CN110646665B - 一种多逆变器电网的谐振检测方法、系统、终端及存储介质 - Google Patents

一种多逆变器电网的谐振检测方法、系统、终端及存储介质 Download PDF

Info

Publication number
CN110646665B
CN110646665B CN201910788023.6A CN201910788023A CN110646665B CN 110646665 B CN110646665 B CN 110646665B CN 201910788023 A CN201910788023 A CN 201910788023A CN 110646665 B CN110646665 B CN 110646665B
Authority
CN
China
Prior art keywords
frequency
signal
angular velocity
oscillation
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910788023.6A
Other languages
English (en)
Other versions
CN110646665A (zh
Inventor
彭静
武志刚
王志涛
马帅
李婧
刘炳琪
尹新明
李凯
陈敬娟
桑敏
尉龙
石良
解江胜
张春美
任杰
许一丹
王新娇
冀文瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Laiwu Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Laiwu Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Laiwu Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910788023.6A priority Critical patent/CN110646665B/zh
Publication of CN110646665A publication Critical patent/CN110646665A/zh
Application granted granted Critical
Publication of CN110646665B publication Critical patent/CN110646665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

本发明提供一种多逆变器电网的谐振检测方法、系统、终端及存储介质,包括:采集待检测的原始信号,创建原始信号的窗口信号;根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式;根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号;提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值;根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率。

Description

一种多逆变器电网的谐振检测方法、系统、终端及存储介质
技术领域
本发明设计供电设备技术领域,具体涉及一种多逆变器电网的谐振检测方法、系统、终端及存储介质。
背景技术
在多逆变器并网发电系统中,由于多台并网逆变器之间、逆变器与电网之间的交互耦合现象,很容易引发谐振。并且在多逆变器并网发电系统中,在很多个频率处都可能会发生谐振(谐振点),有的谐振点的谐振频率还会随着并网逆变器数量的变化而变化。在谐振过程中,谐振频率的电压、电流幅值会不断增大,最终导致系统崩溃。因此,人们希望能够快速实时的检测出谐振的幅值和频率,为谐振的抑制提供条件。
目前检测谐振的幅值和频率的方法主要有三种:时域仿真法、基于系统模型的特征值分析法和基于实测数据的谐振幅值和频率提取方法。其中在基于实测数据的谐振幅值和频率提取方法中,基于小波变换和HHT的光伏并网谐振检测方法的实验数据效果最好。基于小波变换和HHT的光伏并网谐振检测方法的原理为:(1)对电压(电流)信号进行采集。(2)利用小波变换对电压(电流)信号进行分解。如果对电压(电流)的采样频率为fs,根据香浓采样定理,电压(电流)信号中包含的频率范围为0~fs/2,小波变换相当于滤波器,能够在时域中将电压(电流)信号中的部分频段提取出来。如在第一层小波变换中,能够将0~fs/2的信号分解成0~fs/4的信号和fs/4~fs/2的信号,以此类推。我们可以大致确定每个频段的幅值范围,当该频段信号的实际幅值超过了幅值范围,则说明在该频段内发生了谐振。之所以利用小波变换将信号分解成不同的频段,是因为这样能够加快谐振的检测速度。在信号中,基波信号和低频信号的幅值较大,会影响高频振荡的检测。将信号分解成不同的频段,对每个频段设置不同的幅值阈值,能够有效解决低频信号对高频信号的影响。(3)在检测出发生谐振的频段后,利用HHT算法对发生谐振的频段进行分析,能够提取出谐振的幅值和频率信息。
基于小波变换和HHT的光伏并网谐振检测方法能够提取出振荡的幅值和频率特征,但是,它有以下的缺点:(1)通过该方法提取到的幅值和频率信息。HHT变换需要提取一个周期的信号进行分析,得出该周期内的幅值和频率信息,而在基于小波变换和HHT的光伏并网谐振检测方法中的周期是基波周期,一个基波周期计算一次幅值和频率信息。但是,对于高频振荡,在一个基波周期内的变化很大,因此对于高频振荡的提取还是不够快速,不够准确。(2)小波变换的计算量大,以目前的硬件水平难以实现实时在线的计算。同时我们需要的仅仅是将会影响判断的低频信号与高频信号分离,而不需要再将高频信号分解成小频段,这也增加了不必要的计算量。
发明内容
针对现有技术的上述不足,本发明提供一种多逆变器电网的谐振检测方法、系统、终端及存储介质,以解决上述技术问题。
第一方面,本发明提供一种多逆变器电网的谐振检测方法,包括:
采集待检测的原始信号,创建原始信号的窗口信号;
根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式;
根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号;
提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值;
根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率。
进一步的,所述根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式,包括:
根据公式
Figure BDA0002178676110000031
计算窗口信号的频域形式F2(ω),其中,f1(t)是原始信号,f2(t)是窗口信号,F1(ω)由原始信号通过傅里叶变换得到,F2(ω)由窗口信号通过傅里叶变换得到;
对计算出的F2(ω)进行傅里叶逆变换,得到时域形式的窗口信号f2(t)。
进一步的,所述提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值,包括:
通过公式
Figure BDA0002178676110000032
计算初值角速度对应的第一频率v',其中v为振荡频段信号的频率,ω1为给定的初值角速度,k为常数,s为变换算子;
通过公式
Figure BDA0002178676110000033
计算与初值角速度相差90°的正交频率q_v';
通过公式
Figure BDA0002178676110000034
计算初值角速度对应的幅值h。
进一步的,所述根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率,包括:
将初值角速度和初值角速度对应的第一频率、第二频率和幅值带入公式
Figure BDA0002178676110000041
进行迭代计算,并在所述迭代公式达到平衡时获取与振荡频率对应的角速度,其中,v是所述振荡频段信号,h是振荡信号的实时幅值,k和Γ均为比例系数;
将振荡频率对应的角速度代入公式
Figure BDA0002178676110000042
计算振荡信号的实时频率即振荡频率f。
第二方面,本发明提供一种多逆变器电网的谐振检测系统,包括:
信号采集单元,配置用于采集待检测的原始信号,创建原始信号的窗口信号;
时域计算单元,配置用于根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式;
频段确定单元,配置用于根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号;
参数计算单元,配置用于提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值;
频率计算单元,配置用于根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率。
进一步的,所述频段确定单元包括:
频域计算模块,配置用于根据公式
Figure BDA0002178676110000051
计算窗口信号的频域形式F2(ω),其中,f1(t)是原始信号,f2(t)是窗口信号,F1(ω)由原始信号通过傅里叶变换得到,F2(ω)由窗口信号通过傅里叶变换得到;
逆向变换模块,配置用于对计算出的F2(ω)进行傅里叶逆变换,得到时域形式的窗口信号f2(t)。
进一步的,所述参数计算单元包括:
频率提取模块,配置用于通过公式
Figure BDA0002178676110000052
计算初值角速度对应的第一频率v',其中v为振荡频段信号的频率,ω1为给定的初值角速度,k为常数,s为变换算子;
正交提取模块,配置用于通过公式
Figure BDA0002178676110000053
计算与初值角速度相差90°的正交频率q_v';
幅值提取模块,配置用于通过公式
Figure BDA0002178676110000054
计算初值角速度对应的幅值h。
进一步的,所述频率计算单元包括:
迭代计算模块,配置用于将初值角速度和初值角速度对应的第一频率、第二频率和幅值带入公式
Figure BDA0002178676110000055
进行迭代计算,并在所述迭代公式达到平衡时获取与振荡频率对应的角速度,其中,v是所述振荡频段信号,h是振荡信号的实时幅值,k和Γ均为比例系数;
频率换算模块,配置用于将振荡频率对应的角速度代入公式
Figure BDA0002178676110000056
计算振荡信号的实时频率即振荡频率f。
第三方面,提供一种终端,包括:
处理器、存储器,其中,
该存储器用于存储计算机程序,
该处理器用于从存储器中调用并运行该计算机程序,使得终端执行上述的终端的方法。
第四方面,提供了一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本发明的有益效果在于,
本发明提供的多逆变器电网的谐振检测方法、系统、终端及存储介质,根据多逆变器并网耦合谐振机理及有源阻尼优化方法中的谐振机理分析,得出所有可能发生谐振的频率所在的频段,谐振会发生在这个频段内,只要检测这个谐振存在频段就可以分析出多逆变器并网发电系统是否发生了谐振以及谐振的幅值和频率特征。相对于现有的基于小波变换和HHT的光伏并网谐振检测方法,本发明提供的检测方法无需提取一个周期的信号进行分析且计算量小,不需要将高频信号分解成小频段,降低了对硬件计算量的要求。
此外,本发明设计原理可靠,结构简单,具有非常广泛的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的方法的频段确定离散化示意性结构图。
图2是本发明一个实施例的方法的输入信号图谱;
图3是本发明一个实施例的方法的输入信号的窗口信号的频域形式;
图4是本发明一个实施例的方法的谐振提取效果图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
下面对本发明中出现的关键术语进行解释。
本发明提供的多逆变器电网的谐振检测方法,执行主体可以为一种多逆变器电网的谐振检测系统。
该方法包括:
步骤110,采集待检测的原始信号,创建原始信号的窗口信号;
步骤120,根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式;
步骤130,根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号;
步骤140,提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值;
步骤150,根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率。
可选地,作为本发明一个实施例,所述根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式,包括:
根据公式
Figure BDA0002178676110000081
计算窗口信号的频域形式F2(ω),其中,f1(t)是原始信号,f2(t)是窗口信号,F1(ω)由原始信号通过傅里叶变换得到,F2(ω)由窗口信号通过傅里叶变换得到;
对计算出的F2(ω)进行傅里叶逆变换,得到时域形式的窗口信号f2(t)。
可选地,作为本发明一个实施例,所述提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值,包括:
通过公式
Figure BDA0002178676110000082
计算初值角速度对应的第一频率v',其中v为振荡频段信号的频率,ω1为给定的初值角速度,k为常数,s为变换算子;
通过公式
Figure BDA0002178676110000083
计算与初值角速度相差90°的正交频率q_v';
通过公式
Figure BDA0002178676110000084
计算初值角速度对应的幅值h。
可选地,作为本发明一个实施例,所述根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率,包括:
将初值角速度和初值角速度对应的第一频率、第二频率和幅值带入公式
Figure BDA0002178676110000091
进行迭代计算,并在所述迭代公式达到平衡时获取与振荡频率对应的角速度,其中,v是所述振荡频段信号,h是振荡信号的实时幅值,k和Γ均为比例系数;
将振荡频率对应的角速度代入公式
Figure BDA0002178676110000092
计算振荡信号的实时频率即振荡频率f。
为了便于对本发明的理解,下面以本发明多逆变器电网的谐振检测方法的原理,结合实施例中对多逆变器电网的谐振进行检测的过程,对本发明提供的多逆变器电网的谐振检测方法做进一步的描述。
具体的,所述多逆变器电网的谐振检测方法包括:
S1、采集待检测的原始信号,创建原始信号的窗口信号。
采集待检测的信号作为原始信号f1(t),本实施例采集的原始信号图谱如图2所示。创建原始信号的窗口信号,以f2(t)表示窗口信号。
S2、根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式。
请参考图1,根据傅里叶变换的时域卷积定理可知,两信号在时域的卷积积分对应于在频域中该两信号的傅立叶变换的乘积:
Figure BDA0002178676110000093
其中,f1(t)是原始信号,f2(t)是窗口信号,F1(ω)由原始信号通过傅里叶变换得到,F2(ω)由窗口信号通过傅里叶变换得到。如果窗口信号在频域表现为在谐振存在频率范围内为1,其余的频率为零,那么原始信号与窗口信号在频域相乘,得到的便是原始信号的在谐振存在频率范围内的信号。将f1(t)代入公式(1)得到窗口信号的频域形式F2(ω),F2(ω)波普如图3所示,对F2(ω)进行傅里叶逆变换,便能够得到窗口信号的时域形式f2(t)。
S3、根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号
将步骤S2计算得到的f2(t)代入公式(2):
f3(t)=f1(t)*f2(t) (2)
通过f1(t)和f2(t)的卷积运算得到的f3(t),便是原始信号中的谐振存在频段的信号,以下步骤中为方便公式表达,以v代替f3(t)表示原始信号中的谐振存在频段信号。
S4、提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值。
通过以下公式计算初值角速度对应的第一频率v':
Figure BDA0002178676110000101
其中v为振荡频段信号的频率,ω1为给定的初值角速度,k为常数,s为变换算子。
通过以下公式计算与初值角速度相差90°的正交频率q_v':
Figure BDA0002178676110000102
通过以下公式计算初值角速度对应的幅值h:
Figure BDA0002178676110000103
公式(3)、公式(4)和公式(5)中代入的都是初值角速度,因此计算出的频率、正交频率和幅值都是与初值角速度相对应的。若在公式3-5中代入其他角速度,则计算出的频率、正交频率和幅值都是与代入角速度相对应的。
S5、根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率。
将步骤S4中得到的初值角速度ω1对应的频率v'、正交频率q_v'和幅值h代入以下公式:
Figure BDA0002178676110000111
其中,v是所述振荡频段信号,k和Γ均为比例系数,k通常取
Figure BDA0002178676110000112
Γ通常取1000,s为算子。
将ω1代入公式(6)后得到ω2,然后将ω2代入公式3-5,得到ω2对应的频率、正交频率和幅值,将ω2和ω2的对应参数代入公式(6)得到ω3。以此类推,直至公式(6)达到平衡,此时解出的ω与振荡频率对应的角速度相等。
将解出的ω代入以下公式得到振荡频率f:
Figure BDA0002178676110000113
本实施例的谐振频率提取效果图谱如图4所示。
相应的,本实施例还提供一种多逆变器电网的谐振检测系统,包括:
信号采集单元,配置用于采集待检测的原始信号,创建原始信号的窗口信号;
时域计算单元,配置用于根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式;
频段确定单元,配置用于根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号;
参数计算单元,配置用于提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值;
频率计算单元,配置用于根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率。
可选地,作为本发明一个实施例,所述频段确定单元包括:
频域计算模块,配置用于根据公式
Figure BDA0002178676110000121
计算窗口信号的频域形式F2(ω),其中,f1(t)是原始信号,f2(t)是窗口信号,F1(ω)由原始信号通过傅里叶变换得到,F2(ω)由窗口信号通过傅里叶变换得到;
逆向变换模块,配置用于对计算出的F2(ω)进行傅里叶逆变换,得到时域形式的窗口信号f2(t)。
可选地,作为本发明一个实施例,所述参数计算单元包括:
频率提取模块,配置用于通过公式
Figure BDA0002178676110000122
计算初值角速度对应的第一频率v',其中v为振荡频段信号的频率,ω1为给定的初值角速度,k为常数,s为变换算子;
正交提取模块,配置用于通过公式
Figure BDA0002178676110000123
计算与初值角速度相差90°的正交频率q_v';
幅值提取模块,配置用于通过公式
Figure BDA0002178676110000131
计算初值角速度对应的幅值h。
可选地,作为本发明一个实施例,所述频率计算单元包括:
迭代计算模块,配置用于将初值角速度和初值角速度对应的第一频率、第二频率和幅值带入公式
Figure BDA0002178676110000132
进行迭代计算,并在所述迭代公式达到平衡时获取与振荡频率对应的角速度,其中,v是所述振荡频段信号,h是振荡信号的实时幅值,k和Γ均为比例系数;
频率换算模块,配置用于将振荡频率对应的角速度代入公式
Figure BDA0002178676110000133
计算振荡信号的实时频率即振荡频率f。
本实施例提供一种终端,可以装载本实施例提供的多逆变器电网的谐振检测系统,该终端可以包括:处理器、存储器及通信单元。这些组件通过一条或多条总线进行通信,本领域技术人员可以理解,图中示出的服务器的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本发明还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本发明提供的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(英文:read-only memory,简称:ROM)或随机存储记忆体(英文:random access memory,简称:RAM)等。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中如U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Acces s Memory)、磁碟或者光盘等各种可以存储程序代码的介质,包括若干指令用以使得一台计算机终端(可以是个人计算机,服务器,或者第二终端、网络终端等)执行本发明各个实施例所述方法的全部或部分步骤。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于终端实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,系统或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内/任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (4)

1.一种多逆变器电网的谐振检测方法,其特征在于,包括:
采集待检测的原始信号,创建原始信号的窗口信号;
根据傅里叶变换的时域卷积定理,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式;
根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号;
提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值;
根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率;
所述根据傅里叶变换的时域卷积定理和所述乘积,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式,包括:
根据公式
Figure FDA0003214624620000011
计算窗口信号的频域形式F2(ω),其中,f1(t)是原始信号,f2(t)是窗口信号,F1(ω)由原始信号通过傅里叶变换得到,F2(ω)由窗口信号通过傅里叶变换得到;
对计算出的F2(ω)进行傅里叶逆变换,得到时域形式的窗口信号f2(t);
所述提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值,包括:
通过公式
Figure FDA0003214624620000012
计算初值角速度对应的第一频率v',其中v为振荡频段信号的频率,ω1为给定的初值角速度,k为常数,s为变换算子;
通过公式
Figure FDA0003214624620000021
计算与初值角速度相差90°的正交频率q_v′;
通过公式
Figure FDA0003214624620000022
计算初值角速度对应的幅值h;
所述根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率,包括:
将初值角速度和初值角速度对应的第一频率、第二频率和幅值带入公式
Figure FDA0003214624620000023
进行迭代计算,并在所述迭代公式达到平衡时获取与振荡频率对应的角速度,其中,v是所述振荡频段信号,h是振荡信号的实时幅值,k和Γ均为比例系数;
将振荡频率对应的角速度代入公式
Figure FDA0003214624620000024
计算振荡信号的实时频率即振荡频率f。
2.一种多逆变器电网的谐振检测系统,其特征在于,包括:
信号采集单元,配置用于采集待检测的原始信号,创建原始信号的窗口信号;
时域计算单元,配置用于根据傅里叶变换的时域卷积定理,计算窗口信号频域形式,并通过对所述窗口信号频域形式进行傅里叶逆变换得到窗口信号的时域形式;
频段确定单元,配置用于根据原始信号和窗口信号的时域形式计算原始信号与时域形式的窗口信号在频域的乘积,所述乘积作为检测的振荡频段信号;
参数计算单元,配置用于提取所述振荡频段信号中初值角速度对应的第一频率和与所述第一频率正交的第二频率,根据所述第一频率和所述第二频率计算初值角速度对应的幅值;
频率计算单元,配置用于根据第一频率、第二频率和所述幅值构建角速度递进公式,计算与振荡频率对应的角速度,将所述对应角速度转换为振荡频率,输出所述振荡频率;
所述频段确定单元包括:
频域计算模块,配置用于根据公式
Figure FDA0003214624620000031
计算窗口信号的频域形式F2(ω),其中,f1(t)是原始信号,f2(t)是窗口信号,F1(ω)由原始信号通过傅里叶变换得到,F2(ω)由窗口信号通过傅里叶变换得到;
逆向变换模块,配置用于对计算出的F2(ω)进行傅里叶逆变换,得到时域形式的窗口信号f2(t);
所述参数计算单元包括:
频率提取模块,配置用于通过公式
Figure FDA0003214624620000032
计算初值角速度对应的第一频率v',其中v为振荡频段信号的频率,ω1为给定的初值角速度,k为常数,s为变换算子;
正交提取模块,配置用于通过公式
Figure FDA0003214624620000033
计算与初值角速度相差90°的正交频率q_v';
幅值提取模块,配置用于通过公式
Figure FDA0003214624620000034
计算初值角速度对应的幅值h;
所述频率计算单元包括:
迭代计算模块,配置用于将初值角速度和初值角速度对应的第一频率、第二频率和幅值带入公式
Figure FDA0003214624620000035
进行迭代计算,并在所述迭代公式达到平衡时获取与振荡频率对应的角速度,其中,v是所述振荡频段信号,h是振荡信号的实时幅值,k和Γ均为比例系数;
频率换算模块,配置用于将振荡频率对应的角速度代入公式
Figure FDA0003214624620000041
计算振荡信号的实时频率即振荡频率f。
3.一种终端,其特征在于,包括:
处理器;
用于存储处理器的执行指令的存储器;
其中,所述处理器被配置为执行权利要求1所述的方法。
4.一种存储有计算机程序的计算机可读存储介质,其特征在于,该程序被处理器执行时实现如权利要求1所述的方法。
CN201910788023.6A 2019-08-26 2019-08-26 一种多逆变器电网的谐振检测方法、系统、终端及存储介质 Active CN110646665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910788023.6A CN110646665B (zh) 2019-08-26 2019-08-26 一种多逆变器电网的谐振检测方法、系统、终端及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910788023.6A CN110646665B (zh) 2019-08-26 2019-08-26 一种多逆变器电网的谐振检测方法、系统、终端及存储介质

Publications (2)

Publication Number Publication Date
CN110646665A CN110646665A (zh) 2020-01-03
CN110646665B true CN110646665B (zh) 2021-10-01

Family

ID=69009693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910788023.6A Active CN110646665B (zh) 2019-08-26 2019-08-26 一种多逆变器电网的谐振检测方法、系统、终端及存储介质

Country Status (1)

Country Link
CN (1) CN110646665B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999555B (zh) * 2020-08-26 2023-06-02 广东博智林机器人有限公司 伺服系统谐振频率检测方法、装置、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303341B2 (ja) * 1998-12-15 2009-07-29 シチズンホールディングス株式会社 振動ジャイロ
JP2008070333A (ja) * 2006-09-15 2008-03-27 Denso Corp 振動型角速度センサ及び車両制御システム
CN101038310A (zh) * 2007-02-07 2007-09-19 北京航空航天大学 谐振式传感器敏感结构频率特性的数字测试系统
CN104868909B (zh) * 2015-06-01 2018-02-06 合肥工业大学 一种基于电压正交谐振器qr无静差的锁频锁相环及其测量方法
CN206378139U (zh) * 2016-12-23 2017-08-04 宁波大学 一种正交偏置自消除的微机械陀螺仪

Also Published As

Publication number Publication date
CN110646665A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
Yu A multisynchrosqueezing-based high-resolution time-frequency analysis tool for the analysis of non-stationary signals
CN106845010B (zh) 基于改进SVD降噪和Prony的低频振荡主导模式辨识方法
Yan et al. Improved Hilbert–Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis
Wang et al. Adaptive variational mode decomposition based on Archimedes optimization algorithm and its application to bearing fault diagnosis
Omitaomu et al. Empirical mode decomposition technique with conditional mutual information for denoising operational sensor data
Dong et al. Non-iterative denoising algorithm for mechanical vibration signal using spectral graph wavelet transform and detrended fluctuation analysis
CN110967599A (zh) 一种电能质量扰动检测与定位算法
US8943014B2 (en) Determination of statistical error bounds and uncertainty measures for estimates of noise power spectral density
CN111797569A (zh) 一种桥梁状态的评估方法、装置、设备和存储介质
CN110646665B (zh) 一种多逆变器电网的谐振检测方法、系统、终端及存储介质
CN111293706A (zh) 一种电力系统低频振荡参数辨识方法和装置
US20130097112A1 (en) Determination of Statistical Upper Bound for Estimate of Noise Power Spectral Density
CN115389816A (zh) 一种电网谐波与间谐波的检测方法
Gong et al. Nonlinear vibration feature extraction based on power spectrum envelope adaptive empirical Fourier decomposition
CN114168586A (zh) 一种异常点检测的方法和装置
Mei et al. Wavelet packet transform and improved complete ensemble empirical mode decomposition with adaptive noise based power quality disturbance detection
Khodaparast et al. Phasor estimation by EMD-assisted Prony
Holland et al. Measurement point selection and modal damping identification for bladed disks
Li et al. Research on Signal Processing Technology of Ultrasonic Non‐Destructive Testing Based on EEMD Combined with Wavelet Packet
Pham et al. An adaptive computation of contour representations for mode decomposition
Pan et al. Symplectic transformation based variational Bayesian learning and its applications to gear fault diagnosis
Khodaparast et al. Emd-prony for phasor estimation in harmonic and noisy condition
Shetty et al. Power Spectral Density based Identification of Low frequency‎ Oscillations in Multimachine Power system
Zhu et al. An improved Hilbert vibration decomposition method for analysis of rotor fault signals
Zhu et al. Fault feature extraction of rolling element bearing based on EVMD

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant