence function of Fusarium oxysporum sp.;

进一步的,所述的香蕉枯萎病菌为香蕉枯萎病菌4号生理小种(Foc4)。Further, the banana Fusarium wilt is No. 4 physiological race (Foc4) of Fusarium oxysporum.

含有上述基因FoPDCD5的敲除载体、重组菌在上述方面的应用也属于本发明的保护范围。The application of the knockout vector and recombinant bacteria containing the above-mentioned gene FoPDCD5 in the above-mentioned aspects also belongs to the protection scope of the present invention.

本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:

本发明提供的香蕉枯萎病菌基因FoPDCD5含有1个DNA-binding domain,但其在香蕉枯萎病菌的生物学功能并不清楚。将潮霉素磷酸转移酶基因(hph)和荧光蛋白基因(SGFP)置换蛋白PDCD5的编码基因FoPDCD5,得到Foc4敲除突变体ΔFopdcd5;试验证明,相比Foc4野生型,ΔFopdcd5产孢量显著降低,对氧化胁迫更加敏感;致病性试验表明,FoPDCD5的缺失显著降低了香蕉枯萎病菌的致病力;将该基因回补后,其致病力得到恢复。本发明证实FoPDCD5是香蕉枯萎病菌分生孢子产生、应对氧化胁迫和致病性所必需的。我们的研究有助于深入阐明香蕉枯萎病菌的致病分子机制,为开发有效杀菌剂提供了靶标基因。The gene FoPDCD5 of Fusarium oxysporum provided by the present invention contains one DNA-binding domain, but its biological function in Fusarium oxysporum is not clear. The hygromycin phosphotransferase gene (hph) and the fluorescent protein gene (SGFP) were replaced by the gene FoPDCD5 encoding the protein PDCD5 to obtain the Foc4 knockout mutant ΔFopdcd5; the experiment proved that compared with the Foc4 wild type, the spore production of ΔFopdcd5 was significantly reduced, It is more sensitive to oxidative stress. The pathogenicity test shows that the deletion of FoPDCD5 significantly reduces the pathogenicity of Fusarium oxysporum. After the gene is replenished, its pathogenicity is restored. The present invention confirms that FoPDCD5 is necessary for conidium production of Fusarium oxysporum, coping with oxidative stress and pathogenicity. Our research helps to elucidate the pathogenic molecular mechanism of Fusarium wilt and provides target genes for the development of effective fungicides.

附图说明Description of drawings

图1是香蕉枯萎病菌基因FoPDCD5敲除载体的构建示意图。Figure 1 is a schematic diagram of the construction of the Fusarium wilt gene FoPDCD5 knockout vector.

图2是香蕉枯萎病菌基因FoPDCD5回补载体的构建示意图。FIG. 2 is a schematic diagram of the construction of the FoPDCD5 complementing vector for the Fusarium wilt gene of banana.

图3是部分潮霉素抗性转化子A-hph基因的PCR扩增;M:Marker5000;泳道1:pCT74质粒;泳道2-6:转化子1、2、3、4、5。Figure 3 shows the PCR amplification of the A-hph gene of some hygromycin-resistant transformants; M: Marker5000; lane 1: pCT74 plasmid; lanes 2-6: transformants 1, 2, 3, 4, and 5.

图4是部分潮霉素抗性转化子目的基因FoPDCD5的PCR扩增;M:Marker5000;泳道wt:Foc4野生型;泳道1-3:转化子1、2、5。Figure 4 shows the PCR amplification of the target gene FoPDCD5 of some hygromycin-resistant transformants; M: Marker5000; lane wt: Foc4 wild type; lane 1-3: transformants 1, 2, and 5.

图5是以FoPDCD5片段为探针的Foc4敲除转化子的Southern blot分析;Figure 5 is a Southern blot analysis of Foc4 knockout transformants using the FoPDCD5 fragment as a probe;

图6是以hph片段为探针的Foc4敲除转化子的Southern blot分析;Figure 6 is a Southern blot analysis of Foc4 knockout transformants using hph fragments as probes;

图7是敲除突变体△Fopdcd5对不同胁迫条件的分析。Figure 7 is the analysis of the knockout mutant ΔFopdcd5 under different stress conditions.

图8是部分博来霉素抗性转化子的FoPDCD5基因的PCR分析;M:Marker5000;泳道1:Foc4野生型;泳道2-5:转化子1、2、5、7。8 is a PCR analysis of the FoPDCD5 gene of some bleomycin-resistant transformants; M: Marker5000; lane 1: Foc4 wild type; lanes 2-5: transformants 1, 2, 5, and 7.

图9是敲除突变体ΔFopdcd5和回补突变体ΔFopdcd5-com的致病性分析。Figure 9 shows the pathogenicity analysis of the knockout mutant ΔFopdcd5 and the apoplectic mutant ΔFopdcd5-com.

具体实施方式Detailed ways

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.

下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件或按照制造厂所建议的实验条件。所使用的材料、试剂等,如无特殊说明,为从商业途径得到的试剂和材料。The test methods that do not specify specific experimental conditions in the following examples are usually in accordance with conventional experimental conditions or in accordance with experimental conditions suggested by the manufacturer. The materials, reagents, etc. used, unless otherwise specified, are the reagents and materials obtained from commercial sources.

实施例1Example 1

1、实验材料1. Experimental materials

1.1供试菌株及植物1.1 Test strains and plants

供试菌株为香蕉枯萎病菌4号生理小种(Foc4),供试植物为具有4~5片叶的巴西蕉(Cavendish,AAA)。The tested strain was F. fusarium wilt No. 4 physiological race (Foc4), and the tested plant was Brazil banana (Cavendish, AAA) with 4-5 leaves.

1.2宿主菌及质粒载体1.2 Host bacteria and plasmid vector

克隆载体为pMD18-T vector,基因敲除载体为丝状真菌表达载体pCT74,基因回补载体为pCTZN(由本实验室在pCT74质粒基础上改造得来,即将pCT74上的SGFP和hph基因替换成博来霉素(Zeocin)基因)。The cloning vector is pMD18-T vector, the gene knockout vector is the filamentous fungal expression vector pCT74, and the gene complementing vector is pCTZN (which was transformed from the pCT74 plasmid in our laboratory, that is, the SGFP and hph genes on pCT74 were replaced with Bo lyomycin (Zeocin) gene).

2、实验方法2. Experimental method

2.1香蕉枯萎病菌FoPDCD5上下游同源片段的扩增2.1 Amplification of upstream and downstream homologous fragments of Fusarium oxysporum FoPDCD5

香蕉枯萎病菌FoPDCD5基因敲除载体的构建如图1所示。在FoPDCD5基因的上游和下游各选取长度大小约为1500bp左右的序列(分别命名为同源臂A片段和同源臂B片段),并设计引物(表1)。The construction of the Fusarium oxysporum FoPDCD5 gene knockout vector is shown in Figure 1. Sequences with a length of about 1500 bp (named as homology arm A fragment and homology arm B fragment respectively) were selected upstream and downstream of the FoPDCD5 gene, and primers were designed (Table 1).

表1 FoPDCD5基因同源臂A片段和B片段的扩增引物Table 1 Amplification primers for the A and B fragments of the homology arm of the FoPDCD5 gene

引物名称primer name 引物序列5’-3’Primer sequence 5'-3' 酶切位点Restriction sites FoPDCD5-AFFoPDCD5-AF GG<u>GGTACC</u>GAACAGGGATTCTGTTAAGCAGTTCGG<u>GGTACC</u>GAACAGGGATTCTGTTAAGCAGTTC Kpn IKpn I FoPDCD5-ARFoPDCD5-AR CC<u>GGGCCC</u>GATCTTGATACGTGACGTTCTTTAACC<u>GGGCCC</u>GATCTTGATACGTGACGTTCTTTAA ApaIApaI FoPDCD5-BFFoPDCD5-BF G<u>GAATTC</u>GAGGTGCTTGTGATACCATGGAATTG<u>GAATTC</u>GAGGTGCTTGTGATACCATGGAATT EcoR IEcoR I FoPDCD5BRFoPDCD5BR G<u>ACTAGT</u>CGTCATGTCGTTTTTCGATCCCTATG<u>ACTAGT</u>CGTCATGTCGTTTTTCGATCCCCTAT SpeISpeI

用真菌DNA提取试剂盒(OMEGA Fungal DNA Kit),提取Foc4基因组DNA;以该基因组DNA为模板,用引物FoPDCD5-AF和FoPDCD5-AR进行PCR扩增,获得FoPDCD5基因的同源臂A片段(FoPDCD5-A);用引物FoPDCD5-BF和FoPDCD5-BR进行PCR扩增,获得FoPDCD5基因的同源臂B片段(FoPDCD5-B)。Foc4 genomic DNA was extracted with a fungal DNA extraction kit (OMEGA Fungal DNA Kit); using the genomic DNA as a template, PCR amplification was performed with primers FoPDCD5-AF and FoPDCD5-AR to obtain the homology arm A fragment of the FoPDCD5 gene (FoPDCD5 -A); PCR amplification was performed with primers FoPDCD5-BF and FoPDCD5-BR to obtain the homology arm B fragment (FoPDCD5-B) of the FoPDCD5 gene.

具体的PCR反应体系为:The specific PCR reaction system is:

模板DNAtemplate DNA 1.0μL1.0μL FoPDCD5-AF/BF(10μmol/L)FoPDCD5-AF/BF(10μmol/L) 1.0μL1.0μL FoPDCD5-AR/BR(10μmol/L)FoPDCD5-AR/BR (10μmol/L) 1.0μL1.0μL 10×Taq Buffer(Mg<sup>2+</sup>plus)10×Taq Buffer(Mg<sup>2+</sup>plus) 5.0μL5.0μL dNTPs(2.5mmol/L)dNTPs(2.5mmol/L) 4.0μL4.0μL Taq(5U/μL)Taq(5U/μL) 0.5μL0.5μL ddH<sub>2</sub>OddH<sub>2</sub>O 37.5μL37.5μL TotalTotal 50.0μL50.0μL

PCR反应条件为:94℃反应5min;94℃反应1min,67℃反应1min,72℃反应1min,共35个循环;72℃反应10min。用OMEGA Cycle Pure Kit试剂盒,对PCR扩增产物进行清洁回收。PCR reaction conditions were: 94°C for 5 min; 94°C for 1 min, 67°C for 1 min, 72°C for 1 min, a total of 35 cycles; 72°C for 10 min. The PCR amplification products were cleaned and recovered using the OMEGA Cycle Pure Kit.

2.2 FoPDCD5基因敲除载体的构建2.2 Construction of FoPDCD5 gene knockout vector

参考pMD 18-T Vector Cloning Kit(TakaRa公司)试剂盒说明书,将FoPDCD5-A和FoPDCD5-B分别与T载体连接,获得重组质粒pMD18T-FoPDCD5-A和pMD18T-FoPDCD5-B。具体为:取1μL pMD 18-T载体,分别加入4μL上述PCR回收产物(同源臂A片段或同源臂B片段)和5μL solution I,于16℃连接过夜。取10μL连接产物加入到100μL大肠杆菌DH 5α感受态细胞中,冰上放置30min;于42℃水浴热击90s,冰上冷却5min;加入800μL LB液体培养基,于37℃、150rpm振荡培养45min;再于4000rpm离心5min,弃上清,留100μL菌液与沉淀混匀,涂布于LB固体培养基(含50μg/mL Amp);于37℃下培养8~12h。Referring to the instructions of the pMD 18-T Vector Cloning Kit (TakaRa Company), FoPDCD5-A and FoPDCD5-B were respectively ligated with T vector to obtain recombinant plasmids pMD18T-FoPDCD5-A and pMD18T-FoPDCD5-B. Specifically: take 1 μL of pMD 18-T vector, add 4 μL of the above PCR recovery product (homologous arm A fragment or homology arm B fragment) and 5 μL solution I respectively, and connect at 16°C overnight. Take 10 μL of the ligation product and add it to 100 μL of E. coli DH 5α competent cells, place on ice for 30 min; heat shock in a water bath at 42 °C for 90 s, and cool on ice for 5 min; add 800 μL of LB liquid medium, and shake at 37 °C and 150 rpm for 45 min; Centrifuge at 4000 rpm for 5 min, discard the supernatant, leave 100 μL of bacterial solution and mix with the precipitate, spread on LB solid medium (containing 50 μg/mL Amp), and culture at 37°C for 8-12 h.

挑取具有Amp抗性的阳性转化子,提取重组质粒DNA,并进行测序鉴定。用Kpn I、ApaI分别对pMD18T-FoPDCD5-A和pCT74载体进行双酶切,回收A片段和pCT74载体。用T4 DNA连接酶将A片段与pCT74连接,转化大肠杆菌DH5α;获得重组质粒pCT74-FoPDCD5-A。按同样程序,用EcoRI和SpeI双酶切pMD18T-FoPDCD5-B和重组质粒pCT74-FoPDCD5-A,回收B片段和重组质粒。用T4 DNA连接酶将B片段与pCT74-FoPDCD5-A连接,转化大肠杆菌DH5α;经酶切鉴定,获得基因敲除载体pCT74-FoPDCD5-KO。The positive transformants with Amp resistance were picked, and the recombinant plasmid DNA was extracted and identified by sequencing. The pMD18T-FoPDCD5-A and pCT74 vectors were double digested with Kpn I and ApaI, respectively, and the A fragment and the pCT74 vector were recovered. The A fragment was ligated with pCT74 with T4 DNA ligase and transformed into E. coli DH5α; the recombinant plasmid pCT74-FoPDCD5-A was obtained. According to the same procedure, pMD18T-FoPDCD5-B and recombinant plasmid pCT74-FoPDCD5-A were double digested with EcoRI and SpeI, and the B fragment and recombinant plasmid were recovered. The B fragment was ligated with pCT74-FoPDCD5-A with T4 DNA ligase, and transformed into Escherichia coli DH5α; the gene knockout vector pCT74-FoPDCD5-KO was obtained by restriction enzyme digestion.

2.3 FoPDCD5回补片段的扩增2.3 Amplification of FoPDCD5 complement fragment

香蕉枯萎病菌FoPDCD5基因回补载体的构建如图2所示。在FoPDCD5基因的上游选取长度为1500bp的启动子序列,下游选取长度为500bp的终止子序列,并设计引物(表2)。Figure 2 shows the construction of the FoPDCD5 gene complementation vector of Fusarium oxysporum. A promoter sequence with a length of 1500 bp was selected upstream of the FoPDCD5 gene, a terminator sequence with a length of 500 bp was selected downstream, and primers were designed (Table 2).

表2 FoPDCD5基因回补片段的扩增引物Table 2 Amplification primers for the complemented fragment of the FoPDCD5 gene

引物名称primer name 引物序列5’-3’Primer sequence 5'-3' 酶切位点Restriction sites FoPDCD5-comFFoPDCD5-comF G<u>GAATTC</u> GCGCCATCACGGCCAG<u>GAATTC</u> GCGCCATCACGGCCA EcoR IEcoR I FoPDCD5-comRFoPDCD5-comR G<u>ACTAGT</u>TAGGCGTTCATTCATTATTTCCGTG<u>ACTAGT</u>TAGGCGTTCATTCATTATTTCCGT SpeISpeI

用真菌DNA提取试剂盒(OMEGA Fungal DNA Kit),提取香蕉枯萎病菌基因组DNA;以该基因组DNA为模板,用引物FoPDCD5-comF和FoPDCD5-comR进行PCR扩增,获得FoPDCD5基因的回补片段(FoPDCD5-com)。Using the fungal DNA extraction kit (OMEGA Fungal DNA Kit), the genomic DNA of Fusarium oxysporum was extracted; using the genomic DNA as a template, PCR amplification was carried out with primers FoPDCD5-comF and FoPDCD5-comR to obtain the complement fragment of the FoPDCD5 gene (FoPDCD5 -com).

具体的PCR反应体系为:The specific PCR reaction system is:

模板DNAtemplate DNA 1.0μL1.0μL FoPDCD5-comF(10μmol/L)FoPDCD5-comF (10μmol/L) 1.0μL1.0μL FoPDCD5-comR(10μmol/L)FoPDCD5-comR (10μmol/L) 1.0μL1.0μL 10×Taq Buffer(Mg<sup>2+</sup>plus)10×Taq Buffer(Mg<sup>2+</sup>plus) 5.0μL5.0μL dNTPs(2.5mmol/L)dNTPs(2.5mmol/L) 4.0μL4.0μL ExTaq(5U/μL)ExTaq(5U/μL) 0.5μL0.5μL ddH<sub>2</sub>OddH<sub>2</sub>O 37.5μL37.5μL TotalTotal 50.0μL50.0μL

PCR反应条件为:94℃反应5min;94℃反应1min,60℃反应1min,72℃反应4min,共30个循环;72℃反应10min。用OMEGA Cycle Pure Kit试剂盒,对PCR扩增产物进行清洁回收。PCR reaction conditions were: 94°C for 5 min; 94°C for 1 min, 60°C for 1 min, 72°C for 4 min, a total of 30 cycles; 72°C for 10 min. The PCR amplification products were cleaned and recovered using the OMEGA Cycle Pure Kit.

2.4 FoPDCD5基因回补载体的构建2.4 Construction of FoPDCD5 gene complement vector

用EcoR I和SpeI分别对FoPDCD5-com和pCTZN载体进行双酶切,回收FoPDCD5-com片段和pCTZN载体。用T4 DNA连接酶将FoPDCD5-com片段与pCTZN连接,转化大肠杆菌DH5α;获得重组质粒pCTZN-FoPDCD5-com。经酶切鉴定,获得基因回补载体pCTZN-FoPDCD5-com。The FoPDCD5-com and pCTZN vectors were double digested with EcoR I and SpeI, respectively, and the FoPDCD5-com fragment and the pCTZN vector were recovered. The FoPDCD5-com fragment was ligated with pCTZN with T4 DNA ligase and transformed into E. coli DH5α; the recombinant plasmid pCTZN-FoPDCD5-com was obtained. The gene complement vector pCTZN-FoPDCD5-com was obtained by restriction enzyme digestion.

2.5 Foc4原生质体的制备2.5 Preparation of Foc4 protoplasts

将Foc4接种到查氏培养基(FeSO4.7H2O 0.018g,KCl 0.5g,K2HPO4.3H2O 1g,MgSO4.7H2O 0.5g,NaNO3 3g,蔗糖30g,蒸馏水定容至1L)中,于28℃、150rpm振荡培养3d;将培养液用200目细胞筛过滤,于4℃下10000×g离心10min,弃上清。用NCM培养基(葡萄糖10g,天冬氨酸4g,20×硝酸盐50mL,1000×维生素1mL,1000×微量元素1mL,200×铁盐5mL,定容至1L,pH 6.5)重悬沉淀并进行稀释后,制得Foc4分生孢子悬浮液。将制备好的分生孢子悬浮液接种于NCM培养基中,使分生孢子终浓度为1×106个/mL;于28℃下120rpm震荡培养11~12h,用200目细胞筛过滤,并用0.8mol/L NaCl溶液(渗透压稳定剂)冲洗3~5次,获得新鲜菌丝体。按酶液与菌丝比例(体积质量比10:1),加入适量15g/L崩溃酶酶液,于30℃下120rpm条件下酶解3h,得到原生质体酶解液。于4℃下400×g离心10min,弃上清。加入1mL预冷的STC溶液(含10mmol/L Tris-Hcl(pH 7.5),1.2mol/L山梨醇,50mmol/L CaCl2)重悬沉淀;离心,弃上清。再加入10~20mL预冷的STC将沉淀重悬,得到Foc4原生质体悬液,使原生质体终浓度约为1×107个/mL。Foc4 was inoculated into Char's medium (FeSO 4 .7H 2 O 0.018g, KCl 0.5g, K 2 HPO 4 .3H 2 O 1g, MgSO 4 .7H 2 O 0.5g, NaNO 3 3g, sucrose 30g, distilled water to 1 L), shake and culture at 28°C and 150 rpm for 3 days; filter the culture solution with a 200-mesh cell sieve, centrifuge at 10,000 × g for 10 min at 4°C, and discard the supernatant. Use NCM medium (glucose 10g, aspartic acid 4g, 20× nitrate 50mL, 1000×vitamin 1mL, 1000×trace element 1mL, 200×iron salt 5mL, make up to 1L, pH 6.5) to resuspend the pellet and carry out After dilution, a Foc4 conidia suspension was prepared. The prepared conidia suspension was inoculated into NCM medium, so that the final concentration of conidia was 1 × 10 6 /mL; at 28 ° C, 120 rpm was shaken for 11 to 12 hours, filtered with a 200-mesh cell sieve, and the 0.8mol/L NaCl solution (osmotic pressure stabilizer) was washed 3 to 5 times to obtain fresh mycelium. According to the ratio of enzyme solution to mycelium (volume-to-mass ratio 10:1), an appropriate amount of 15g/L crash enzyme solution was added, and enzymatic hydrolysis was carried out at 30°C and 120 rpm for 3 hours to obtain protoplast enzymatic hydrolysis solution. Centrifuge at 400 × g for 10 min at 4°C and discard the supernatant. Add 1 mL of pre-cooled STC solution (containing 10 mmol/L Tris-HCl (pH 7.5), 1.2 mol/L sorbitol, 50 mmol/L CaCl 2 ) to resuspend the pellet; centrifuge, and discard the supernatant. Then 10-20 mL of pre-cooled STC was added to resuspend the precipitate to obtain a Foc4 protoplast suspension, so that the final protoplast concentration was about 1×10 7 /mL.

香蕉枯萎病菌敲除突变体原生质体,参照上述香蕉枯萎病菌原生质体的制备步骤制备得到。Fusarium wilt of banana knockout mutant protoplast is prepared by referring to the above-mentioned preparation steps of Fusarium wilt of banana protoplast.

2.6 Foc4敲除突变体原生质体的转化2.6 Transformation of Foc4 knockout mutant protoplasts

用Kpn I和SpeI对敲除载体pCT74-FoPDCD5-KO进行双酶切,获得A-hph-sgfp-B片段。将5μg的A-hph-sgfp-B片段与200μL原生质体混匀;或者,将pCTZN-FoPDCD5-com质粒与200μL香蕉枯萎病菌敲除突变体原生质体混匀;冰浴15min;逐滴加入1mL PSTC转化缓冲液(40%PEG4000,1.2mol/L山梨醇,50mmol/L CaCl2,10mmol/L Tris-HCl,pH7.5),混匀后冰上放置15min;加入10mL预冷的STC,混匀;于4℃下4000rpm离心15min;去掉6mL上清,用3mLPSB再生培养基(马铃薯200.0g,蔗糖273.6g,蒸馏水定容至1L)重悬沉淀,于28℃、100rpm震荡培养12h~16h。于4℃下4000rpm离心15min,去掉5mL上清,加入12mL PSA再生培养基(PSB再生培养基中加入1.5%琼脂粉、150μg/mL潮霉素或200μg/mL博来霉素),混匀倒板,于28℃黑暗培养2~3d;挑取潮霉素(或博来霉素)抗性转化子,转移到含有150μg/mL潮霉素(或200μg/mL博来霉素)的PDA培养基(含马铃薯200.0g,无水葡萄糖20.0g,琼脂15.0g,蒸馏水定容至1L),于28℃黑暗培养3~4d,挑取单菌落用于鉴定。The knockout vector pCT74-FoPDCD5-KO was double digested with Kpn I and SpeI to obtain the A-hph-sgfp-B fragment. Mix 5 μg of A-hph-sgfp-B fragment with 200 μL of protoplasts; alternatively, mix pCTZN-FoPDCD5-com plasmid with 200 μL of Fusarium wilt knockout mutant protoplasts; ice bath for 15 min; add 1 mL of PSTC dropwise Transformation buffer (40% PEG4000, 1.2 mol/L sorbitol, 50 mmol/L CaCl 2 , 10 mmol/L Tris-HCl, pH 7.5), mix well and place on ice for 15 min; add 10 mL of pre-cooled STC, mix well ; Centrifuge at 4000 rpm for 15 min at 4 °C; remove 6 mL of supernatant, resuspend the pellet with 3 mL of PSB regeneration medium (200.0 g of potato, 273.6 g of sucrose, and dilute to 1 L with distilled water), and culture with shaking at 28 °C and 100 rpm for 12 h to 16 h. Centrifuge at 4000 rpm for 15 min at 4°C, remove 5 mL of supernatant, add 12 mL of PSA regeneration medium (add 1.5% agar powder, 150 μg/mL hygromycin or 200 μg/mL bleomycin to PSB regeneration medium), mix and pour plate, cultured at 28°C in the dark for 2-3 days; pick hygromycin (or bleomycin) resistant transformants and transfer to PDA containing 150 μg/mL hygromycin (or 200 μg/mL bleomycin) for culture base (containing 200.0 g of potato, 20.0 g of anhydrous glucose, 15.0 g of agar, and distilled water to 1 L), cultured at 28°C in the dark for 3-4 d, and picked a single colony for identification.

2.7 Foc4敲除突变体的PCR验证分析2.7 PCR validation analysis of Foc4 knockout mutants

按照真菌DNA提取试剂盒(OMEGA Fungal DNA Kit)说明书,提取上述潮霉素阳性转化子的基因组DNA,进行PCR验证分析。分别用引物A-hph-F/A-hph-R进行A-hph基因片段的PCR扩增;用引物FoPDCD5-F/FoPDCD5-R进行FoPDCD5基因片段的PCR扩增分析。According to the instructions of the fungal DNA extraction kit (OMEGA Fungal DNA Kit), the genomic DNA of the above-mentioned hygromycin-positive transformants was extracted and analyzed by PCR for verification. PCR amplification of A-hph gene fragment was performed with primers A-hph-F/A-hph-R respectively; PCR amplification analysis of FoPDCD5 gene fragment was performed with primers FoPDCD5-F/FoPDCD5-R.

A-hph-F:5′-GCCTGAAGAAGTTCTGCTACCGCCG-3′,A-hph-F: 5′-GCCTGAAGAAGTTCTGCTACCGCCG-3′,

A-hph-R:5′-TGGCAAACTGTGATGGACGACACCG-3′,A-hph-R: 5′-TGGCAAACTGTGATGGACGACACCG-3′,

FoPDCD5-F:5′-ATGGATGACGCAGATTAGAACAGG-3′,FoPDCD5-F: 5′-ATGGATGACGCAGATTAGAACAGG-3′,

FoPDCD5-R:5′-TTACAGATCCAAATCGTCATCATCG-3′;FoPDCD5-R: 5′-TTACAGATCCAAATCGTCATCATCG-3′;

PCR反应体系如下:The PCR reaction system is as follows:

模板DNAtemplate DNA 0.5μL0.5μL FoPDCD5-F/A-hph-F(10μmol/L)FoPDCD5-F/A-hph-F (10μmol/L) 0.5μL0.5μL FoPDCD5-R/A-hph-R(10μmol/L)FoPDCD5-R/A-hph-R (10μmol/L) 0.5μL0.5μL 10×Taq Buffer(Mg<sup>2+</sup>plus)10×Taq Buffer(Mg<sup>2+</sup>plus) 2.5μL2.5μL dNTPs(2.5mmol/L)dNTPs(2.5mmol/L) 2.0μL2.0μL Taq(5U/μL)Taq(5U/μL) 0.25μL0.25μL ddH<sub>2</sub>OddH<sub>2</sub>O 18.75μL18.75μL TotalTotal 25.0μL25.0μL

PCR反应条件为:94℃反应5min;94℃反应1min,56℃反应1min,72℃反应1min,共30个循环;72℃反应10min,得到扩增产物。PCR reaction conditions were: 94°C for 5 min; 94°C for 1 min, 56°C for 1 min, 72°C for 1 min, a total of 30 cycles; 72°C for 10 min to obtain the amplified product.

2.8 Foc4敲除突变体的Southern blot分析2.8 Southern blot analysis of Foc4 knockout mutants

按照DIG High Prime DNA Labeling and Detection Starter Kit I(Roche公司)说明书,进行Southern blot杂交。用引物FoPDCD5-F/FoPDCD5-R扩增目的基因探针,用hph-F/hph-R扩增hph基因探针。Southern blot hybridization was performed according to the instructions of DIG High Prime DNA Labeling and Detection Starter Kit I (Roche Company). Use primers FoPDCD5-F/FoPDCD5-R to amplify the target gene probe, and use hph-F/hph-R to amplify the hph gene probe.

FoPDCD5-F:5′-ATGGATGACGCAGATTAGAACAGG-3′,FoPDCD5-F: 5′-ATGGATGACGCAGATTAGAACAGG-3′,

FoPDCD5-R:5′-TTACAGATCCAAATCGTCATCATCG-3′,FoPDCD5-R: 5′-TTACAGATCCAAATCGTCATCATCG-3′,

hph-F:5′-TGCTGCTCCATACAAGCCAA-3′,hph-F: 5′-TGCTGCTCCATACAAGCCAA-3′,

hph-R:5′-GACATTGGGGAGTTCAGCGA-3′;hph-R: 5′-GACATTGGGGAGTTCAGCGA-3′;

DNA探针的PCR扩增体系如下:The PCR amplification system of the DNA probe is as follows:

模板DNAtemplate DNA 1.0μL1.0μL FoPDCD5-F/hph-F(20μmol/L)FoPDCD5-F/hph-F (20μmol/L) 1.0μL1.0μL FoPDCD5-R/hph-R(20μmol/L)FoPDCD5-R/hph-R(20μmol/L) 1.0μL1.0μL 10×Ex Taq Buffer(Mg<sup>2+</sup>plus)10×Ex Taq Buffer(Mg<sup>2+</sup>plus) 5.0μL5.0μL dNTPs(2.5mmol/L)dNTPs(2.5mmol/L) 4.0μL4.0μL Ex Taq(5U/μL)Ex Taq (5U/μL) 0.5μL0.5μL ddH<sub>2</sub>OddH<sub>2</sub>O 37.5μL37.5μL TotalTotal 50.0μL50.0μL

PCR反应条件为:94℃反应5min;94℃反应1min,56℃反应1min,72℃反应1min,共30个循环;72℃反应10min,得到扩增产物。PCR reaction conditions were: 94°C for 5 min; 94°C for 1 min, 56°C for 1 min, 72°C for 1 min, a total of 30 cycles; 72°C for 10 min to obtain the amplified product.

2.9 Foc4敲除突变体的表型观察2.9 Phenotypic observation of Foc4 knockout mutants

(1)菌落形态观察及生长速度测定。将Foc4野生型和敲除突变体ΔFopdcd5接种于PDA培养基上,于28℃黑暗条件下培养。分别在第1d、3d、5d、7d时测量菌落直径,并观察其菌落形态。(1) Observation of colony morphology and determination of growth rate. Foc4 wild-type and knockout mutant ΔFopdcd5 were inoculated on PDA medium and cultured at 28°C in the dark. Colony diameters were measured at 1d, 3d, 5d, and 7d, respectively, and the colony morphology was observed.

(2)分生孢子的产生与萌发观察。将香蕉枯萎病菌接种至查氏培养基,置于28℃、120rpm震荡培养,7d后统计产孢量。将分生孢子悬浮液接种于NCM培养基,于28℃、120rpm震荡培养,11h时取样,观察分生孢子的萌发情况。(2) The production and germination of conidia were observed. Fusarium wilt of banana was inoculated into Cha's medium, placed at 28°C and cultured with shaking at 120 rpm, and the spore production was counted after 7 days. The conidia suspension was inoculated into NCM medium, cultured with shaking at 28° C. and 120 rpm, and samples were taken at 11 h to observe the germination of conidia.

2.10敲除突变体ΔFopdcd5抗胁迫分析2.10 Stress resistance analysis of knockout mutant ΔFopdcd5

(1)高渗透压胁迫分析(1) Analysis of hyperosmotic stress

将Foc4野生型和ΔFopdcd5分别接种在含有1mol/L NaCl和1mol/L山梨醇的PDA培养基上,于28℃培养箱倒置培养7d后,观察ΔFopdcd5和野生型菌株的菌落生长情况。The Foc4 wild-type and ΔFopdcd5 were inoculated on PDA medium containing 1 mol/L NaCl and 1 mol/L sorbitol, respectively, and the colony growth of ΔFopdcd5 and wild-type strains was observed after culturing upside down in a 28°C incubator for 7 days.

(2)氧化胁迫分析(2) Analysis of oxidative stress

将香蕉枯萎病菌野生型和敲除突变体ΔFopdcd5接种在含有50mmol/L H2O2的PDA培养基上,于28℃培养箱倒置培养7d后,观察ΔFoPdcd5和野生型菌株的菌落生长情况。The wild-type and knockout mutant ΔFopdcd5 of Fusarium oxysporum were inoculated on PDA medium containing 50 mmol/LH 2 O 2 and cultured upside down in an incubator at 28°C for 7 days to observe the colony growth of ΔFoPdcd5 and wild-type strains.

(3)细胞壁完整性分析(3) Analysis of cell wall integrity

将香蕉枯萎病菌野生型和敲除突变体ΔFopdcd5分别接种在含有0.02%SDS的PDA培养基上,于28℃培养箱倒置培养7d后,观察ΔFopdcd5和野生型菌株的菌落生长情况。The wild-type and knock-out mutant ΔFopdcd5 of Fusarium oxysporum were inoculated on PDA medium containing 0.02% SDS, respectively, and the colony growth of ΔFopdcd5 and wild-type strains was observed after culturing upside down in a 28°C incubator for 7 days.

2.11 FoPDCD5回补突变体的PCR鉴定与表型分析2.11 PCR identification and phenotypic analysis of FoPDCD5 aplasia mutants

(1)FoPDCD5回补突变体的PCR鉴定(1) PCR identification of FoPDCD5 apoplectic mutants

按照真菌DNA提取试剂盒法(OMEGA Fungal DNA Kit)说明书,提取上述博来霉素阳性转化子的基因组DNA,进行PCR验证分析。用引物FoPDCD5-F/FoPDCD5-R进行基因片段FoPDCD5的PCR扩增。According to the instructions of the fungal DNA extraction kit (OMEGA Fungal DNA Kit), the genomic DNA of the above-mentioned bleomycin-positive transformants was extracted and analyzed by PCR. PCR amplification of the gene fragment FoPDCD5 was performed with primers FoPDCD5-F/FoPDCD5-R.

PCR反应体系如下:The PCR reaction system is as follows:

模板DNAtemplate DNA 0.5μL0.5μL FoPDCD5-F(10μmol/L)FoPDCD5-F (10μmol/L) 0.5μL0.5μL FoPDCD5-R(10μmol/L)FoPDCD5-R (10μmol/L) 0.5μL0.5μL 10×Taq Buffer(Mg<sup>2+</sup>plus)10×Taq Buffer(Mg<sup>2+</sup>plus) 2.5μL2.5μL dNTPs(2.5mmol/L)dNTPs(2.5mmol/L) 2.0μL2.0μL Taq(5U/μL)Taq(5U/μL) 0.25μL0.25μL ddH<sub>2</sub>OddH<sub>2</sub>O 18.75μL18.75μL TotalTotal 25.0μL25.0μL

PCR反应条件为:94℃反应5min;94℃反应1min,56℃反应1min,72℃反应1min,共30个循环;72℃反应10min,得到扩增产物。PCR reaction conditions were: 94°C for 5 min; 94°C for 1 min, 56°C for 1 min, 72°C for 1 min, a total of 30 cycles; 72°C for 10 min to obtain the amplified product.

(2)FoPDCD5回补突变体的表型分析(2) Phenotypic analysis of FoPDCD5 complementation mutants

1)菌落形态观察。将Foc4野生型、敲除突变体和回补突变体接种于PDA培养基上,于28℃黑暗条件下培养。7d时测量菌落直径,并观察其菌落形态。1) Observation of colony morphology. Foc4 wild-type, knockout mutants and complement mutants were inoculated on PDA medium and cultured at 28°C in the dark. The colony diameter was measured at 7d, and the colony morphology was observed.

2)产孢量分析。将香蕉枯萎病菌野生型、敲除突变体和回补突变体接种至查氏培养基,置于28℃、120rpm震荡培养,7d后统计产孢量。2) Analysis of spore production. The wild-type, knockout mutant and apoplectic mutant of Fusarium oxysporum were inoculated into Chad's medium, placed at 28°C and cultured with shaking at 120 rpm, and the spore production was counted after 7 days.

2.12敲除突变体ΔFopdcd5和回补突变体ΔFopdcd5-com的致病性分析2.12 Pathogenicity analysis of knockout mutant ΔFopdcd5 and apoplectic mutant ΔFopdcd5-com

取4叶期的巴西蕉,用Foc4野生型、敲除突变体ΔFopdcd5和回补突变体ΔFopdcd5-com的分生孢子(2×105个/mL)悬浮液进行浸根30min,再移栽于营养土中;置于25±1℃的植物培养室内培养,于光/暗12h/12h交替培养,25d后观察香蕉苗叶片和球茎的发病情况。Brazil bananas at the 4-leaf stage were taken, and the conidia (2×10 5 /mL) suspensions of Foc4 wild type, knockout mutant ΔFopdcd5 and apoplectic mutant ΔFopdcd5-com were used for root immersion for 30 min, and then transplanted in In nutrient soil; cultivated in a plant culture room at 25±1°C, alternately cultured in light/dark 12h/12h, and observed the disease on leaves and bulbs of banana seedlings after 25d.

3结果与分析3 Results and Analysis

3.1香蕉枯萎病菌FoPDCD5基因敲除载体的构建3.1 Construction of Fusarium oxysporum FoPDCD5 gene knockout vector

采用PCR扩增方法,分别克隆获得FoPDCD5基因同源臂A片段和同源臂B片段;分别将其与T载体连接,经转化大肠杆菌、Amp抗性筛选、质粒提取与测序鉴定,获得重组质粒pMD18T-FoPDCD5-A和pMD18T-FoPDCD5-B。将pMD18T-FoPDCD5-A与pCT74质粒连接,获得重组质粒pCT74-FoPDCD5-A;将其与pMD18T-FoPDCD5-B进行双酶切,经DNA连接、大肠杆菌转化、酶切鉴定,获得基因敲除载体pCT74-FoPDCD5-KO(图1)。The PCR amplification method was used to clone and obtain the homology arm A fragment and homology arm B fragment of the FoPDCD5 gene. They were respectively connected to the T vector, and the recombinant plasmid was obtained after transformation of E. coli, Amp resistance screening, plasmid extraction and sequencing identification. pMD18T-FoPDCD5-A and pMD18T-FoPDCD5-B. The recombinant plasmid pCT74-FoPDCD5-A was obtained by ligating pMD18T-FoPDCD5-A with the pCT74 plasmid; it was double digested with pMD18T-FoPDCD5-B, and the gene knockout vector was obtained by DNA ligation, E. coli transformation, and enzyme digestion identification. pCT74-FoPDCD5-KO (Figure 1).

3.2香蕉枯萎病菌FoPDCD5基因回补载体的构建3.2 Construction of the FoPDCD5 gene complementation vector of Fusarium oxysporum

采用PCR扩增方法,克隆获得FoPDCD5基因回补片段;将其与pCTZN载体连接,经大肠杆菌转化、Amp抗性筛选、质粒提取与测序鉴定,获得重组质粒pCTZN-FoPDCD5-com(图2)。The FoPDCD5 gene complement fragment was cloned and obtained by PCR amplification; it was ligated with the pCTZN vector, and the recombinant plasmid pCTZN-FoPDCD5-com was obtained through E. coli transformation, Amp resistance screening, plasmid extraction and sequencing identification (Figure 2).

3.3敲除突变体ΔFopdcd5的筛选3.3 Screening of knockout mutant ΔFopdcd5

3.3.1基因片段A-hph的PCR验证3.3.1 PCR verification of gene fragment A-hph

利用同源重组方法,将基因敲除载体转化香蕉枯萎病菌原生质体,获得了36个潮霉素阳性转化子。经DNA的提取,利用A-hph基因特异性引物,对36个潮霉素阳性转化子进行了PCR验证分析。结果表明,上述36个转化子均扩增到了A-hph基因(图3)。Using homologous recombination, the gene knockout vector was transformed into Fusarium oxysporum protoplasts, and 36 hygromycin-positive transformants were obtained. After DNA extraction, 36 hygromycin-positive transformants were analyzed by PCR using A-hph gene-specific primers. The results showed that the A-hph gene was amplified from the above 36 transformants (Fig. 3).

3.3.2基因片段FoPDCD5的PCR验证3.3.2 PCR verification of gene fragment FoPDCD5

进一步利用FoPDCD5基因特异性引物,对上述PCR扩增到A-hph基因的36个阳性转化子进行FoPDCD5的PCR验证分析。结果表明,在36个转化子中,有2个转化子没有扩增到FoPDCD5基因,进一步说明这2个转化子为阳性转化子(图4)。Further, using FoPDCD5 gene-specific primers, 36 positive transformants amplified by the above PCR to A-hph gene were subjected to PCR verification analysis of FoPDCD5. The results showed that among the 36 transformants, 2 transformants did not amplify the FoPDCD5 gene, which further indicated that these 2 transformants were positive transformants (Fig. 4).

3.3.3敲除突变体的Southern blot验证3.3.3 Southern blot validation of knockout mutants

对扩增到A-hph基因、同时没有扩增到FoPDCD5基因的2个阳性转化子进行了Southern blot分析。结果表明,以目的基因作为探针进行杂交,2个转化子均未有杂交条带(图5)。以hph为探针进行杂交,2个转化子均有单拷贝条带出现(图6)。上述试验进一步证明这2个转化子为阳性转化子。Southern blot analysis was performed on the 2 positive transformants that amplified the A-hph gene but not the FoPDCD5 gene. The results showed that when the target gene was used as a probe for hybridization, neither of the two transformants had a hybridization band (Fig. 5). Hybridization was carried out with hph as a probe, and a single-copy band appeared in both transformants (Fig. 6). The above experiments further proved that these two transformants were positive transformants.

3.4敲除突变体△Fopdcd5的菌落形态和生长速率测定3.4 Determination of colony morphology and growth rate of knockout mutant △Fopdcd5

将敲除突变体△Fopdcd5接种于PDA培养基中,分别在不同时间对其生长情况进行了观察。结果表明,与香蕉枯萎病菌野生型相比,△Fopdcd5的菌落形态和生长速率没有明显区别。The knockout mutant △Fopdcd5 was inoculated in PDA medium, and its growth was observed at different times. The results showed that the colony morphology and growth rate of △Fopdcd5 were not significantly different from those of the wild type of Fusarium oxysporum.

3.5敲除突变体△Fopdcd5的产孢量分析3.5 Analysis of sporulation of knockout mutant △Fopdcd5

将敲除突变体△Fopdcd5接种于查氏培养基,培养7d后进行产孢量分析。结果表明,突变体△Fopdcd5的产孢量显著低于其野生型。The knockout mutant △Fopdcd5 was inoculated in Chad's medium, and the spore production was analyzed after 7 days of culture. The results showed that the sporulation yield of the mutant ΔFopdcd5 was significantly lower than that of its wild type.

3.6敲除突变体△Fopdcd5分生孢子的萌发观察3.6 Observation of germination of conidia of knockout mutant △Fopdcd5

将分生孢子接种NCM培养基,置于28℃,120rpm震荡培养;11h后进行观察。结果表明,Foc4野生型分生孢子的萌发与敲除突变体△Fopdcd5无明显差异,说明敲除FoPDCD5后,不影响香蕉枯萎病菌分生孢子的萌发。The conidia were inoculated in NCM medium, placed at 28°C, and cultured with shaking at 120 rpm; observation was performed after 11 h. The results showed that the germination of Foc4 wild-type conidia was not significantly different from that of the knockout mutant △Fopdcd5, indicating that the knockout of FoPDCD5 did not affect the conidia germination of F. wilt.

3.7敲除突变体△Fopdcd5对不同胁迫条件的分析3.7 Analysis of knockout mutant △Fopdcd5 under different stress conditions

将敲除突变体(△Fopdcd5-2和△Fopdcd5-5)分别接种于含1mol/L NaCl、1mol/L山梨醇、50mmol/L H2O2或0.02%SDS的PDA培养基中,对其菌落形态和直径进行了测定(图7)。结果表明,(1)在含NaCl和山梨醇的PDA培养基中,△Fopdcd5与野生型无明显差异,说明FoPDCD5对Foc4抗高渗透压的能力没有影响。(2)在含0.02%SDS的PDA培养基中,与野生型相比,突变体△Fopdcd5的生长与野生型无明显差异,说明敲除FoPDCD5对Foc4的细胞壁完整性没有影响。(3)在氧化胁迫条件下,与野生型相比,△Fopdcd5突变体的菌落生长缓慢,说明FoPDCD5在Foc4应对氧化胁迫反应中具有重要作用。The knockout mutants (ΔFopdcd5-2 and ΔFopdcd5-5) were inoculated in PDA medium containing 1 mol/L NaCl, 1 mol/L sorbitol, 50 mmol/L H 2 O 2 or 0.02% SDS, respectively. Morphology and diameter were determined (Figure 7). The results showed that (1) in the PDA medium containing NaCl and sorbitol, there was no significant difference between △Fopdcd5 and the wild type, indicating that FoPDCD5 had no effect on the ability of Foc4 to resist hyperosmolarity. (2) In PDA medium containing 0.02% SDS, compared with wild type, the growth of mutant ΔFopdcd5 had no significant difference with wild type, indicating that knocking out FoPDCD5 had no effect on the cell wall integrity of Foc4. (3) Under the condition of oxidative stress, the colony growth of the ΔFopdcd5 mutant was slower than that of the wild type, indicating that FoPDCD5 plays an important role in the response of Foc4 to oxidative stress.

3.8回补突变体ΔFopdcd5-com的鉴定与表型分析3.8 Identification and phenotypic analysis of the apoplastic mutant ΔFopdcd5-com

利用随机插入的方法,将基因回补载体pCTZN-FoPDCD5-com转化香蕉枯萎病菌△Fopdcd5原生质体,获得了9个博来霉素阳性转化子。经基因组DNA的提取,利用FoPDCD5基因特异性引物,对这些阳性转化子进行了PCR验证分析。结果表明,有4个阳性转化子可扩增到目的基因片段,说明这4个转化含有FoPDCD5基因;证实这4个转化子为阳性转化子(图8)。对回补突变体ΔFopdcd5-com进行菌落形态观察和产孢量分析,结果表明,回补突变体的菌落形态和产孢量均恢复至野生型水平。Using the method of random insertion, the gene complement vector pCTZN-FoPDCD5-com was transformed into protoplasts of Fusarium oxysporum △Fopdcd5, and 9 bleomycin-positive transformants were obtained. After the extraction of genomic DNA, the positive transformants were analyzed by PCR using FoPDCD5 gene-specific primers. The results showed that 4 positive transformants could be amplified to the target gene fragment, indicating that these 4 transformants contained the FoPDCD5 gene; it was confirmed that these 4 transformants were positive transformants (Fig. 8). The colony morphology observation and sporulation analysis of the apoplectic mutant ΔFopdcd5-com were carried out.

3.9敲除突变体ΔFopdcd5和回补突变体ΔFopdcd5-com的致病性分析3.9 Pathogenicity analysis of knockout mutant ΔFopdcd5 and apoplectic mutant ΔFopdcd5-com

利用伤根接种法,用Foc4野生型、△Fopdcd5和回补突变体△Fopdcd5-com分生孢子分别接种巴西蕉,于25d后进行观察。结果表明,清水对照组的巴西蕉苗均未出现叶片黄化现象,且球茎没变色;Foc4野生型接种后,香蕉整株上下部的叶片上都出现了明显黄化,而且球茎区域的50%以上出现褐变;△Fopdcd5接种后,仅香蕉植株的下部叶片出现黄化,球茎变色区域不超过20%。回补突变体ΔFopdcd5-com接种后,香蕉植株的上下部叶片也均出现大面积黄化,球茎区域的50%以上发生褐变(图9)。进一步对病情指数进行了统计,结果表明△Fopdcd5-com与Foc4野生型的病情指数相似,说明△Fopdcd5-com致病力恢复到野生型水平;同时,△Fopdcd5的病情指数显著低于野生型和回补突变体,说明敲除FoPDCD5基因后,香蕉枯萎病菌致病力明显下降。Using the wounded root inoculation method, Brazil bananas were inoculated with Foc4 wild-type, △Fopdcd5 and apoplastic mutant △Fopdcd5-com conidia respectively, and observed after 25 days. The results showed that none of the Brazilian banana seedlings in the clear water control group showed yellowing of leaves, and the bulbs did not change color; Browning occurred above; after △Fopdcd5 inoculation, only the lower leaves of banana plants appeared yellowing, and the discolored area of bulbs did not exceed 20%. After the inoculation of the apoplectic mutant ΔFopdcd5-com, the upper and lower leaves of the banana plant also showed extensive yellowing, and more than 50% of the bulb area was browned (Fig. 9). The disease index was further analyzed, and the results showed that the disease index of △Fopdcd5-com was similar to that of Foc4 wild-type, indicating that the pathogenicity of △Fopdcd5-com returned to the wild-type level; at the same time, the disease index of △Fopdcd5 was significantly lower than that of wild-type and Foc4. Complementing the mutants indicated that the virulence of Fusarium oxysporum decreased significantly after the FoPDCD5 gene was knocked out.

因此,本发明提供的基因可以用于植物病害防治,特别是由香蕉枯萎病菌所导致的香蕉枯萎病。另,本发明提供的基因可以作为用于植物病害防治的药物的靶标。本领域技术人员可以跟进本说明书的教导和启示,开发用于防治植物病害、特别是香蕉枯萎病的药物。Therefore, the gene provided by the present invention can be used for the control of plant diseases, especially the banana fusarium wilt caused by Fusarium wilt. In addition, the gene provided by the present invention can be used as a target of a drug for plant disease control. Those skilled in the art can follow the teachings and inspirations of this specification to develop medicines for preventing and treating plant diseases, especially banana fusarium wilt.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.

序列表sequence listing

<110> 华南农业大学<110> South China Agricultural University

<120> 基因FoPDCD5在调控香蕉枯萎病菌致病力中的应用Application of <120> gene FoPDCD5 in regulating the pathogenicity of Fusarium wilt of banana

<160> 14<160> 14

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 495<211> 495

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> 基因FoPDCD5的核苷酸序列<223> Nucleotide sequence of gene FoPDCD5

<220><220>

<222> (25)..(77)<222> (25)..(77)

<223> 非编码区1<223> Non-coding region 1

<220><220>

<222> (167)..(218)<222> (167)..(218)

<223> 非编码区2<223> Non-coding region 2

<400> 1<400> 1

atggatgacg cagagttaga acaggtagct cacttttgtg gattttatcg ggagtccatc 60atggatgacg cagagttaga acaggtagct cacttttgtg gattttatcg ggagtccatc 60

actgattttc ttcgcagtta cgaaaagctc gtctggagca actgaaggcc gaagctggtg 120actgattttc ttcgcagtta cgaaaagctc gtctggagca actgaaggcc gaagctggtg 120

gcagtggagg cggttcttct ggtcaggaac aacaacagca gcgccagtca gttgtctcga 180gcagtggagg cggttcttct ggtcaggaac aacaacagca gcgccagtca gttgtctcga 180

tccataccgt acgacattat cttactgacc ttgaataggc aacagcaaaa tgatgctcgc 240tccataccgt acgacattat cttactgacc ttgaataggc aacagcaaaa tgatgctcgc 240

caacacatcc tcaaccagat cctccatccc gaagccgccg accgtctagg ccgtatccga 300caacacatcc tcaaccagat cctccatccc gaagccgccg accgtctagg ccgtatccga 300

cttgtgaaag aggagcgtgc cgccgatatc gagaaccgac ttatcacgct tgcacaaacc 360cttgtgaaag aggagcgtgc cgccgatatc gagaaccgac ttatcacgct tgcacaaacc 360

ggtcaacttc gacagaaggt cactgaagcg caactcaagg agcttctgaa cgctatgtcg 420ggtcaacttc gacagaaggt cactgaagcg caactcaagg agcttctgaa cgctatgtcg 420

gagagcaagg aggaggagaa gattgttgtg agcagacgca aggcgtggga cgatgatgac 480gagagcaagg aggaggagaa gattgttgtg agcagacgca aggcgtggga cgatgatgac 480

gatttggatc tgtaa 495gatttggatc tgtaa 495

<210> 2<210> 2

<211> 129<211> 129

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> 基因FoCWM的氨基酸序列<223> Amino acid sequence of gene FoCWM

<400> 2<400> 2

Met Asp Asp Ala Glu Leu Glu Gln Leu Arg Lys Ala Arg Leu Glu GlnMet Asp Asp Ala Glu Leu Glu Gln Leu Arg Lys Ala Arg Leu Glu Gln

1 5 10 151 5 10 15

Leu Lys Ala Glu Ala Gly Gly Ser Gly Gly Gly Ser Ser Gly Gln GluLeu Lys Ala Glu Ala Gly Gly Ser Gly Gly Gly Ser Ser Gly Gln Glu

20 25 30 20 25 30

Gln Gln Gln Gln Arg Gln Gln Gln Gln Asn Asp Ala Arg Gln His IleGln Gln Gln Gln Arg Gln Gln Gln Gln Asn Asp Ala Arg Gln His Ile

35 40 45 35 40 45

Leu Asn Gln Ile Leu His Pro Glu Ala Ala Asp Arg Leu Gly Arg IleLeu Asn Gln Ile Leu His Pro Glu Ala Ala Asp Arg Leu Gly Arg Ile

50 55 60 50 55 60

Arg Leu Val Lys Glu Glu Arg Ala Ala Asp Ile Glu Asn Arg Leu IleArg Leu Val Lys Glu Glu Arg Ala Ala Asp Ile Glu Asn Arg Leu Ile

65 70 75 8065 70 75 80

Thr Leu Ala Gln Thr Gly Gln Leu Arg Gln Lys Val Thr Glu Ala GlnThr Leu Ala Gln Thr Gly Gln Leu Arg Gln Lys Val Thr Glu Ala Gln

85 90 95 85 90 95

Leu Lys Glu Leu Leu Asn Ala Met Ser Glu Ser Lys Glu Glu Glu LysLeu Lys Glu Leu Leu Asn Ala Met Ser Glu Ser Lys Glu Glu Glu Lys

100 105 110 100 105 110

Ile Val Val Ser Arg Arg Lys Ala Trp Asp Asp Asp Asp Asp Leu AspIle Val Val Ser Arg Arg Lys Ala Trp Asp Asp Asp Asp Asp Asp Leu Asp

115 120 125 115 120 125

LeuLeu

<210> 3<210> 3

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-AF<223> FoPDCD5-AF

<400> 3<400> 3

ggggtaccga acagggattc tgttaagcag ttc 33ggggtaccga acagggattc tgttaagcag ttc 33

<210> 4<210> 4

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-AR<223> FoPDCD5-AR

<400> 4<400> 4

ccgggcccga tcttgatacg tgacgttctt taa 33ccgggcccga tcttgatacg tgacgttctt taa 33

<210> 5<210> 5

<211> 32<211> 32

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-BF<223> FoPDCD5-BF

<400> 5<400> 5

ggaattcgag gtgcttgtga taccatggaa tt 32ggaattcgag gtgcttgtga taccatggaa tt 32

<210> 6<210> 6

<211> 32<211> 32

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-BR<223> FoPDCD5-BR

<400> 6<400> 6

gactagtcgt catgtcgttt ttcgatccct at 32gactagtcgt catgtcgttt ttcgatccct at 32

<210> 7<210> 7

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-comF<223> FoPDCD5-comF

<400> 7<400> 7

ggaattcgcg ccatcacggc ca 22ggaattcgcg ccatcacggc ca 22

<210> 8<210> 8

<211> 31<211> 31

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-comR<223> FoPDCD5-comR

<400> 8<400> 8

gactagttag gcgttcattc attatttccg t 31gactagttag gcgttcattc attatttccg t 31

<210> 9<210> 9

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> A-hph-F<223> A-hph-F

<400> 9<400> 9

gcctgaagaa gttctgctac cgccg 25gcctgaagaa gttctgctac cgccg 25

<210> 10<210> 10

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> A-hph-R<223> A-hph-R

<400> 10<400> 10

tggcaaactg tgatggacga caccg 25tggcaaactg tgatggacga caccg 25

<210> 11<210> 11

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-F<223> FoPDCD5-F

<400> 11<400> 11

atggatgacg cagattagaa cagg 24atggatgacg cagatagaa cagg 24

<210> 12<210> 12

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> FoPDCD5-R<223> FoPDCD5-R

<400> 12<400> 12

ttacagatcc aaatcgtcat catcg 25ttacagatcc aaatcgtcat catcg 25

<210> 13<210> 13

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> hph-F<223>hph-F

<400> 13<400> 13

tgctgctcca tacaagccaa 20tgctgctcca tacaagccaa 20

<210> 14<210> 14

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<220><220>

<223> hph-R<223>hph-R

<400> 14<400> 14

gacattgggg agttcagcga 20gacattgggg agttcagcga 20

Claims (10)

1.基因FoPDCD5在调控香蕉枯萎病菌致病力中的应用,其特征在于:1. the application of gene FoPDCD5 in regulating the pathogenicity of Fusarium wilt of banana, is characterized in that: 所述的香蕉枯萎病菌基因FoPDCD5,其氨基酸序列如SEQ ID NO:2所示,或者是如SEQID NO:2所示的氨基酸序列通过一个或多个氨基酸替换、插入、缺失而获得的仍具有控制香蕉枯萎病菌致病力功能的类似物。Described Fusarium oxysporum gene FoPDCD5, its amino acid sequence is as shown in SEQ ID NO: 2, or the amino acid sequence shown in SEQ ID NO: 2 is obtained by one or more amino acid replacement, insertion, deletion and still has control Analogues of the virulence function of Fusarium wilt of banana. 2.根据权利要求1所述的应用,其特征在于:2. application according to claim 1, is characterized in that: 所述的基因FoPDCD5在调控香蕉枯萎病菌产孢量中的应用。The application of the gene FoPDCD5 in regulating the sporulation of Fusarium wilt of banana. 3.根据权利要求1所述的应用,其特征在于:3. application according to claim 1, is characterized in that: 所述的基因FoPDCD5在调控香蕉枯萎病菌抗胁迫中的应用。The application of the gene FoPDCD5 in regulating the stress resistance of Fusarium oxysporum. 4.根据权利要求3所述的应用,其特征在于:所述的胁迫为氧化胁迫。4. The application according to claim 3, wherein the stress is oxidative stress. 5.权利要求1所述的基因FoPDCD5在防治由香蕉枯萎病菌导致的香蕉枯萎病中的应用。5. the application of the gene FoPDCD5 described in claim 1 in the control of banana fusarium wilt caused by Fusarium oxysporum. 6.权利要求1所述的基因FoPDCD5作为用于植物病害防治药物的靶标的应用,其特征在于:所述的植物病害是由香蕉枯萎病菌导致的香蕉枯萎病。6. The application of the gene FoPDCD5 according to claim 1 as a target for a plant disease prevention and control drug, wherein the plant disease is banana fusarium wilt caused by Fusarium oxysporum. 7.根据权利要求1、2、3、4、5或6所述的应用,其特征在于:7. The application according to claim 1, 2, 3, 4, 5 or 6, characterized in that: 所述的基因FoPDCD5,其核苷酸序列为下列A、B、C之一:Described gene FoPDCD5, its nucleotide sequence is one of following A, B, C: A、编码SEQ ID NO:2所示氨基酸序列的DNA序列;A. The DNA sequence encoding the amino acid sequence shown in SEQ ID NO: 2; B、如SEQ ID NO:1所示的DNA序列;B. The DNA sequence shown in SEQ ID NO: 1; C、以上A和B通过碱基插入、缺失、或替换而获得的仍具有控制香蕉枯萎病菌致病力功能的类似物。C. The analogs of the above A and B obtained by base insertion, deletion, or substitution, which still have the function of controlling the pathogenicity of Fusarium oxysporum. 8.一种治疗由香蕉枯萎病菌导致的香蕉枯萎病的方法,其特征在于:包含阻断或抑制权利要求1所述基因FoPDCD5的表达。8. A method for the treatment of Fusarium wilt of banana caused by Fusarium oxysporum, characterized in that: comprising blocking or inhibiting the expression of the described gene FoPDCD5 of claim 1. 9.阻断或抑制权利要求1所述基因FoPDCD5表达的药剂在制备药物中的应用,其特征在于:所述的药剂是权利要求1所述基因FoPDCD5的反义RNA或siRNA,所述药物用于控制由香蕉枯萎病菌导致的香蕉枯萎病。9. The application of the medicament that blocks or inhibits the expression of the gene FoPDCD5 according to claim 1 in the preparation of medicine, wherein the medicament is an antisense RNA or siRNA of the gene FoPDCD5 according to claim 1, and the medicament uses For the control of banana fusarium wilt caused by Fusarium wilt. 10.根据权利要求9的应用,其特征在于:10. The application according to claim 9, characterized in that: 所述的基因FoPDCD5,其核苷酸序列为下列A、B、C之一:Described gene FoPDCD5, its nucleotide sequence is one of following A, B, C: A、编码SEQ ID NO:2所示氨基酸序列的DNA序列;A. The DNA sequence encoding the amino acid sequence shown in SEQ ID NO: 2; B、如SEQ ID NO:1所示的DNA序列;B. The DNA sequence shown in SEQ ID NO: 1; C、以上A和B通过碱基插入、缺失、或替换而获得的仍具有控制香蕉枯萎病菌致病力功能的类似物。C. The analogs of the above A and B obtained by base insertion, deletion, or substitution, which still have the function of controlling the pathogenicity of Fusarium oxysporum.
CN201910986131.4A 2019-10-17 2019-10-17 The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana Active CN110669773B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910986131.4A CN110669773B (en) 2019-10-17 2019-10-17 The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910986131.4A CN110669773B (en) 2019-10-17 2019-10-17 The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana

Publications (2)

Publication Number Publication Date
CN110669773A true CN110669773A (en) 2020-01-10
CN110669773B CN110669773B (en) 2021-03-26

Family

ID=69083033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910986131.4A Active CN110669773B (en) 2019-10-17 2019-10-17 The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana

Country Status (1)

Country Link
CN (1) CN110669773B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534527A (en) * 2020-04-21 2020-08-14 华南农业大学 Application of gene FoPao in regulation and control of pathogenicity of banana vascular wilt
CN111560384A (en) * 2020-04-22 2020-08-21 华南农业大学 Application of gene FoRnt in regulation and control of pathogenicity of banana fusarium wilt
CN112280791A (en) * 2020-07-14 2021-01-29 甘肃农业大学 Barley stripe disease pathogenic gene pgsln and application thereof
CN113174390A (en) * 2021-03-05 2021-07-27 华南农业大学 Application of banana fusarium oxysporum FoNpp1 gene in regulation and control of pathogenicity of banana fusarium oxysporum
CN113201054A (en) * 2021-05-21 2021-08-03 华南农业大学 Application of protein FoUPE1 in regulation and control of pathogenicity of banana vascular wilt
CN113956337A (en) * 2021-09-26 2022-01-21 华南农业大学 Application of gene FoUPE3 in the control of banana fusarium wilt
CN114773440A (en) * 2022-05-18 2022-07-22 华南农业大学 Application of protein FoUpe2 in regulating the pathogenicity of Fusarium wilt of banana
CN118562891A (en) * 2024-04-30 2024-08-30 广东省农业科学院果树研究所 Application of AST2 gene of banana wilt pathogen in regulating the pathogenicity of banana wilt pathogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135542A (en) * 2010-01-21 2011-07-27 北京大学 ELISA (Enzyme Linked Immunosorbent Assay) method and kit for detecting soluble protein PDCD5 (Programmed Cell Death 5)
CN104975031A (en) * 2015-08-10 2015-10-14 中国热带农业科学院环境与植物保护研究所 Fusarium oxysporum f.sp.cubense G protein fogaa gene and application thereof
WO2017200953A1 (en) * 2016-05-16 2017-11-23 Louis Habash Decreasing expression level of apoptosis-related genes by treating a human subject with a nitroxide
CN110183521A (en) * 2019-05-23 2019-08-30 华南农业大学 Application of the rice blast fungus gene M oRMD1 in regulation rice blast fungus pathogenicity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135542A (en) * 2010-01-21 2011-07-27 北京大学 ELISA (Enzyme Linked Immunosorbent Assay) method and kit for detecting soluble protein PDCD5 (Programmed Cell Death 5)
CN104975031A (en) * 2015-08-10 2015-10-14 中国热带农业科学院环境与植物保护研究所 Fusarium oxysporum f.sp.cubense G protein fogaa gene and application thereof
WO2017200953A1 (en) * 2016-05-16 2017-11-23 Louis Habash Decreasing expression level of apoptosis-related genes by treating a human subject with a nitroxide
CN110183521A (en) * 2019-05-23 2019-08-30 华南农业大学 Application of the rice blast fungus gene M oRMD1 in regulation rice blast fungus pathogenicity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XP_018745930.1: "programmed cell death protein 5 [Fusarium verticillioides 7600]", 《GENBANK》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534527A (en) * 2020-04-21 2020-08-14 华南农业大学 Application of gene FoPao in regulation and control of pathogenicity of banana vascular wilt
CN111534527B (en) * 2020-04-21 2022-03-25 华南农业大学 Application of gene FoPao in regulation and control of pathogenicity of banana vascular wilt
CN111560384B (en) * 2020-04-22 2022-03-22 华南农业大学 Application of gene FoRnt in regulation and control of pathogenicity of banana fusarium wilt
CN111560384A (en) * 2020-04-22 2020-08-21 华南农业大学 Application of gene FoRnt in regulation and control of pathogenicity of banana fusarium wilt
CN112280791A (en) * 2020-07-14 2021-01-29 甘肃农业大学 Barley stripe disease pathogenic gene pgsln and application thereof
CN112280791B (en) * 2020-07-14 2023-06-23 甘肃农业大学 Pathogenic gene pgsln of barley stripe disease and its application
CN113174390A (en) * 2021-03-05 2021-07-27 华南农业大学 Application of banana fusarium oxysporum FoNpp1 gene in regulation and control of pathogenicity of banana fusarium oxysporum
CN113174390B (en) * 2021-03-05 2023-05-19 华南农业大学 Application of FoNpp1 Gene of Banana Fusarium wilt in Regulating the Pathogenicity of Banana Fusarium wilt
CN113201054B (en) * 2021-05-21 2022-07-05 华南农业大学 Application of protein FoUPE1 in regulating the pathogenicity of Fusarium oxysporum in banana
CN113201054A (en) * 2021-05-21 2021-08-03 华南农业大学 Application of protein FoUPE1 in regulation and control of pathogenicity of banana vascular wilt
CN113956337A (en) * 2021-09-26 2022-01-21 华南农业大学 Application of gene FoUPE3 in the control of banana fusarium wilt
CN114773440A (en) * 2022-05-18 2022-07-22 华南农业大学 Application of protein FoUpe2 in regulating the pathogenicity of Fusarium wilt of banana
CN114773440B (en) * 2022-05-18 2023-06-30 华南农业大学 Application of protein FoUpe2 in regulating and controlling pathogenicity of banana fusarium wilt
CN118562891A (en) * 2024-04-30 2024-08-30 广东省农业科学院果树研究所 Application of AST2 gene of banana wilt pathogen in regulating the pathogenicity of banana wilt pathogen

Also Published As

Publication number Publication date
CN110669773B (en) 2021-03-26

Similar Documents

Publication Publication Date Title
CN110669773A (en) The application of gene FoPDCD5 in regulating the pathogenicity of Fusarium oxysporum in banana
Shim et al. FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum
CN111560384A (en) Application of gene FoRnt in regulation and control of pathogenicity of banana fusarium wilt
Niño‐Sánchez et al. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum
CN111534527A (en) Application of gene FoPao in regulation and control of pathogenicity of banana vascular wilt
CN113201054B (en) Application of protein FoUPE1 in regulating the pathogenicity of Fusarium oxysporum in banana
CN113174390B (en) Application of FoNpp1 Gene of Banana Fusarium wilt in Regulating the Pathogenicity of Banana Fusarium wilt
CN110656116B (en) Application of gene FoCWM in regulation and control of pathogenicity of banana vascular wilt
CN104928314B (en) Verticillium dahliae pathogen-relatedprotein VdpdaA1 purposes
CN113234729A (en) Gene GauRev2 capable of obviously improving verticillium wilt resistance of cotton and application thereof
Zhang et al. CRISPR-editing of sweet basil (Ocimum basilicum L.) homoserine kinase gene for improved downy mildew disease resistance
CN110066323A (en) Microalgae catches photoprotein NoHLR1 gene and its application
CN113956337B (en) Application of gene FoUPE3 in preventing and treating banana vascular wilt
CN108728369B (en) Withered germ of water-melon RNAi component FonDCL1 deletion mutant body and its construction method
CN113278055B (en) Application of the secreted protein MoUPE2 in regulating the pathogenicity of rice blast fungus
CN111411122B (en) Application of rice blast germ gene MoHXT2 in regulation and control of plant sugar transport function
CN104893993B (en) Verticillium dahliae conidium yield GAP-associated protein GAP VdpdaA2 purposes
CN104894156B (en) Verticillium dahliae conidium yield GAP-associated protein GAP VdpdaA3 purposes
CN114196681B (en) Application of FoCupin1 Gene in Regulating the Pathogenicity of Fusarium wilt of Banana
CN108659109B (en) A Wheat Powdery Mildew Resistance-Related Protein TaSTKR1 and Its Encoding Gene and Application
CN114773440B (en) Application of protein FoUpe2 in regulating and controlling pathogenicity of banana fusarium wilt
CN114807208B (en) Application of Protein FoAtg27 in Regulating the Pathogenicity of Fusarium wilt of Banana
CN105886479B (en) HvMIR1 Related to Barley Powdery Mildew Resistance and Its Application
KR102675540B1 (en) Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method
CN113151320B (en) Potato StLecRK-VI.1 and StTET8 genes and their application in improving late blight resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant