CN110629243A - 一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用 - Google Patents

一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用 Download PDF

Info

Publication number
CN110629243A
CN110629243A CN201910813758.XA CN201910813758A CN110629243A CN 110629243 A CN110629243 A CN 110629243A CN 201910813758 A CN201910813758 A CN 201910813758A CN 110629243 A CN110629243 A CN 110629243A
Authority
CN
China
Prior art keywords
nis
mulberry
composite
nanoparticles
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910813758.XA
Other languages
English (en)
Other versions
CN110629243B (zh
Inventor
熊杰
张露莹
黄建文
杜新川
陈心睿
邬春阳
王显福
晏超贻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910813758.XA priority Critical patent/CN110629243B/zh
Publication of CN110629243A publication Critical patent/CN110629243A/zh
Application granted granted Critical
Publication of CN110629243B publication Critical patent/CN110629243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明提供了一种桑葚状NiS/Ni复合纳米颗粒及其制备方法,以及在电催化水分解中的应用,属于催化剂制备技术领域。本发明通过在镍纳米颗粒上进行部分硫化处理得到具有桑葚状的复合材料,调节反应时间和硫粉的量来调控硫化反应的程度,从而获得表面结构较好的桑葚状NiS/Ni复合结构,实现了电解水催化剂同时具有高催化活性与电化学稳定性优点的目的,并且该材料既可以作为析氢电极也可以作为析氧电极,具有双功能性。

Description

一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用
技术领域
本发明属于催化剂制备技术领域,具体涉及一种桑葚状NiS/Ni复合纳米颗粒及其制备方法,以及在电催化水分解中的应用。
背景技术
能源与环境问题已成为未来社会经济发展必须解决的难题,开发清洁可再生能源为可持续性经济社会发展提供了切实可行的方案。作为清洁能源的重要组成部分,氢能清洁无污染,因此,发展高能效比、低成本的规模化制氢技术将具有非常重大的社会经济效益。利用电催化水分解技术制取氢气是一种重要的制氢方式,可以对太阳能风能等间歇性清洁能源进行再存储利用。但是传统贵金属衍生材料的成本高昂,非贵金属材料由于较高的过电势,额外电能消耗大,导致其能源转换率低,另外该材料在酸碱电解液中的结构稳定性等问题,严重限制了其规模化。因此,开发廉价高效且结构稳定的电催化剂拥有良好的市场前景。
金属镍纳米材料是一类被广泛研究的非贵金属催化剂材料,目前多种金属镍单质、合金或者复合材料被报道作为高性能的水分解催化剂。其中,单质镍纳米颗粒由于结构尺寸及表面活性等问题,导致电化学稳定性较差,因此,常用结构包覆或者异质复合来提升稳定性,例如,Qiao等(Energy Environ.Sci,2013,6,3693–3699)报道了一种水热还原的石墨烯限域制备氮掺杂的镍纳米颗粒催化剂,材料表现出较高的电流密度,但是显示本征活性的塔菲尔斜率较大;Xv等(Adv.Mater.2017,29,1605957)报道了一种少层氮掺杂碳包覆的镍纳米颗粒的电解水应用,但是存在在800℃下高温碳化来实现碳包覆的制备过程,导致能源的浪费,此外该材料析氢过电位较大;Ho等(Nano Energy,2016,27,247-254)报道了镍钼合金纳米材料的析氢应用,用合金化策略提升性能,具有很好的析氢催化活性,但是制备过程使用20%浓度的氢气存在较大的安全隐患。
对于NiS纳米颗粒,相关研究(Catal.Sci.Technol.,2016,6,1077)证实单一成分的NiS纳米颗粒的催化活性也不是很高,而借助于结构耦合,可以通过对NiS材料进行电子结构调控,使其具备好的催化活性。
发明内容
针对背景技术所存在的问题,本发明的目的在于提供一种负载于导电基底的桑葚状NiS/Ni复合纳米颗粒及其制备方法,通过在镍纳米颗粒上进行部分硫化处理得到具有桑葚状的复合材料,实现了电解水催化剂同时具备高催化活性与电化学稳定性优点的目的,并且该材料既可以作为析氢电极也可以作为析氧电极,具有双功能性。
为实现上述目的,本发明的技术方案如下:
一种桑葚状NiS/Ni复合纳米颗粒,其特征在于,所述NiS/Ni复合纳米颗粒包括100~200nm的Ni纳米颗粒和10~20nm的NiS纳米晶,所述NiS纳米晶是由Ni纳米颗粒表面原位硫化形成。
一种如权利要求1所述的桑葚状NiS/Ni复合纳米颗粒的制备方法,包括以下步骤:
步骤1.在基底上制备氢氧化镍前驱体;
步骤2.将步骤1制备的氢氧化镍前驱体采用还原法制备镍纳米颗粒;
步骤3.将步骤2得到的基底放入石英管加热中心,将0.5~2mg硫粉放置于石英管上游,距离中心10~12cm;
步骤4.将石英管内部抽真空至0.1Pa以下,然后通入惰性气体使管内气压保持常压环境,再持续通入惰性气体作为载气流;
步骤5.加热石英管,使其加热中心温度达到250~350℃,然后在250~350℃下保温30~100s;
步骤6.反应结束后,将石英管以60~100℃/min的降温速率冷却至室温,取出导电基底,即可得到所述桑葚状NiS/Ni复合纳米颗粒。
进一步地,所述基底可以为碳布等柔性导电基底,或碳纸、FTO等硬质导电基底。
进一步地,步骤3所述的硫粉的量优选为1mg~2mg。
进一步地,步骤4中所述的惰性气体为氩气或者氮气,惰性气体流量为40sccm。
本发明还提供了上述桑葚状NiS/Ni复合纳米颗粒材料作为电解水双功能催化电极材料的应用。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明利用原位合成方法在金属Ni纳米颗粒表面生长NiS纳米晶,形成特殊的桑葚状的复合纳米颗粒。通过可控的原位硫化,使NiS与Ni颗粒之间具有强耦合作用,金属Ni颗粒上的电子向S偏移,得到富电子态的S,一方面优化了NiS纳米晶的析氢活性,另一方面促进了反应过程中电子从表面活性位点向Ni颗粒的传输,同时Ni颗粒良好的导电性有助于电子进一步向底层导电基底的传导,从而提高催化性能。
2.本发明通过调节反应时间和硫粉的量来调控硫化反应的程度,从而获得表面结构较好的桑葚状NiS/Ni复合结构。
3.本发明提供的负载NiS/Ni复合纳米颗粒的电极在析氢和析氧反应中表现出很好的催化活性,从电化学测试结果可以看出,负载NiS/Ni复合纳米颗粒的电极在碱性条件下发生析氢反应时,仅需162mV来驱动10mA cm-2的电流密度,发生析氧反应时仅需338mV来驱动30mA cm-2的电流密度,分别低至74和46mV dec-1的塔菲尔斜率证实了其高的本征反应活性,同时相比于Ni纳米颗粒电解析氢16000s电流衰减了40%的测试结果,NiS/Ni电极在相同时间内只衰减了20%,另外67000s的无衰减持续电解析氧也证明了NiS/Ni电极有很好的催化稳定性与可应用性。
附图说明
图1为本发明实施例1得到的桑葚状NiS/Ni复合纳米颗粒的电子显微镜(SEM)图;
其中,(a)为碳纳米纤维上的复合纳米颗粒分布图;(b)为复合纳米颗粒的放大图。
图2为本发明实施例1和实施例2得到的NiS/Ni复合纳米颗粒的X射线衍射(XRD)图谱。
图3为本发明实施例2和对比例得到的NiS/Ni复合纳米颗粒在1M KOH溶液中析氢反应和析氧反应的电化学性能表征图;
其中,(a)不同反应时间下制得的NiS/Ni复合纳米颗粒的析氢反应极化曲线对比;(b)不同反应时间下制得的NiS/Ni复合纳米颗粒的析氧反应极化曲线对比;(c)不同反应时间下制得的NiS/Ni复合纳米颗粒的析氢反应塔菲尔斜率对比;(d)不同反应时间下制得的NiS/Ni复合纳米颗粒的析氧反应塔菲尔斜率对比。
图4为本发明实施例2反应90s得到的负载NiS/Ni复合纳米颗粒的电极在1M KOH溶液中连续电解的稳定性测试曲线;
其中,(a)析氢反应稳定性曲线;(b)析氧反应稳定性曲线。
图5为本发明对比例得到的负载Ni纳米颗粒的电极在1M KOH溶液中电解析氢稳定性测试曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
一种桑葚状NiS/Ni复合纳米颗粒,其特征在于,所述NiS/Ni复合纳米颗粒由100~200nm的Ni纳米颗粒和10~20nm的NiS纳米晶组成,所述NiS纳米晶是由Ni纳米颗粒表面原位硫化形成。
实施例1
一种桑葚状NiS/Ni复合纳米颗粒的制备方法,包括以下步骤:
步骤1:将硫酸镍和过硫酸铵按照摩尔比4:1加入去离子水中,超声混合均匀,得到混合溶液A,镍离子浓度为0.33M;按混合溶液A与氨水体积比为12:1加入氨水,均匀混合后得到混合溶液B,向混合溶液B中放入5片碳布,静置20min用于氢氧化镍前驱体生长,反应结束后,取出碳布用去离子水清洗、自然干燥;
步骤2:将步骤1得到的负载有氢氧化镍的碳布放入50ml的反应釜内胆,加入25ml乙醇和5ml异丙醇,密封后放入烘箱中,在195℃下反应18h,反应结束后,取出基底用去离子水清洗数次,然后在50℃下真空干燥,得到附着镍纳米颗粒的碳布;
步骤3:将步骤2得到的碳布放入石英管加热中心,将1mg硫粉放置于石英管上游,距离加热中心12cm;
步骤4:将石英管内部抽换气3次,通入40sccm氩气使管内气压保持常压环境并作为载气流;
步骤5:以10°/min的升温速率加热石英管,使其中心温区保持在290℃、反应30s;
步骤6:反应结束后,以60℃/min的降温速率快速降温,待石英管自然冷却到室温,取出碳布,即可得到负载有桑葚状NiS/Ni复合纳米颗粒的电极。
实施例1得到的桑葚状NiS/Ni复合纳米颗粒的电子显微镜SEM图片如图1所示,X射线衍射XRD表征图如图2所示,在1M KOH溶液中析氢和析氧反应电解稳定性测试如图4所示,在1M KOH溶液中全解水性能如图5所示。
实施例2
按照实施例1的步骤制备NiS/Ni复合纳米颗粒,将步骤5反应时间调整为60s、90s、120s、150s,其他步骤不变。
本实施例得到的桑葚状NiS/Ni复合纳米颗粒的X射线衍射XRD表征图如图2所示,在1M KOH溶液中的析氢和析氧反应电化学性能表征图如图3所示,负载反应90s得到的桑葚状NiS/Ni复合纳米颗粒的电极在1M KOH溶液中连续电解的稳定性测试曲线如图4所示。
实施例3
按照实施例1的步骤制备NiS/Ni复合纳米颗粒,将反应的硫粉量调整为2mg,其他步骤不变。
硫源的量越多,硫化物的产量越高;过高,Ni纳米颗粒甚至会完全硫化成硫化镍颗粒。
对比例
按照实施例1的步骤1和步骤2完成进行实验,得到负载Ni纳米颗粒的电极。
本对比例得到的电极在1M KOH溶液中电解析氢稳定性测试曲线如图5所示。
图1是实施例1得到的桑葚状NiS/Ni复合纳米颗粒的电子显微镜SEM图片,从图可看出径向尺寸10~20nm的纳米颗粒表面附着100~200nm的小颗粒,丰富的纳米结构为催化反应提供了大量的活性位点;从(b)图可以看出,NiS/Ni复合纳米颗粒呈桑葚状。图2是实施例1和实施例2得到的NiS/Ni复合纳米颗粒的XRD衍射图谱,图中NiS/Ni-30表示硫化反应30s,从图2可知,硫化时间越长衍射峰越清晰,表明表层NiS颗粒结晶度更高,时间过长至120s时,就会同时出现少量的Ni3S2杂质。图3(a)和(c)是实施例2和对比例得到的负载NiS/Ni复合纳米颗粒的电极的析氢反应极化曲线和塔菲尔斜率对比;(b)和(d)是实施例2和对比例得到的负载NiS/Ni复合纳米颗粒的电极的析氧反应的极化曲线和塔菲尔斜率对比图,从图中的极化曲线可以看出负载NiS/Ni复合纳米颗粒的电极在碱性条件下发生析氢反应时仅需162mV来驱动10mA cm-2的电流密度,发生析氧反应时仅需338mV来驱动30mA cm-2的电流密度,分别低至74和46mV dec-1的塔菲尔斜率证实了其高的本征反应活性,同时图4显示了(a)恒电流下约60000s的HER持续电解稳定性和(b)67000s的OER持续电解稳定性,证明了负载反应90s的桑葚状NiS/Ni复合纳米颗粒的电极有很好的催化稳定性。另外,图5是对比例得到的负载Ni纳米颗粒的电极在1M KOH溶液中电解析氢稳定性测试曲线,经过16000s电流衰减了40%证明差的电化学稳定性。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (8)

1.一种桑葚状NiS/Ni复合纳米颗粒,其特征在于,所述NiS/Ni复合纳米颗粒包括100~200nm的Ni纳米颗粒和10~20nm的NiS纳米晶,所述NiS纳米晶是由Ni纳米颗粒表面原位硫化形成。
2.一种如权利要求1所述的桑葚状NiS/Ni复合纳米颗粒的制备方法,其特征在于,包括以下步骤:
步骤1.在基底上制备氢氧化镍前驱体;
步骤2.将步骤1制备的氢氧化镍前驱体采用还原法制备镍纳米颗粒;
步骤3.将步骤2得到的基底放入石英管加热中心,将0.5~2mg硫粉放置于石英管上游,距离中心10~12cm;
步骤4.将石英管内部抽真空至0.1Pa以下,然后通入惰性气体使管内气压保持常压环境,再持续通入惰性气体作为载气流;
步骤5.加热石英管,使其加热中心温度达到250~350℃,然后在250~350℃下保温30~100s;
步骤6.反应结束后,将石英管以60~100℃/min的降温速率冷却至室温,取出导电基底,即可得到所述桑葚状NiS/Ni复合纳米颗粒。
3.如权利要求2所述桑葚状NiS/Ni复合纳米颗粒的制备方法,其特征在于,所述基底为柔性导电基底或硬质导电基底。
4.如权利要求3所述桑葚状NiS/Ni复合纳米颗粒的制备方法,其特征在于,所述柔性导电基底为碳布,所述硬质导电基底为碳纸或者FTO。
5.如权利要求2所述桑葚状NiS/Ni复合纳米颗粒的制备方法,其特征在于,步骤3所述硫粉的量为1mg~2mg。
6.如权利要求2所述桑葚状NiS/Ni复合纳米颗粒的制备方法,其特征在于,步骤4中所述的惰性气体为氩气或者氮气,惰性气体流量为40sccm。
7.权利要求1所述桑葚状NiS/Ni复合纳米颗粒材料作为电解水双功能催化电极材料的应用。
8.权利要求2~6任一项所述方法得到的桑葚状NiS/Ni复合纳米颗粒材料作为电解水双功能催化电极材料的应用。
CN201910813758.XA 2019-08-30 2019-08-30 一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用 Active CN110629243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910813758.XA CN110629243B (zh) 2019-08-30 2019-08-30 一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910813758.XA CN110629243B (zh) 2019-08-30 2019-08-30 一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110629243A true CN110629243A (zh) 2019-12-31
CN110629243B CN110629243B (zh) 2021-06-01

Family

ID=68969738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910813758.XA Active CN110629243B (zh) 2019-08-30 2019-08-30 一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110629243B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362320A (zh) * 2020-03-13 2020-07-03 江西师范大学 负载的硫化镍纳米棒材料及其制备方法和应用
CN112076763A (zh) * 2020-08-13 2020-12-15 中南大学 一种Ni/Ni3S2纳米簇-石墨烯复合材料及其制备方法和应用
CN114790011A (zh) * 2022-03-29 2022-07-26 电子科技大学 一种CoS2同质异构复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862758A (zh) * 2015-04-29 2015-08-26 江南大学 一种分解水产氢用NiS/Ni(OH)2电催化剂的制备方法
WO2018098451A1 (en) * 2016-11-28 2018-05-31 North Carolina State University Catalysts for hydrogen evolution reaction including transition metal chalcogenide films and methods of forming the same
CN108950597A (zh) * 2018-08-10 2018-12-07 电子科技大学 一种复合结构纳米颗粒材料及其制备方法和应用
CN109055974A (zh) * 2018-07-23 2018-12-21 电子科技大学 一种多孔Ni-N-O纳米颗粒材料及其制备方法和应用
CN109280938A (zh) * 2018-09-30 2019-01-29 陕西科技大学 一种花球状的V掺杂的Ni3S2/NF自支撑电极材料及其制备方法
CN109659143A (zh) * 2018-11-23 2019-04-19 暨南大学 一种氢氧化镍/二硫化三镍/泡沫镍复合物及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862758A (zh) * 2015-04-29 2015-08-26 江南大学 一种分解水产氢用NiS/Ni(OH)2电催化剂的制备方法
WO2018098451A1 (en) * 2016-11-28 2018-05-31 North Carolina State University Catalysts for hydrogen evolution reaction including transition metal chalcogenide films and methods of forming the same
CN109055974A (zh) * 2018-07-23 2018-12-21 电子科技大学 一种多孔Ni-N-O纳米颗粒材料及其制备方法和应用
CN108950597A (zh) * 2018-08-10 2018-12-07 电子科技大学 一种复合结构纳米颗粒材料及其制备方法和应用
CN109280938A (zh) * 2018-09-30 2019-01-29 陕西科技大学 一种花球状的V掺杂的Ni3S2/NF自支撑电极材料及其制备方法
CN109659143A (zh) * 2018-11-23 2019-04-19 暨南大学 一种氢氧化镍/二硫化三镍/泡沫镍复合物及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANWEN HUANG ET AL.,: "FeOx/FeP hybrid nanorods neutral hydrogen evolution electrocatalysis: insight into interface", 《J. MATER. CHEM. A》 *
XIN XIAO ET AL.,: "Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting", 《ACS APPL. MATER. INTERFACES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362320A (zh) * 2020-03-13 2020-07-03 江西师范大学 负载的硫化镍纳米棒材料及其制备方法和应用
CN112076763A (zh) * 2020-08-13 2020-12-15 中南大学 一种Ni/Ni3S2纳米簇-石墨烯复合材料及其制备方法和应用
CN112076763B (zh) * 2020-08-13 2021-12-03 中南大学 一种Ni/Ni3S2纳米簇-石墨烯复合材料及其制备方法和应用
CN114790011A (zh) * 2022-03-29 2022-07-26 电子科技大学 一种CoS2同质异构复合材料及其制备方法和应用
CN114790011B (zh) * 2022-03-29 2023-04-07 电子科技大学 一种CoS2同质异构复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110629243B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Wu et al. Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for the hydrogen evolution reaction in an alkaline medium
Shi et al. Ni2P nanosheets/Ni foam composite electrode for long-lived and pH-tolerable electrochemical hydrogen generation
Li et al. Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes
Chen et al. Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Zhou et al. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott-Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis at a large current density
CN110629243B (zh) 一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用
CN110512231B (zh) 一种镍基复合纳米颗粒及其制备方法和应用
CN111636074B (zh) 一种二氧化碳电化学还原用铜电极的制备及其应用
Yang et al. Fabrication of sandwich structured C/NiO/TiO2 nanotube arrays for enhanced electrocatalytic activity towards hydrogen evolution
Yang et al. Design and synthesis Zn doped CoP/Co2P nanowire arrays for boosting hydrogen generation reaction
Cai et al. Hierarchical Cu@ Co-decorated CuO@ Co3O4 nanostructure on Cu foam as efficient self-supported catalyst for hydrogen evolution reaction
Zhao et al. Monodisperse Ni0· 85Se nanocrystals on rGO for high-performance urea electrooxidation
Hou et al. Cobalt-molybdenum disulfide supported on nitrogen-doped graphene towards an efficient hydrogen evolution reaction
Yu et al. In situ construction of FeNi 2 Se 4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting
Min et al. Electrochemical growth of MoSx on Cu foam: a highly active and robust three-dimensional cathode for hydrogen evolution
Liu et al. Mutual promotion effect of Ni and Mo2C encapsulated in N-doped porous carbon on bifunctional overall urea oxidation catalysis
Xia et al. Electronic structure modulation coupling with interface effect for great improving water electrolysis by multiple dimensional S doped MnCo2O4 nanorods/N doped C nanosheets hybrids
Wang et al. Homogeneous pseudoamorphous metal phosphide clusters for ultra stable hydrogen generation by water electrolysis at industrial current density
Liu et al. Porous coordination polymer-derived ultrasmall CoP encapsulated in nitrogen-doped carbon for efficient hydrogen evolution in both acidic and basic media
Kim et al. Formation of hybrid nanostructures comprising perovskite (Ba5Nb4O15)-MoS2 ultrathin nanosheets on CdS nanorods: Toward enhanced solar-driven H2 production
CN111530483A (zh) 一种自支撑Ni掺杂WP2纳米片阵列电催化剂及其制备方法
CN113637986B (zh) 双相硒化镍双功能电解水催化剂及其制备方法和应用
CN110102325B (zh) 多孔纳米片结构铜镍氮化物材料及其制备方法和应用
CN114164445A (zh) 基于掺杂和异质结策略构建的V-Ni3FeN/Ni@N-GTs全解水电催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant