CN110665057B - 一种羟基磷灰石/plga双层支架的制备方法 - Google Patents

一种羟基磷灰石/plga双层支架的制备方法 Download PDF

Info

Publication number
CN110665057B
CN110665057B CN201911081554.8A CN201911081554A CN110665057B CN 110665057 B CN110665057 B CN 110665057B CN 201911081554 A CN201911081554 A CN 201911081554A CN 110665057 B CN110665057 B CN 110665057B
Authority
CN
China
Prior art keywords
printing
hydroxyapatite
plga
temperature
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911081554.8A
Other languages
English (en)
Other versions
CN110665057A (zh
Inventor
吴宁
杨迪诚
朱君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Medicine and Health Sciences
Original Assignee
Shanghai University of Medicine and Health Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Medicine and Health Sciences filed Critical Shanghai University of Medicine and Health Sciences
Priority to CN201911081554.8A priority Critical patent/CN110665057B/zh
Publication of CN110665057A publication Critical patent/CN110665057A/zh
Application granted granted Critical
Publication of CN110665057B publication Critical patent/CN110665057B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种羟基磷灰石/PLGA双层支架的制备方法,包括一个制备α‑磷酸三钙粉末的步骤;一个制备磷酸钙骨水泥3D打印固化液的步骤;一个制备羟基磷灰石/PLGA双层支架的步骤,将磷酸钙骨水泥3D打印固化液装入低温打印喷头;将PLGA颗粒装入高温打印喷头,使用3D打印机的双喷头打印模式,按照模型设计依次打印两种材料,打印完毕后,材料在室温下静置,使磷酸钙骨水泥自然固化,最终得到羟基磷灰石/PLGA双层支架。本发明的整个3D打印过程在常温下进行,一步反应生成羟基磷灰石支架,无需进行高温煅烧使羟基磷灰石烧结和去除粘合剂,制备工艺更加简便。

Description

一种羟基磷灰石/PLGA双层支架的制备方法
技术领域
本发明属于组织工程学领域,涉及一种3D打印技术,具体来说是一种羟基磷灰石/PLGA双层支架的制备方法。
背景技术
3D打印技术在组织工程学制备骨修复材料方面已有一些应用,研究的材料也比较广泛,体内可降解材料包括可降解聚酯类聚合物支架,胶原、海藻酸钠交联支架,羟基磷灰石等无机钙类支架等。其中,羟基磷灰石支架在3D打印技术的制备过程中,主要通过与粘合剂复合后进行打印,再进行高温煅烧的方法制备。
传统羟基磷灰石支架的制备方法需要进行煅烧过程,制备过程繁琐,不利于负载生物活性药物;由于需要高温煅烧过程,也无法和其它材料,如可降解聚酯类聚合物复合打印,无法个性化制备具有功能性的复合材料。
聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)由两种单体——乳酸和羟基乙酸随机聚合而成,是一种可降解的功能高分子有机化合物,具有良好的生物相容性、无毒、良好的成囊和成膜的性能,被广泛应用于制药、医用工程材料和现代化工业领域。在美国PLGA通过FDA认证,被正式作为药用辅料收录进美国药典。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种羟基磷灰石/PLGA双层支架的制备方法,所述的这种羟基磷灰石/PLGA双层支架的制备方法要接近现有技术中羟基磷灰石支架的制备方法制备过程繁琐,不利于负载生物活性药物的技术问题。
本发明提供了一种羟基磷灰石/PLGA双层支架的制备方法,包括如下步骤:
1)一个制备α-磷酸三钙粉末的步骤,按摩尔比2:1称取磷酸氢钙与碳酸钙,在纯水介质中湿法球磨混合,球磨后干燥,干燥后粉末用马弗炉在1250-1400℃煅烧2-4h后取出,鼓风环境下冷却,然后用氧化锆球磨,以乙醇为球磨介质,湿法球磨后干燥,得到α-磷酸三钙粉末;
2)一个制备磷酸钙骨水泥3D打印固化液的步骤,配制浓度为5-10%(w(g)/v(ml))的明胶溶液,将上述明胶溶液与甘油、质量百分比浓度为0.5-1wt%戊二醛溶液按体积比100:10:1进行混合,同时,将步骤1)的α-磷酸三钙粉末按与明胶溶液固液比0.6-1g/mL加入混合溶液中,得到磷酸钙骨水泥3D打印固化液;
3)一个制备羟基磷灰石/PLGA双层支架的步骤,将步骤2)的磷酸钙骨水泥3D打印固化液装入低温打印喷头,低温打印喷头的出料针头选用0.3-0.5mm;将PLGA颗粒装入高温打印喷头,高温打印喷头的出料针头选用0.17-0.4mm,打印温度为180-200℃,使用3D打印机的双喷头打印模式,按照模型设计依次打印两种材料,打印完毕后,材料在室温下静置,使磷酸钙骨水泥自然固化,最终得到羟基磷灰石/PLGA双层支架。
进一步的,PLGA的分子量为10万-40万,LA/GA为75/25-90/10,PLGA分子链两端为酯基、羟基或羧基封端。
本发明制备了粒径均一的纳米α-TCP粉末,当α-TCP粉末与水溶液混合,可以形成具备可塑性、自固化性的骨水泥,最终固化产物为缺钙型羟基磷灰石。利用以上特性,本发明使用明胶、甘油、戊二醛的混合溶液,作为α-TCP的分散剂和固化液,使其调和浆具有良好注射性的同时,也具有能进行逐层堆积的粘度,适用于垂直沉积式3D打印。打印完毕后,该骨水泥在24h内完成固化,形成具备一定力学强度的羟基磷灰石支架。整个3D打印过程在常温下进行,一步反应生成羟基磷灰石支架,无需进行高温煅烧使羟基磷灰石烧结和去除粘合剂,制备工艺更加简便。
本发明将明胶溶液、α-TCP粉末、甘油和戊二醛混合后,配制得到羟基磷灰石支架3D打印“墨水”。该“墨水”装入低温打印喷头的料筒中,PLGA颗粒装入高温打印喷头的料筒,采用双头打印模式,制备得到羟基磷灰石/PLGA双层支架。
本发明和已有技术相比,其技术进步是显著的。本发明实现了羟基磷灰石、PLGA两种材料混合打印,制备羟基磷灰石/PLGA双层支架。PLGA可作为体内可降解的创外固定材料,具有较高的力学强度,合适的生物降解能力,可为临床个性化制备骨修复材料提供新的思路。本发明的制备方法简单,适用于个性化打印。
附图说明
图1为羟基磷灰石/PLGA两相界面的扫面电镜图(SEM)。
图2为羟基磷灰石/PLGA双层支架的实物图。
具体实施方式
实施例1制备粒径均一的α-TCP粉末
按摩尔比2:1称取磷酸氢钙与碳酸钙,在纯水介质中湿法球磨混合,球磨速度为400rpm,球磨时间为2-4h,球磨后置于80℃烘箱中干燥过夜。干燥后粉末用马弗炉在1250-1400℃煅烧2-4h后取出,鼓风环境下急速冷却。之后用氧化锆球磨,以乙醇为球磨介质,450rpm转速下湿法球磨4h,80℃烘箱中干燥,得到粒径均一的α-TCP(α-磷酸三钙)粉末。
实施例2
配制浓度为5-10%(w(g)/v(ml))的明胶溶液(50-100g/L),将上述明胶溶液与甘油、质量百分比浓度为1wt%戊二醛溶液按体积比100:10:1进行混合,同时,将实施例1的上述α-TCP粉末按与明胶溶液固液比0.6-1g/mL加入混合溶液中,得到自固化磷酸钙骨水泥3D打印“墨水”。采用上述比例的明胶、甘油、戊二醛混合溶液作为α-TCP的固化液,使骨水泥调和浆具备合适的注射性和粘性,该“墨水”具有较好的可注射性,可通过0.3-0.5mm打印针头进行打印,室温下其粘度满足垂直堆积的要求,可应用于垂直沉积式3D打印技术。
实施例3羟基磷灰石/PLGA双层支架的制备
将上述实施例2的自固化磷酸钙骨水泥3D打印“墨水”装入低温打印喷头,出料针头选用0.3-0.5mm;将PLGA颗粒装入高温打印喷头,PLGA颗粒的分子量为10万-40万,LA/GA为75/25-90/10,PLGA分子链两端可为酯基、羟基或羧基封端,出料针头选用0.17-0.4mm,打印温度为180-200℃。使用3D打印机的双喷头打印模式,按照模型设计依次打印两种材料,得到羟基磷灰石/PLGA双层支架。
采用上述的方法打印制备了直径为6mm的PLGA底座及直径为4mm的羟基磷灰石的双层支架。打印完毕后,材料在室温下静置24h,使磷酸钙骨水泥部分自然固化,最终得到羟基磷灰石/PLGA双层支架。
如图2所示。采用万能试验机测试支架的抗压强度,测试支架抗压强度为10.4±1.69MPa,抗压强度主要由羟基磷灰石支架部分提供,材料的力学性能满足非承重骨骨修复的临床需求。
通过扫描电子显微镜观察PLGA和羟基磷灰石两相连接处的截面,如图1所示,羟基磷灰石在PLGA表面生长,两相之间结合紧密。

Claims (2)

1.一种羟基磷灰石/PLGA双层支架的制备方法,其特征在于包括如下步骤:
1)一个制备α-磷酸三钙粉末的步骤,按摩尔比2:1称取磷酸氢钙与碳酸钙,在纯水介质中湿法球磨混合,球磨后干燥,干燥后粉末用马弗炉在1250-1400℃煅烧2-4h后取出,鼓风环境下冷却,然后用氧化锆球磨,以乙醇为球磨介质,湿法球磨后干燥,得到α-磷酸三钙粉末;
2)一个制备磷酸钙骨水泥3D打印固化液的步骤,配制浓度为5-10%(w(g)/v(mL))的明胶溶液,将上述明胶溶液与甘油、质量百分比浓度为0.5-1wt%戊二醛溶液按体积比100:10:1进行混合,同时,将步骤1)的α-磷酸三钙粉末按与明胶溶液固液比0.6-1g/mL加入混合溶液中,得到磷酸钙骨水泥3D打印固化液;
3)一个制备羟基磷灰石/PLGA双层支架的步骤,将步骤2)的磷酸钙骨水泥3D打印固化液装入低温打印喷头,低温打印喷头的出料针头选用0.3-0.5mm;将PLGA颗粒装入高温打印喷头,高温打印喷头的出料针头选用0.17-0.4mm,打印温度为180-200℃,使用3D打印机的双喷头打印模式,按照模型设计依次打印两种材料,打印完毕后,材料在室温下静置,使磷酸钙骨水泥自然固化,最终得到羟基磷灰石/PLGA双层支架。
2.根据权利要求1所述的一种羟基磷灰石/PLGA双层支架的制备方法,其特征在于:所述的PLGA的分子量为10万-40万,LA/GA为75/25-90/10。
CN201911081554.8A 2019-11-07 2019-11-07 一种羟基磷灰石/plga双层支架的制备方法 Active CN110665057B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911081554.8A CN110665057B (zh) 2019-11-07 2019-11-07 一种羟基磷灰石/plga双层支架的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911081554.8A CN110665057B (zh) 2019-11-07 2019-11-07 一种羟基磷灰石/plga双层支架的制备方法

Publications (2)

Publication Number Publication Date
CN110665057A CN110665057A (zh) 2020-01-10
CN110665057B true CN110665057B (zh) 2021-10-01

Family

ID=69086347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911081554.8A Active CN110665057B (zh) 2019-11-07 2019-11-07 一种羟基磷灰石/plga双层支架的制备方法

Country Status (1)

Country Link
CN (1) CN110665057B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112604029A (zh) * 2020-12-30 2021-04-06 上海纳米技术及应用国家工程研究中心有限公司 用于牙槽骨修复的“三明治式”可降解支架的制备及产品和应用
CN113577393B (zh) * 2021-08-27 2023-02-10 北京科健生物技术有限公司 一种骨修复材料及其制备方法和应用
CN114099770A (zh) * 2021-11-02 2022-03-01 常州大学 一种自固化3d打印生物墨水及其制备方法和应用
CN114259604B (zh) * 2021-12-17 2022-12-27 上海纳米技术及应用国家工程研究中心有限公司 一种3d打印促有序血管化的载药骨修复支架的制备方法及其产品和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255382A (zh) * 1998-11-26 2000-06-07 瑞安大药厂股份有限公司 骨骼填充材料及其制造方法
KR20090010607A (ko) * 2007-07-24 2009-01-30 (주)씨네이처 콜라겐을 함유한 관절연골 치료용 이중 지지체
CN205494475U (zh) * 2016-01-20 2016-08-24 北京大学第三医院 一种组织工程半月板支架
CN107469148A (zh) * 2017-07-28 2017-12-15 广东泰宝医疗器械技术研究院有限公司 一种新型骨‑软骨修复支架及其制备方法
CN107998455A (zh) * 2018-01-31 2018-05-08 济宁学院 羟基磷灰石基骨组织工程支架及其粉末3d打印方法
CN108201632A (zh) * 2016-12-20 2018-06-26 重庆润泽医药有限公司 一种关节软骨修复用支架
CN109395159A (zh) * 2018-10-19 2019-03-01 上海纳米技术及应用国家工程研究中心有限公司 低温3d打印技术制备载药聚酯高分子/生物陶瓷骨修复支架的方法及产品和应用
CN110251279A (zh) * 2019-07-17 2019-09-20 上海纳米技术及应用国家工程研究中心有限公司 一种磷酸钙骨水泥涂覆的3d打印plga椎间融合器的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375828B1 (ko) * 2011-03-31 2014-03-17 인제대학교 산학협력단 골-연골 재생용 복합 지지체, 이의 제조 방법 및 이를 유효성분으로 함유하는 골-연골 질환 치료용 조성물
CN107281554B (zh) * 2017-05-09 2020-03-13 西南交通大学 一种机械活化制备适合3d打印的磷酸钙基复合材料的方法
CN107754012A (zh) * 2017-11-28 2018-03-06 上海纳米技术及应用国家工程研究中心有限公司 3D打印技术制备PLGA/PCL/nHA复合骨修复多孔支架的方法及其产品和应用
CN107929807A (zh) * 2017-11-28 2018-04-20 东华大学 掺锶羟基磷灰石复合聚己内酯材料及其制备和应用
GB201804594D0 (en) * 2018-03-22 2018-05-09 Univ Swansea Bonegraft substituteand method of manufacture
CN109568674A (zh) * 2018-12-28 2019-04-05 上海纳米技术及应用国家工程研究中心有限公司 载药型仿生骨修复多孔支架的制备方法及其产品和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255382A (zh) * 1998-11-26 2000-06-07 瑞安大药厂股份有限公司 骨骼填充材料及其制造方法
KR20090010607A (ko) * 2007-07-24 2009-01-30 (주)씨네이처 콜라겐을 함유한 관절연골 치료용 이중 지지체
CN205494475U (zh) * 2016-01-20 2016-08-24 北京大学第三医院 一种组织工程半月板支架
CN108201632A (zh) * 2016-12-20 2018-06-26 重庆润泽医药有限公司 一种关节软骨修复用支架
CN107469148A (zh) * 2017-07-28 2017-12-15 广东泰宝医疗器械技术研究院有限公司 一种新型骨‑软骨修复支架及其制备方法
CN107998455A (zh) * 2018-01-31 2018-05-08 济宁学院 羟基磷灰石基骨组织工程支架及其粉末3d打印方法
CN109395159A (zh) * 2018-10-19 2019-03-01 上海纳米技术及应用国家工程研究中心有限公司 低温3d打印技术制备载药聚酯高分子/生物陶瓷骨修复支架的方法及产品和应用
CN110251279A (zh) * 2019-07-17 2019-09-20 上海纳米技术及应用国家工程研究中心有限公司 一种磷酸钙骨水泥涂覆的3d打印plga椎间融合器的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3D printed TCP-based scaffold incorporatingVEGF-loaded PLGA microspheres for craniofacialtissue engineering";F. Fahimipour et al;《Dental Materials》;20171231;第33卷;全文 *
"3D打印制备可降解CDHA/PLGA 双层骨修复支架";吴宁等;《第十次全国口腔修复工艺学学术年会》;20201015;全文 *
"Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair";Ning Wu et al;《Biofabrication》;20210310;第13卷;全文 *
"In vivo behaviour of low-temperature calcium-deficient hydroxyapatite: comparison with deproteinised bovine bone";Pavel Šponer et al;《International Orthopaedics》;20100819;第35卷;全文 *

Also Published As

Publication number Publication date
CN110665057A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110665057B (zh) 一种羟基磷灰石/plga双层支架的制备方法
Sun et al. 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration
Feng et al. Structural and functional adaptive artificial bone: materials, fabrications, and properties
Mofakhami et al. Biphasic calcium phosphate microspheres in biomedical applications
Utech et al. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers
Luo et al. Well-ordered biphasic calcium phosphate–alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions
Alves Cardoso et al. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration
Zhou et al. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review
CN103948974B (zh) 载药型引导组织再生膜及其制备方法
AU2009251989B2 (en) Osteoinductive nanocomposites
Gyawali et al. Citrate-based biodegradable injectable hydrogel composites for orthopedic applications
WO2014066884A1 (en) Silk-based fabrication techniques to prepare high strength calcium phosphate ceramic scaffolds
Cai et al. Poly (propylene fumarate)/(calcium sulphate/β-tricalcium phosphate) composites: Preparation, characterization and in vitro degradation
CN110982335A (zh) 一种自固化羟基磷灰石3d打印墨水的制备方法
Castro et al. Incorporation of PLLA micro-fillers for mechanical reinforcement of calcium-phosphate cement
EP1204434A1 (en) Tissue augmentation material and methods
Chern et al. 3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration
TW201134783A (en) Process for preparing composition comprising porous ceramic with thermo-response hydrogel
US8871167B2 (en) Biocompatible ceramic-polymer hybrids and calcium phosphate porous body
CN110694109A (zh) 一种复合载药高分子微球的磷酸钙骨水泥支架及应用
Zhao et al. 3D printing of well dispersed electrospun PLGA fiber toughened calcium phosphate scaffolds for osteoanagenesis
Zhang et al. Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing
CN110882419A (zh) 一种自固化磷酸钙骨水泥支架及其制备方法和应用
Lin et al. Manufacturing of porous magnesium scaffolds for bone tissue engineering by 3D gel-printing
Yang et al. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant