CN110632847A - 一种自耦pd协同控制理论新方法 - Google Patents
一种自耦pd协同控制理论新方法 Download PDFInfo
- Publication number
- CN110632847A CN110632847A CN201911050966.5A CN201911050966A CN110632847A CN 110632847 A CN110632847 A CN 110632847A CN 201911050966 A CN201911050966 A CN 201911050966A CN 110632847 A CN110632847 A CN 110632847A
- Authority
- CN
- China
- Prior art keywords
- control
- acpd
- cooperative control
- unknown
- controlled object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000010168 coupling process Methods 0.000 title claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 6
- 230000008569 process Effects 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 14
- YFYNOWXBIBKGHB-FBCQKBJTSA-N (1s,3r)-1-aminocyclopentane-1,3-dicarboxylic acid Chemical compound OC(=O)[C@]1(N)CC[C@@H](C(O)=O)C1 YFYNOWXBIBKGHB-FBCQKBJTSA-N 0.000 claims abstract 6
- 101100043639 Glycine max ACPD gene Proteins 0.000 claims abstract 6
- 230000004044 response Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 13
- 230000003044 adaptive effect Effects 0.000 claims description 8
- 239000007983 Tris buffer Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 7
- 230000005284 excitation Effects 0.000 abstract description 5
- 238000011156 evaluation Methods 0.000 abstract description 4
- 238000001824 photoionisation detection Methods 0.000 description 39
- 230000001133 acceleration Effects 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 12
- 238000011217 control strategy Methods 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 8
- 108091006146 Channels Proteins 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000001052 transient effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 101150087654 chrnd gene Proteins 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013432 robust analysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
针对PD及其各类改进型PD增益鲁棒性差、抗扰动鲁棒性也差的问题,发明了一种不依赖于被控对象模型的自耦PD(ACPD)协同控制理论新方法。该方法将系统所有未知内外复杂因素定义为总和扰动,从而将未知非线性复杂系统映射为等价的未知线性系统,进而构建了总和扰动反相激励下的受控误差系统;根据未知被控对象的动态特性测试获得过渡过程时间的取值范围,据此设计最小速度因子模型和自适应速度因子模型。理论分析了ACPD协同控制系统的全局鲁棒稳定性。本发明为现有运行中的各类PD控制器的技术评估与技术升级提供了科学的理论依据和技术保障,在电力、机械、化工、轻工、交通、航空、航天等领域具有广泛的应用价值。
Description
技术领域
本发明涉及一种未知非线性时变系统控制,尤其是涉及一种自耦PD(Auto-Coupling PD,ACPD)协同控制新方法。
背景技术
PID(包括PI和PD)问世80余年来,特别是近半个世纪以来,无论从事经典控制理论还是现代控制理论的几代学者,都只注重控制器增益整定的方法研究,却忽视了控制器增益的物理属性以及控制力的物理属性,漠视了实际被控对象的客观存在性。尽管各类控制方法通过增益整定可以控制个例对象,然而却缺乏广泛的科学指导意义,仅仅处于现有智能计算方法与控制技术重复运用的技术层面。下面主要围绕实际控制领域广泛使用的PID控制理论的局限性进行全面而深入分析,旨在发明一种先进的控制理论新方法,即ACPD协同控制理论新方法。为了便于理解PID存在的理论缺陷,首先从被控对象入手,了解被控对象的控制输入u所具有的物理属性。
1)一阶被控对象
设某一阶被控对象:
其中,x是可测量状态,u和y分别是系统的控制输入实际输出,f(x,ξ)是已知或未知线性或非线性光滑函数,ξ是模型参数。
假设y=x是一个广义“位移”量,比如:温变系统中的温度、流量系统中的流量、转动系统中的角度、运动系统中的位置等。显然,系统(1)中的控制输入u是一个具有广义“速度”量纲的物理量,因此,对任意一阶系统而言,其控制输入u都具有广义“速度”量纲,因而要求PI控制器或其它类型的控制器形成的控制力u也应该具有广义“速度”量纲。
2)二阶被控对象
设某二阶被控对象:
其中,y1,y2是可测量的两个状态,u和y分别是系统的控制输入实际输出,f(y1,y2,ξ)是已知或未知线性或非线性光滑函数,ξ是模型集总参数。
假设y=y1是一个广义“位移”量,那么,y2则是一个广义“速度”物理量,则是一个广义“加速度”物理量。显然,系统(2)中的控制输入u应该是一个广义“加速度”量纲的物理量,因此,对于任意二阶系统而言,其控制输入u都具有广义“加速度”量纲,因而要求PID或PD或其它类型的控制器形成的控制力u也应该具有广义“加速度”量纲。
以此类推,对于任意三阶系统而言,其控制输入u都具有广义“加加速度”量纲,要求由各类控制器形成的控制力u也应该具有广义“加加速度”量纲。
3)现有控制理论普遍忽略了控制器增益的物理属性
以上对各阶系统的控制力输入u掌握其各自物理属性的信息后,则要求由各类控制器形成的控制力u也应该具有相应匹配的物理属性。然而,由于现有控制理论方法都忽视了各类控制器增益及其控制力u的物理属性,使得以“控制论”为代表的经典控制理论和以“模型论”为代表的现代控制理论都漠视了实际被控对象的客观存在性,因而现有各类控制器只适合于特定被控对象的应用技术层面,缺乏广泛的科学指导意义。下面仅围绕广泛使用的PID控制策略进行详细分析,发现引起PID局限性的根源及其消除方法。
u=kp(e1+e0/Ti+Tde2) (3)
或
u=kpe1+kie0+kde2 (4)
其中,kp>0、ki=kp/Ti、kd=kpTd分别是比例、积分和微分增益;Ti和Td分别是积分时间常数和微分时间常数。
由PID控制律模型(3)或(4)可获取的信息十分有限,只了解kp>0,ki=kp/Ti、kd=kpTd或kd=kiTiTd等相关信息,因而PID还存在以下几个历史遗留问题:
①比例增益缺乏物理属性
PID问世至今,只给出了kp>0的信息,并没有为其定义明确的物理属性,因而常将比例增益kp作为无量纲的独立变量对待;
②PID控制力只有广义位移量纲
PID控制律原型(3)中引入了Ti和Td这两个时间常数,其目的是使如下表达式:
u0=e1+e0/Ti+Tde2
中的三项都具有相同量纲(广义位移),以便满足基本算术运算规则,然后对求和结果u0放大kp倍来形成控制力u。如果kp无量纲,则由PID原型(3)或(4)形成的控制力u也只具有广义位移量纲,与任意一阶系统要求控制输入u具有广义速度量纲或任意二阶系统要求控制输入u具有广义加速度量纲发生矛盾;
③两个时间常数名存实亡
在PID原型(3)中,Ti和Td的数值如何确定?Ti和Td之间是否存在内在关系?Ti或Td是否与被控对象相关?国内外几代学者都很少关注过这些质疑问题,更何况通常都使用形如(4)的PID控制律模型,只关心kp、ki和kd等三个增益的在线优化算法,很少关心Ti和Td的存在性,因而往往导致两个时间常数名存实亡;
④PID三个增益相互独立
尽管kp、ki和kd之间建立了相互关系:ki=kp/Ti、kd=kpTd以及kd=kiTiTd。然而,如果kp是一个无属性的独立变量,Ti和Td是两个独立的时间变量,那么kp、ki、kd三者之间的上述相互关系则会存在很大的不确定性,属于很松散的相互关系。事实上,在对kp、ki和kd的在线优化过程中,通常将其作为相互独立的三个增益变量来对待。
4)PID控制策略的局限性分析
由以上PID存在的历史遗留问题可知,如果Ti和Td是两个独立的时间变量,而比例增益kp是一个没有物理属性的独立变量,则会引起PID控制律模型出现如下原理性错误或不协调的控制机理:
①PID控制力与被控对象控制输入之间存在量纲失配的原理错误
在上述事实上的假设条件下,PID的比例控制力up=kpe1、积分控制力ui=kie0以及微分控制力ud=kde2都是广义“位移”量纲的控制力,因而PID控制力:u=kp(e1+e0/Ti+Tde2)或u=kpe1+kie0+kde2也都是广义“位移”量纲的控制力。然而,一阶系统的控制力输入u要求广义“速度”量纲;二阶系统的控制力输入u则要求广义“加速度”量纲。因此,如果使用PID(包括PI和PD)控制器对一阶或二阶系统进行控制,则会引起PID控制力u与被控对象控制力输入u之间存在量纲失配的原理性错误,或者说,使用低阶量纲的PID控制力去控制具有高阶量纲控制输入的被控对象,会使PID控制能力难以发挥良好的控制效果;
②不协调的控制机理降低动态品质与稳态性能
如果kp是一个没有物理属性的独立变量,Ti和Td是两个独立的时间变量,那么,kp、ki、kd三者之间是事实上的相互独立关系,因而会使PID的比例控制力up=kpe1、积分控制力ui=kie0以及微分控制力ud=kde2在控制过程中表现出彼此相互独立、各自为阵的不协调控制机理。这种不协调的控制机理难以使PID控制系统获得良好的动态品质与稳态性能,事实也是如此。
综上所述,如果kp是一个没有物理属性的独立变量,Ti和Td是两个独立的时间变量,不仅会出现控制力量纲失配的原理性错误,降低PID的控制能力,而且也会使PID三个物理环节在控制过程中表现出不协调的控制机理,因而难以使PID控制系统获得良好动态品质与稳态性能。
此外,不协调的控制机理只能保证PID控制系统存在局部暂稳态,一旦出现期望轨迹突变、或工况状态突变、或模型参数时变或存在外部扰动等情况下,必须重新整定PID增益,使其进入另一个局部暂稳态,这就是PID增益鲁棒性差、时变鲁棒性差、抗扰动鲁棒性差的根本原因。
由于积分环节是一个惰性环节,其主要作用在于消除静态偏差、提高稳态控制精度,然而也存在因积分饱和而导致超调与振荡现象的局限性,因此,在忽略积分环节的情况下,可以使PID控制退化为PD控制。事实上,滑模控制(SMC)和自抗扰控制(ADRC)通常也忽略了积分环节的作用,也相当于PD控制范畴,因此,本发明也考虑只有比例和微分环节的自耦PD协同控制理论新方法。
发明内容
本发明要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种模型结构简单、整定容易、动态品质与稳态性能良好的ACPD协同控制理论新方法。
本发明解决其技术问题采用的技术方案是,一种ACPD协同控制理论新方法,其特征在于,包括如下步骤:
1、一种ACPD协同控制理论新方法,其最小速度因子模型特征为,具体步骤如下:
步骤A:测量未知非线性复杂系统的单位阶跃响应特性,根据动态变化特性,获得被控对象过渡过程时间Tr的取值范围,其单位为秒;
步骤B:根据步骤A获得的过渡过程时间Tr,建立最小速度因子模型为:
zcm=20α/Tr
其中,1<α≤10,Tr是被控对象由动态进入稳态的过渡过程时间。
2、根据权利要求1所述一种ACPD协同控制理论新方法,其特征在于,具体步骤如下:
步骤D:根据步骤B和步骤C分别获得zcm和e2后,为了避免因微分峰值引起的超调现象,建立自适应速度因子zc为:
zc=zcmexp(-β|e2|)
其中,zcm是最小速度因子,β=1+0.1α;
步骤E:根据步骤C和步骤D分别获得e1、e2和zc后,建立所述ACPD协同控制律或协同控制力为:
步骤F:根据步骤E获得所述ACPD协同控制力u后,考虑到实际物理系统输入受限情况,要求对协同控制力u进行限幅,具体如下:
|u|≤um
其中,um是ACPD协同控制力u的最大幅值。
本发明将未知受控系统动态、内部不确定性、外部扰动等一切未知不确定复杂因素定义为一个总和扰动,根据给定的期望输出与实际输出之间的误差来建立总和扰动反相激励下的受控误差系统,进而建立一种ACPD协同控制器模型,通过测量未知复杂非线性系统动态响应特性,确定被控系统过渡过程时间的取值范围,进而建立最小速度因子模型和自适应速度因子模型,并从复频域分析ACPD闭环控制系统的全局鲁棒稳定性。
考虑到中国学者韩京清先生在ADRC中提出的总和扰动概念的重要意义在于:完全淡化了线性与非线性、确定与不确定性、时变与时不变性等系统分类的概念,使任意复杂的非线性系统都可以映射为等价的积分串联型未知线性系统,使得复杂问题简单化,有效避免了围绕各种复杂系统研究相应复杂控制策略的局限性。然而,ADRC需要使用高增益的ESO来观测总和扰动,并将观测值前馈到控制输入端去尽可能抵消总和扰动以实现自抗扰目的,因而增加了ACRD的复杂性。
本发明的ACPD协同控制器因其良好的内抗扰鲁棒性,不仅省掉了ESO功能模块,使得ACPD协同控制器结构简单,而且唯一的速度因子完全由被控系统的过渡过程时间来整定,因而便于实际应用,可有效推动ACPD协同控制理论与实际控制工程的零距离接轨,有效解决PD的整定难题,并为现行PD控制技术的评估与升级提供科学的理论依据。
附图说明
图1是ACPD协同控制系统框图。
图2是未知被控对象的动态特性,(a)单位阶跃响应,(b)动态变化速度。
图3是外部扰动。
图4是未知非线性系统的正弦跟踪控制结果,(a)跟踪轨迹,(b)控制输入,(c)跟踪控制误差,(d)误差局部放大效果。
图5是未知非线性系统的阶跃跟踪控制结果,(a)跟踪轨迹,(b)控制输入,(c)跟踪控制误差,(d)误差局部放大效果。
具体实施方式
1.从未知非线性时变系统到线性不确定系统的映射思路
1)问题背景
设某二阶未知非线性时变系统为:
其中,y1,y2是系统的两个状态,u和y分别为系统的控制输入和实际输出,f(y1,y2)是系统未知光滑函数,b(t)是控制通道时变增益,d是外部有界扰动。
定义1.设b(t)=b0+△b,且b0≠0是控制通道时变增益b(t)变化范围内的估计值(不要求精确),如果将未知非线性时变系统(5)的所有未知不确定复杂因素使用一个集总状态即总和扰动y3来表示,则可定义总和扰动y3(也称之为扩张状态)为:
y3=f(y1,y2)+d+△bu (6)
由式(6)可知,总和扰动y3不仅包含了未知内部动态f(y1,y2)和外部扰动d,而且还包含了不确定控制力信息△bu。
根据总和扰动(6),未知非线性时变系统(5)可以映射为等价的未知线性系统:
其中,b0≠0是控制通道时变增益b(t)变化范围内的某估计值(不要求精确)。
由于未知线性系统(7)是由未知非线性时变系统(5)等价映射而来的,因此,由系统(7)构造的控制力u可以直接应用于未知非线性系统(5)的控制输入。
假设1.当且仅当使用全局有效的控制策略时,由式(6)定义的总和扰动是有界的:|y3|<∞。
证明:由式(6)可知,由于总和扰动y3包含了不确定控制力信息△bu,因此,只要使用全局有效的控制策略来形成全局有效的控制力u,则可保证总和扰动有界:|y3|<∞,否则,表明所用控制策略是无效的。
2)控制输入u的物理属性分析
由未知线性系统(7)可知,假设y=y1是广义位移,y2则是广义速度,则是广义加速度。显然,总和扰动y3和b0u都具有广义加速度量纲。如果b0是广义质量的倒数,其量纲为1/kg,则u应该具有广义力的量纲,因而也称之为控制力。总之,对于任意二阶系统而言,b0u应该具有广义加速度量纲。
3)PD控制律模型的局限性分析及其解决思想
对于PD控制器而言,其控制律为:u=kp(e1+Tde2)/b0,因此,b0u=kp(e1+Tde2)。显然,如果比例增益kp是一个无量纲的变量,由PD控制律得到的b0u则只有广义位移量纲,与任意二阶系统的控制输入b0u具有广义加速度量纲发生物理属性冲突。或者说,使用只具有广义位移量纲的PD控制力b0u去控制要求具有广义加速度量纲输入b0u的任意二阶对象,从理论上而言是不现实的,至少不可能获得良好的控制效果。如果kp具有广义加速度量纲,PD的局限性问题就可以迎刃而解。
4)总和扰动概念的来源
总和扰动是中国学者韩京清研究员于20年前提出的一个创造性概念,通过使用扩张状态观测器(ESO)对总和扰动进行观测估计,将估计值前馈到控制输入端以便尽可能抵消总和扰动的影响,从而实现自抗扰目的,并发明了自抗扰控制器(ADRC)。然而,ADRC结构复杂、涉及参数过多、计算量较大。此外,由ADRC构成的闭环控制系统尽管是鲁棒稳定的,然而却难以从理论上分析其鲁棒稳定性。为此,本发明将设计一种具有全局内抗扰的ACPD协同控制器,免去高增益的ESO功能模块,使ACPD协同控制器结构变得更为简单。
5)总和扰动概念的理论意义
由总和扰动的定义1可知:由于任意未知非线性复杂系统都可以映射为等价的未知线性系统(7)的形式,因此,总和扰动定义具有普遍意义。不仅如此,由于总和扰动定义还完全淡化了线性与非线性、确定与不确定性、时变与时不变性等系统分类的概念,因而能够有效解决控制论和模型论两大控制理论体系长期以来一直纠缠不同类型的被控系统如何设计有效控制策略遇到的各种难题。
如何对未知非线性系统(5)或等价的未知线性系统(7)施加全局有效的控制力,正是本发明的核心控制策略,即ACPD协同控制策略。
2.ACPD协同控制策略
1)ACPD协同控制器设计
针对线性不确定系统(7)的控制问题,设期望轨迹为yd,并定义跟踪控制误差e1及其微分e2分别为:
e1=yd-y1 (8)
对式(9)求微分,并根据线性不确定系统(7),则有:
根据式(9)和(10),可建立一个在总和扰动反相激励下的受控误差系统:
显然,系统(11)是一个在未知总和扰动y3反相激励下的二阶受控误差系统。
为了使受控误差系统(11)稳定,定义ACPD控制律(控制力)u为:
其中,zc>0是ACPD协同控制器的速度因子,b0≠0是控制通道时变增益b(t)变化范围内的估计值,下同。
由ACPD控制力(12)可知,速度因子zc将误差的比例环节和微分环节这两个不同的物理环节紧密耦合在一起,使得这两个不同的物理环节在控制过程中表现出功能各异而目标一致的协同控制机理,纠正了PD控制力中两个不同环节在控制过程中互相独立、各自为阵的不协调控制行为。因此,ACPD协同控制器(12)的问世将是控制理论体系的一场显著变革。
2)ACPD整定规则
与PD控制器相比,ACPD协同控制器的整定规则为:
由ACPD协同整定规则(13)可知,速度因子zc同时也是比例增益kp和微分增益kd的当量换算因子,因而保证了式(12)所示的比例控制力和微分控制力ud=2zce2/b0都具有相同的广义控制力量纲。
3)zc与Td之间的内在关系
根据PD两个增益之间的关系:kd=kpTd,并考虑到ACPD协同整定规则(13),可得速度因子zc与Td之间的关系为:
zc=2/Td (14)
其中,Td是PD的微分时间常数。
式(14)表明了ACPD协同控制器的速度因子zc与PD微分时间常数Td之间的内在关系。Td越小,速度因子zc则越大,否则反之。然而,Td的大小如何确定?Td是否与被控对象有关?这两个问题都是国内外几代学者一直忽视的关键科学问题。为此,本发明需要解决的这两个关键科学问题如下:
4)zc与被控对象之间的外在联系
尽管式(14)表明了zc可以由Td来整定,然而,迄今为止,国内外学者很少关注过Td如何整定的问题。考虑到被控对象的时间尺度τ越小,被控对象的动态变化速度则越快,否则反之。因此,发明人认为:只要ACPD协同控制器的速度因子zc=2/Td大于被控对象的动态变化速度2/τ,则可有效控制被控对象,即zc=2/Td>2/τ。为此,可定义最小速度因子模型为:
zcm=2α/τ (15)
其中,1<α≤10,下同;τ是被控对象的时间尺度。
由不等式zc=2/Td>2/τ可知,Td<τ,表明了只要ACPD协同控制器的微分时间常数Td小于被控对象的时间尺度τ,即可有效控制被控对象,因此,ACPD协同控制策略有效解决了Td与被控对象之间的外在联系问题。
由于时间尺度τ是一个抽象的概念,对于非线性系统而言,难以获取τ,因此难以使用τ来整定最小速度因子zcm。然而,考虑到任意已知或未知被控对象的动态特性是可以测量的,假设被控对象由动态进入稳态的过渡过程时间为Tr,并设Tr=10τ,根据式(15),则可定义最小速度因子为:
zcm=20α/Tr (16)
由式(16)可知,ACPD协同控制器的最小速度因子zcm可由Tr来整定。比如:如果要求被控系统在1秒之内进入稳定控制状态,则可设Tr=1秒,且zcm=20α;如果0.1秒之内进入稳定控制状态,则可设Tr=0.1秒,且zcm=200α;如果10秒之内进入稳定控制状态,则可设Tr=10秒,zcm=2α;以此类推。
显然,通过测试未知被控系统的动态特性(单位阶跃响应特性),可以确定过渡过程时间Tr的大致取值范围,从而根据式(16)可整定ACPD最小速度因子zcm的取值范围,便于实际操作。由于1<α≤10,因此,zcm的最小值zcm=20/Tr与最大值zcm=200/Tr之间存在10倍的差距,具有很大的整定弹性,通常取其中间值,即zcm=100/Tr。
5)自适应速度因子模型
zc=zcmexp(-β|e2|) (17)
其中,zcm=20α/Tr,1<α≤10,β=1+0.1α。
式(17)就是速度因子zc=2/Td与被控对象过渡过程时间Tr之间的外在联系。显然,只要确定了Tr的取值范围,就可以整定zc。又因为任意已知或未知被控对象的动态特性是可以通过测试获取的,因而可以轻易获得Tr的取值范围,进而获得最小速度因子zcm=20α/Tr以及自适应速度因子zc=zcmexp(-β|e2|),从而便于ACPD协同控制理论与实际控制工程的零距离接轨,并为现行PD控制技术的评估与升级提供科学的理论依据。
6)ACPD协同控制力限幅
由于过快的响应速度和微分峰值容易引起超调现象,并考虑到实际物理系统输入受限情况,因此,要求对ACPD协同控制力u进行限幅。设ACPD协同控制力的最大幅值为um,限幅条件如下:
|u|≤um (18)
ACPD控制系统框图,如图1。
3.闭环控制系统稳定性分析
定理1.根据假设1可知,只要总和扰动有界:|y3|<∞,则当且仅当zc>0时,由式(12)所示的ACPD控制器组成的闭环控制系统是全局渐近稳定的,而且具有良好的抗扰动鲁棒性。
证明:
1)稳定性分析
将ACPD控制律(12)代入式(11)所示的受控误差系统,则有ACPD闭环控制系统为:
整理得:
显然,闭环控制系统(21)的第一项是零输入响应,第二项是零状态响应。定义闭环控制系统的传输函数为:
根据复频域分析理论可知,当且仅当zc>0时,系统传输函数(22)在左半复平面的实轴上有一个双重极点为-zc,因而误差传输系统(22)是稳定的,因而闭环控制系统(21)是稳定的。又因为zc与被控对象的模型参数无关,因而闭环控制系统(21)是全局渐近稳定的。
2)抗扰动鲁棒性分析
将系统(22)代入系统(21),则闭环控制系统可表示为:
由于系统(22)的单位冲激响应为:
且
由闭环控制系统(23)可得时域解为:
其中,“*”表示卷积积分运算。
当zc>0时,由于因此,只要总和扰动有界:|y3|<∞,则必有:即被控系统的跟踪误差e1(t)及其微分可以从任意不为零的初始状态渐近趋近稳定的平衡点原点(0,0),理论上可以实现精确控制。又因为e1(t)→0和e2(t)→0只与|y3|<∞有关,而与总和扰动y3的具体模型无关,因此,ACPD闭环控制系统具有良好的抗总和扰动鲁棒性,包括模型鲁棒性、时变鲁棒性和抗外部扰动鲁棒性等,证毕。
4.ACPD协同控制系统的性能测试与分析
为了验证本发明一种ACPD协同控制理论新方法的有效性,针对某未知非线性时变对象的控制问题,进行下列仿真实验。
设某未知非线性时变系统为:
1)未知非线性时变系统动态特性测试
设采样频率fs=1000Hz,初始状态:y1(0)=0.5、y2(0)=0,d=0,当u=1时的动态特性如图2。由图2可知,在4.383秒以前,对象的状态输出变化平稳,然而,在4.383秒时刻,未知对象的状态输出却发生了突变,表明未知系统(29)是一个不稳定的系统。
根据图2的动态特性测试信息可知,为了对未知系统(29)进行有效控制,则要求过渡过程时间Tr≤4秒。由于Tr越小,速度因子则越大,响应速度则越快,否则反之,因此,为了提高控制系统的响应速度,取Tr=1秒,根据式(16),可得最小速度因子为:zcm=20α/Tr=20α,因此,根据式(17),自适应速度因子模型则为
zc=20αexp(-β|e2|) (30)
其中,1<α≤10,β=1+0.1α。
2)ACPD协同控制器相关参数
对未知非线性时变系统(29)施加控制时,设α=5,β=1+0.1α=1.5,根据式(30),自适应速度因子则为:
zc=100exp(-1.5|e2|) (31)
根据式(12),ACPD协同控制器为:
由于1≤b(t)≤2,因此,可取b0=1。下列所有仿真实验中,被控对象的初始状态为:y1(0)=0.5、y2(0)=0;ACPD的相关参数完全相同,控制力限幅条件也完全相同,即:|u|≤5。
为了验证ACPD协同控制系统的抗扰动能力,下列仿真实验中都使用相同的外部扰动,即在(9s~11s)期间存在幅值为±1的方波扰动,如图3。
仿真实验1:正弦跟踪控制实验
为了验证本发明一种ACPD协同控制理论新方法的正弦跟踪控制性能,针对未知受控系统(29)进行正弦跟踪控制实验。
给定期望输出轨迹为yd=sin(t),使用本发明的控制方法,测试结果如图4。图4表明,ACPD协同控制系统不仅具有很快的响应速度(0.5秒左右即可进入稳定状态)和很高的控制精度(最大绝对误差小于2.8×10-4),而且具有良好的时变鲁棒性和抗扰动鲁棒性,因而是一种有效的控制方法。此外,实验中还发现:在b0=1~2范围内任意取值都能获得相同控制效果,表明了控制通道增益的估计值不要求精确;在1≤α≤10范围内任意取值都能获得有效控制,而且α越大,稳态精度越高、抗扰动能力越强,然而,控制输入则会出现短暂的振荡现象,因此,通常取α=5(中间值)较合适。
仿真实验2:阶跃跟踪控制实验
为了验证本发明一种ACPD协同控制理论新方法的阶跃跟踪控制能力,针对未知受控系统(29)进行阶跃跟踪控制实验。
设期望输出轨迹为单位阶跃信号,由于设未知系统(29)的过渡过程时间为Tr=1秒,因此,期望输出的过渡过程设为:yd(t)=1-exp(-10t),使用本发明的控制方法,仿真结果如图5。图5表明,本发明的ACPD协同控制系统不仅具有很快的响应速度(约1.0秒左右即可进入稳定状态)和很高的控制精度(最大绝对误差小于5.5×10-5),而且还具有良好的时变鲁棒性和抗扰动鲁棒性,进一步表明了本发明一种ACPD协同控制理论新方法是一种全局稳定的强抗扰控制方法。此外,实验中还发现:b0=1~2范围内任意取值都能获得相同控制效果,进一步表明了控制通道增益的估计值不要求精确;在1≤α≤10范围内任意取值都能获得有效控制,而且α越大,稳态精度越高、抗扰动能力越强,然而,控制输入则会出现短暂的振荡现象,因此,通常取α=5(中间值)较合适。
5.结论
尽管基于控制论策略的PID、SMC以及ADRC是目前控制工程领域广泛使用的三大主流控制器,然而,PID及其各类改进型PID却存在增益鲁棒性较差、抗扰鲁棒性也较差的局限性;SMC尽管鲁棒稳定性能好,然而,在高频抖振与抗扰动能力之间存在不可调和的矛盾;ADRC尽管稳定性能好、抗扰动鲁棒性好,然而,却存在过多的增益参数、计算量较大、控制器结构较复杂等局限性。
与现有三大主流控制器相比,本发明的一种ACPD协同控制理论新方法集中了三大主流控制器的各自优势、并消除了其各自的局限性,即:既具备PID结构简单的优势,又具备SMC良好鲁棒稳定性优势,还具备ADRC良好抗总和扰动鲁棒性优势;既有效避免了PID整定困难的问题,又有效解决了SMC在高频抖振与抗扰动能力之间不可调和的难题,还有效避免了ADRC增益参数过多、计算量较大的问题。
由于任意已知或未知模型被控对象的动态特性是可以预知的,也是可以测试的,通过动态特性可以轻而易举获得过渡过程时间的取值范围,据此可确定最小速度因子和自适应速度因子模型,因此,以速度因子为核心耦合因子的ACPD协同控制理论的问世将是现有控制理论体系的一场颠覆性变革,纠正了经典控制理论与现代控制理论漠视客观物理属性,局限纸上谈兵的不科学控制思想。
本发明不仅在未知非线性复杂系统控制领域具有广泛的应用前景,而且也能够为现行PD控制技术的评估与升级提供科学的理论依据和技术保障。
Claims (2)
1.一种自耦PD协同控制理论新方法,其最小速度因子模型特征为,具体步骤如下:
步骤A:测量未知非线性复杂系统的单位阶跃响应特性,根据动态变化特性,获得被控对象过渡过程时间Tr的取值范围,其单位为秒;
步骤B:根据步骤A获得的过渡过程时间Tr,建立最小速度因子模型为:
zcm=20α/Tr
其中,1<α≤10,Tr是被控对象由动态进入稳态的过渡过程时间。
2.根据权利要求1所述一种ACPD协同控制理论新方法,其特征在于,具体步骤如下:
步骤D:根据步骤B和步骤C分别获得zcm和e2后,为了避免超调现象,建立自适应速度因子zc为:
zc=zcmexp(-β|e2|)
其中,zcm是最小速度因子,β=1+0.1α;
步骤E:根据步骤C和步骤D分别获得e1、e2和zc后,建立所述ACPD协同控制律或协同控制力为:
步骤F:根据步骤E获得所述ACPD协同控制力u后,考虑到实际物理系统输入受限情况,要求对协同控制力u进行限幅,具体如下:
|u|≤um
其中,um是ACPD协同控制力u的最大幅值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911050966.5A CN110632847A (zh) | 2019-10-31 | 2019-10-31 | 一种自耦pd协同控制理论新方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911050966.5A CN110632847A (zh) | 2019-10-31 | 2019-10-31 | 一种自耦pd协同控制理论新方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110632847A true CN110632847A (zh) | 2019-12-31 |
Family
ID=68978616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911050966.5A Pending CN110632847A (zh) | 2019-10-31 | 2019-10-31 | 一种自耦pd协同控制理论新方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110632847A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111948935A (zh) * | 2020-08-03 | 2020-11-17 | 曾喆昭 | 一种欠驱动vtol飞行器的自耦pd控制理论方法 |
CN112684812A (zh) * | 2020-12-23 | 2021-04-20 | 曾喆昭 | 一种基于耦合pd镇定规则的精确末制导方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108508743A (zh) * | 2018-06-25 | 2018-09-07 | 曾喆昭 | 时滞系统的准pi预测控制新方法 |
CN109100935A (zh) * | 2018-10-23 | 2018-12-28 | 曾喆昭 | 大时滞系统的阻尼智慧pi控制方法 |
CN109254529A (zh) * | 2018-11-29 | 2019-01-22 | 曾喆昭 | 一种双速自适应比例-微分控制方法 |
CN109270835A (zh) * | 2018-11-06 | 2019-01-25 | 曾喆昭 | 大时滞系统的预测智慧pi控制方法 |
CN109541936A (zh) * | 2018-11-30 | 2019-03-29 | 曾喆昭 | 一种单速自适应比例-微分控制方法 |
-
2019
- 2019-10-31 CN CN201911050966.5A patent/CN110632847A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108508743A (zh) * | 2018-06-25 | 2018-09-07 | 曾喆昭 | 时滞系统的准pi预测控制新方法 |
CN109100935A (zh) * | 2018-10-23 | 2018-12-28 | 曾喆昭 | 大时滞系统的阻尼智慧pi控制方法 |
CN109270835A (zh) * | 2018-11-06 | 2019-01-25 | 曾喆昭 | 大时滞系统的预测智慧pi控制方法 |
CN109254529A (zh) * | 2018-11-29 | 2019-01-22 | 曾喆昭 | 一种双速自适应比例-微分控制方法 |
CN109541936A (zh) * | 2018-11-30 | 2019-03-29 | 曾喆昭 | 一种单速自适应比例-微分控制方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111948935A (zh) * | 2020-08-03 | 2020-11-17 | 曾喆昭 | 一种欠驱动vtol飞行器的自耦pd控制理论方法 |
CN112684812A (zh) * | 2020-12-23 | 2021-04-20 | 曾喆昭 | 一种基于耦合pd镇定规则的精确末制导方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chevalier et al. | Fractional-order PID design: Towards transition from state-of-art to state-of-use | |
WO2019165801A1 (zh) | 一种扰动感知控制方法 | |
CN108919643B (zh) | 一种用于线性自抗扰控制器ladrc参数的鲁棒整定方法 | |
CN109254529B (zh) | 一种双速自适应比例-微分控制方法 | |
CN106325075B (zh) | 一类时滞线性参数变化离散系统的h∞控制方法 | |
CN109100935B (zh) | 大时滞系统的阻尼智慧pi控制方法 | |
CN110209148A (zh) | 一种基于描述系统观测器的网络化系统的故障估计方法 | |
CN110518590B (zh) | 考虑负荷电压静特性的配电网线性潮流计算方法 | |
CN110687777A (zh) | 一种自耦pi协同控制理论新方法 | |
CN110632847A (zh) | 一种自耦pd协同控制理论新方法 | |
Liu et al. | Adaptive fuzzy output-feedback control of uncertain SISO nonlinear systems | |
CN109541936A (zh) | 一种单速自适应比例-微分控制方法 | |
CN111638641A (zh) | 一种调控电机速度环的分数阶自抗扰控制器的设计方法 | |
CN111752262A (zh) | 一种执行器故障观测器与容错控制器集成设计方法 | |
CN116627028B (zh) | 交联电缆生产线控制方法 | |
Li | Review of PID control design and tuning methods | |
Amokrane et al. | State observation of unknown nonlinear SISO systems based on virtual input estimation | |
CN110703606A (zh) | 一种自耦pid协同控制理论新方法 | |
CN110865540A (zh) | 一种互耦pi协同控制理论新方法 | |
CN110609568B (zh) | 一种大型无人机uav的强自耦pi协同控制方法 | |
CN110865535A (zh) | 一种互耦pd协同控制理论新方法 | |
Kudinov et al. | Optimization of intelligent fuzzy controllers for industrial facilities | |
Di Teodoro et al. | Sliding-mode controller based on fractional order calculus for chemical processes | |
Wang et al. | Design and analysis of active disturbance rejection control for time-delay systems using frequency-sweeping | |
CN110750047A (zh) | 一种自适应互耦pid协同控制理论新方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191231 |
|
WD01 | Invention patent application deemed withdrawn after publication |