CN110643936A - 一种适合铣削加工用的多层复合涂层及其制备方法 - Google Patents
一种适合铣削加工用的多层复合涂层及其制备方法 Download PDFInfo
- Publication number
- CN110643936A CN110643936A CN201910973807.6A CN201910973807A CN110643936A CN 110643936 A CN110643936 A CN 110643936A CN 201910973807 A CN201910973807 A CN 201910973807A CN 110643936 A CN110643936 A CN 110643936A
- Authority
- CN
- China
- Prior art keywords
- layer
- substrate
- arc
- preparing
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0676—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公布的适合铣削加工用的多层复合涂层是由CoNiCrAlY高熵合金粘结层、α‑Cr2O3氧化物模板层、α‑Al2O3氧化物支撑层、TiAlCrON氮氧化物衔接层、TiAlCrN氮化物耐磨层五个子层构成的整体,这五个子层的顺序是由内至外,涂层总厚度为1.2~3.5μm。其制备方法为:基底被加热和离子刻蚀后,先利用电弧蒸发镀工艺在基底上沉积CoNiCrAlY层;然后使用阴极电弧离子镀工艺,再继续依次沉积α‑Cr2O3层、α‑Al2O3层、TiAlCrON层和TiAlCrN层。不同功能子层有机组合的多层复合涂层韧性高,耐冲击性好,非常适合断续切削方式的铣削加工,且制备工艺简单,便于工业化生产。
Description
技术领域
本发明属于切削刀具表面涂层技术领域,具体涉及一种适合铣削加工用的多层复合涂层及其制备方法。
背景技术
铣削加工是切削加工的一种重要加工方式,铣削加工的特点是断续切削,刀具在加工过程中承受冲击载荷。铣削加工要求铣刀及其表面涂层材料具有良好的韧性和抗冲击性能。氮化物涂层是铣刀、车刀等切削刀具广泛使用的涂层材料,如TiAlN、TiAlCrN、TiAlSiN等,氮化物涂层硬度高、耐磨性好。但是,氮化物涂层也存在着不足:脆性偏大,与基底结合强度不够高,在高温铣削条件下的热稳定性能不足。氧化物涂层(如Al2O3)相比于氮化物涂层具有硬度低、韧性好的特点,更为突出的是α-Al2O3涂层结构稳定,在高温条件下仍然具有完整的晶体结构,并具有良好的抗氧化性。为了发挥各涂层的性能优势,采用化学气相沉积方法制备的多层氧化物/(碳)氮化物复合涂层(如TiCN/α-Al2O3/TiN)具有非常优异的综合性能,在切削刀具上获得了广泛应用。但是由于化学气相沉积法的工艺温度高,刀具基底材料在涂层沉积过程中容易发生元素的扩散、化学反应等行为,如硬质合金刀具在高温条件下容易发生脱碳从而在刀具组织中形成脱碳脆性相,进而使刀具的韧性降低,不利于铣削、钻孔等断续加工方式。物理气相沉积法具有沉积温度低、对基底材料性质影响小、表面质量好、工艺灵活等特点,是制备复杂结构复合涂层更有前景的方法。但是,该方法的不足是沉积能量不足,致使其在氧化物涂层制备方面的受到了限制,该方法沉积的Al2O3涂层很难获得性能优异的α结构,这也使得多层复合涂层的发展受到极大制约。
发明内容
本发明的目的是克服现有技术存在的问题,提供一种适合铣削加工用的多层复合涂层。
本发明的另一目的是提供一种上述适合铣削加工用的多层复合涂层的制备方法。
本发明提供的适合铣削加工用的多层复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物支撑层、氮氧化物衔接层、氮化物耐磨层五个子层构成的整体,这五个子层的顺序是由内至外,涂层总厚度为1.2~3.5μm。
其中,上述涂层中,所述高熵合金粘结层为CoaNibCrcAldYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为150~200nm。
其中,上述涂层中,所述氧化物模板层为α-Cr2O3,厚度为100~300nm。
其中,上述涂层中,所述氧化物支撑层为α-Al2O3,厚度为500~2000nm。
其中,上述涂层中,所述氮氧化物衔接层为TiAlCrON,厚度为50~200nm。
其中,上述涂层中,所述氮化物耐磨层为TiAlCrN,厚度为400~800nm。
本发明提供的上述适合铣削加工用的多层复合涂层的制备方法,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热;
B、对基底表面进行离子刻蚀;
C、利用电弧蒸镀工艺制备高熵合金粘结层;
D、利用阴极电弧镀膜工艺制备氧化物模板层;
E、利用阴极电弧镀膜工艺制备氧化物支撑层;
F、利用阴极电弧镀膜工艺制备氮氧化物衔接层;
G、利用阴极电弧镀膜工艺制备氮化物耐磨层。
其中,上述方法步骤A中,所述抽真空并加热是先将背底真空抽至0.05Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃;上述方法步骤B中,所述离子刻蚀是向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min;上述方法步骤C中,所述电弧蒸镀工艺制备高熵合金粘结的工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为190~220A,蒸镀坩埚内放置的材料为CoaNibCrcAldYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为8~10min;上述方法步骤D中,所述阴极电弧镀膜工艺制备氧化物模板层的工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-90V,沉积时间8~20min;上述方法步骤E中,所述阴极电弧镀膜工艺制备氧化物支撑层的工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间40~150min;上述方法步骤F中,所述阴极电弧镀膜工艺制备氮氧化物衔接层的工作气体为N2+O2,工作压强为1.0~3.0Pa,工作靶材为TiAlCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间8~15min;上述方法步骤G中,所述阴极电弧镀膜工艺制备氮化物耐磨层的工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为TiAlCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间25~45min。
本发明与现有技术相比,具有如下优点:
1)本发明提供的适合铣削加工用的多层复合涂层由功能与成分均不同的五个子层构成,首先,高熵合金粘结层相比于传统的Cr、Ti纯金属粘结层及TiAl合金粘结层而言,具有更高的强韧性,能在刀具基底材料与表面涂层材料之间起到很好的粘结作用,使涂层与基底结合牢固;其次,使用的α-Cr2O3氧化物模板层有利于Al2O3按照α-Cr2O3的晶体结构结构外延生长,解决了物理气相沉积法由于温度低制备α-Al2O3困难的问题;再次,α-Al2O3氧化物支撑层与TiAlCrN氮化物耐磨层相结合,避免了单纯氧化物涂层硬度低、耐磨性不足的问题和单纯氮化物涂层硬度高、韧性不足的问题;最后,TiAlCrON氮氧化物衔接层实现了α-Al2O3层与TiAlCrN层的有机过渡,避免了α-Al2O3氧化物支撑层与TiAlCrN氮化物耐磨层的界面突变造成的应力过大或层间结合不稳的问题。
2)本发明提供的适合铣削加工用的多层复合涂层的制备方法是一种以阴极电弧沉积为主、蒸发镀工艺制备粘结层为辅的组合式离子镀工艺。镀膜前通过加热使基底材料中吸附的杂质释放,同时采用离化的Ar+对基底表面进行轰击刻蚀,增强了涂层与基底的结合;采用电弧蒸镀工艺蒸发高熵合金材料,在基底上沉积高熵合金粘结层,进一步地增强涂层与基底的结合能力且保持良好的韧性,电弧蒸发镀制备粘结层的优势是,沉积速率快,蒸发原料的尺寸、形状几乎不受限制,称重后装入蒸发坩埚内即可,而采用阴极电弧离子镀沉积粘结层,则需要将蒸发原料制成具有一定形状和尺寸的靶材;阴极电弧离子镀过程中的粒子离化率高且离子能量高,相比磁控溅射更容易获得α-Al2O3。在沉积涂层过程中,通过切换不同的电弧靶工作,很容易多层复合涂层的制备,操作工艺简单且易于掌握和控制。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明保护的内容不局限于以下实施例。
实施例1
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.2Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀80min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.15Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为190A,蒸发原料为Co0.15Ni0.15Cr0.4Al0.15Y0.15块,蒸发沉积10min;关闭主弧电源,开启Cr电弧靶,靶电流设为80A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为3.0Pa,对基底施加偏压-60V,沉积15min;开启Al电弧靶,靶电流设为100A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为2.2Pa,基底偏压保持不变继续沉积130min;开启TiAlCr合金电弧靶,靶电流设为115A,然后关闭Al电弧靶电源,通入氮气、关闭氩气,调节氮气和氧气流量,控制工作压强为2.0Pa,基底偏压设置为-45V,沉积10min;关闭氧气,调节氮气流量使压强保持2.5Pa,靶电流调节为100A,基底偏压设置为-90V,沉积45min后结束。制备的适合铣削加工用的多层复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层、TiAlCrON氮氧化物衔接层和TiAlCrN氮化物耐磨层共五个子层组成,各个子层之间以及涂层与基底结合牢固,韧性高,耐冲击性好,在铣削加工时使用寿命长。
实施例2
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.15Pa,然后对基底施加-200V的直流偏压和-300V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.2Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为210A,蒸发原料为Co0.2Ni0.2Cr0.2Al0.2Y0.2块,蒸发沉积9min;关闭主弧电源,开启Cr电弧靶,靶电流设为90A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为3.0Pa,对基底施加偏压-70V,沉积15min;开启Al电弧靶,靶电流设为120A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为2.5Pa,基底偏压调节为-85V,沉积120min;开启TiAlCr合金电弧靶,靶电流设为80A,然后关闭Al电弧靶电源,通入氮气、关闭氩气,调节氮气和氧气流量,控制工作压强为2.5Pa,基底偏压调节为-30V,沉积15min;关闭氧气,调节氮气流量使压强为3.0Pa,靶电流调节为90A,基底偏压调节为-45V,沉积25min后结束。制备的适合铣削加工用的多层复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层、TiAlCrON氮氧化物衔接层和TiAlCrN氮化物耐磨层共五个子层组成,各个子层之间以及涂层与基底结合牢固,韧性高,耐冲击性好,在铣削加工时使用寿命长。
实施例3
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.04Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.25Pa,然后对基底施加-100V的直流偏压和-300V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀90min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.15Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为220A,蒸发原料为Co0.2Ni0.2Cr0.2Al0.2Y0.2块,蒸发沉积8min;关闭主弧电源,开启Cr电弧靶,靶电流设为50A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为1.5Pa,对基底施加偏压-60V,沉积15min;开启Al电弧靶,靶电流设为110A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为2.5Pa,基底偏压保持不变继续沉积90min;开启TiAlCr合金电弧靶,靶电流设为120A,然后关闭Al电弧靶电源,通入氮气、关闭氩气,调节氮气和氧气流量,控制工作压强为1.7Pa,基底偏压继续保持不变,沉积8min;关闭氧气,调节氮气流量使压强为2.0Pa,靶电流和基底偏压保持不变,沉积30min后结束。制备的适合铣削加工用的多层复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层、TiAlCrON氮氧化物衔接层和TiAlCrN氮化物耐磨层共五个子层组成,各个子层之间以及涂层与基底结合牢固,韧性高,耐冲击性好,在铣削加工时使用寿命长。
Claims (8)
1.一种适合铣削加工用的多层复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物支撑层、氮氧化物衔接层、氮化物耐磨层五个子层构成的整体,这五个子层的顺序是由内至外,涂层总厚度为1.2~3.5μm。
2.根据权利要求1所述的一种适合铣削加工用的多层复合涂层,其特征在于,所述高熵合金粘结层为CoaNibCrcAldYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为150~200nm。
3.根据权利要求1所述的一种适合铣削加工用的多层复合涂层,其特征在于,所述氧化物模板层为α-Cr2O3,厚度为100~300nm。
4.根据权利要求1所述的一种适合铣削加工用的多层复合涂层,其特征在于,所述氧化物支撑层为α-Al2O3,厚度为500~2000nm。
5.根据权利要求1所述的一种适合铣削加工用的多层复合涂层,其特征在于,所述氮氧化物衔接层为TiAlCrON,厚度为50~200nm。
6.根据权利要求1所述的一种适合铣削加工用的多层复合涂层,其特征在于,所述氮化物耐磨层为TiAlCrN,厚度为400~800nm。
7.一种权利要求1~6任意一项所述的适合铣削加工用的多层复合涂层的制备方法,其特征在于,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热;
B、对基底表面进行离子刻蚀;
C、利用电弧蒸镀工艺制备高熵合金粘结层;
D、利用阴极电弧镀膜工艺制备氧化物模板层;
E、利用阴极电弧镀膜工艺制备氧化物支撑层;
F、利用阴极电弧镀膜工艺制备氮氧化物衔接层;
G、利用阴极电弧镀膜工艺制备氮化物耐磨层。
8.根据权利要求7所述的适合铣削加工用的多层复合涂层的制备方法,其进一步的特征在于,步骤A中,所述抽真空并加热是先将背底真空抽至0.05Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃;步骤B中,所述离子刻蚀是向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min;步骤C中,所述电弧蒸镀工艺制备高熵合金粘结的工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为190~220A,蒸镀坩埚内放置的材料为CoaNibCrcAldYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为8~10min;步骤D中,所述阴极电弧镀膜工艺制备氧化物模板层的工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-90V,沉积时间8~20min;步骤E中,所述阴极电弧镀膜工艺制备氧化物支撑层的工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间40~150min;步骤F中,所述阴极电弧镀膜工艺制备氮氧化物衔接层的工作气体为N2+O2,工作压强为1.0~3.0Pa,工作靶材为TiAlCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间8~15min;步骤G中,所述阴极电弧镀膜工艺制备氮化物耐磨层的工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为TiAlCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间25~45min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910973807.6A CN110643936B (zh) | 2019-10-14 | 2019-10-14 | 一种适合铣削加工用的多层复合涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910973807.6A CN110643936B (zh) | 2019-10-14 | 2019-10-14 | 一种适合铣削加工用的多层复合涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110643936A true CN110643936A (zh) | 2020-01-03 |
CN110643936B CN110643936B (zh) | 2021-04-30 |
Family
ID=69012770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910973807.6A Active CN110643936B (zh) | 2019-10-14 | 2019-10-14 | 一种适合铣削加工用的多层复合涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110643936B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235533A (zh) * | 2020-03-05 | 2020-06-05 | 武汉大学 | 一种硬质合金铣刀的AlCrNbSiTiBC高温自润滑复合涂层及其制备方法 |
CN112064024A (zh) * | 2020-09-23 | 2020-12-11 | 广东省科学院新材料研究所 | 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1974205A (zh) * | 2005-12-02 | 2007-06-06 | 三菱麻铁里亚尔株式会社 | 表面包覆切削刀片及其制造方法 |
CN101691654A (zh) * | 2007-09-26 | 2010-04-07 | 山特维克知识产权股份有限公司 | 制造涂层切削工具的方法 |
CN105132908A (zh) * | 2015-10-16 | 2015-12-09 | 广东电网有限责任公司电力科学研究院 | 燃气轮机叶片热障涂层粘结层及其制备方法 |
CN108642449A (zh) * | 2018-05-29 | 2018-10-12 | 武汉大学 | 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法 |
CN109082641A (zh) * | 2018-08-28 | 2018-12-25 | 华南理工大学 | 一种三层膜结构涂层及其制备方法 |
-
2019
- 2019-10-14 CN CN201910973807.6A patent/CN110643936B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1974205A (zh) * | 2005-12-02 | 2007-06-06 | 三菱麻铁里亚尔株式会社 | 表面包覆切削刀片及其制造方法 |
CN101691654A (zh) * | 2007-09-26 | 2010-04-07 | 山特维克知识产权股份有限公司 | 制造涂层切削工具的方法 |
CN105132908A (zh) * | 2015-10-16 | 2015-12-09 | 广东电网有限责任公司电力科学研究院 | 燃气轮机叶片热障涂层粘结层及其制备方法 |
CN108642449A (zh) * | 2018-05-29 | 2018-10-12 | 武汉大学 | 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法 |
CN109082641A (zh) * | 2018-08-28 | 2018-12-25 | 华南理工大学 | 一种三层膜结构涂层及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235533A (zh) * | 2020-03-05 | 2020-06-05 | 武汉大学 | 一种硬质合金铣刀的AlCrNbSiTiBC高温自润滑复合涂层及其制备方法 |
CN112064024A (zh) * | 2020-09-23 | 2020-12-11 | 广东省科学院新材料研究所 | 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用 |
CN112064024B (zh) * | 2020-09-23 | 2021-08-31 | 广东省科学院新材料研究所 | 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110643936B (zh) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6503373B2 (en) | Method of applying a coating by physical vapor deposition | |
CN110797545A (zh) | 一种金属双极板及其制备方法以及燃料电池 | |
CN111349901B (zh) | 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法 | |
CN107022761A (zh) | 基于类金刚石薄膜的复合厚膜及其镀膜方法 | |
CN110643936B (zh) | 一种适合铣削加工用的多层复合涂层及其制备方法 | |
CN108118304A (zh) | 纳米复合涂层及其制备工艺 | |
CN107557736A (zh) | 一种AlCrSiVN纳米复合涂层及其制备方法 | |
CN110643953B (zh) | 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法 | |
CN114717516A (zh) | 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法 | |
CN112080723A (zh) | 金制品表面纳米多层复合抗划花膜及其制备方法 | |
CN108930021B (zh) | 一种纳米多层AlTiN/AlTiVCuN涂层及其制备方法和应用 | |
CN112853281B (zh) | 碳基多层薄膜及其制备方法和应用 | |
CN110656313B (zh) | 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法 | |
CN110616405B (zh) | 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法 | |
CN111304612B (zh) | 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法 | |
CN110643951B (zh) | 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法 | |
CN110670019B (zh) | 一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层及其制备方法 | |
CN109666887B (zh) | 一种TiAlN硬质涂层及其制备方法和应用 | |
CN115522169A (zh) | 氧化物硬质涂层的复合沉积方法及涂层刀具 | |
CN110643935B (zh) | 一种抗月牙洼磨损的氮化铝钛/氧化铝复合涂层及其制备方法 | |
CN109136839B (zh) | 一种具有铝掺杂二硼化钛涂层的工件及其制备方法 | |
CN110643952B (zh) | 一种抗氧化的氧化铝/氮化钛硅复合涂层及其制备方法 | |
CN110670020B (zh) | 一种与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层及其制备方法 | |
CN110791733B (zh) | 一种耐磨阻扩散的铝铬钛氮与氧化铝多层复合涂层及其制备方法 | |
CN112941461A (zh) | 一种复合超硬强韧涂层材料以及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |