CN110627507A - 一种低温碳化硅陶瓷及其制备方法和应用 - Google Patents
一种低温碳化硅陶瓷及其制备方法和应用 Download PDFInfo
- Publication number
- CN110627507A CN110627507A CN201910882493.9A CN201910882493A CN110627507A CN 110627507 A CN110627507 A CN 110627507A CN 201910882493 A CN201910882493 A CN 201910882493A CN 110627507 A CN110627507 A CN 110627507A
- Authority
- CN
- China
- Prior art keywords
- powder
- silicon carbide
- carbide ceramic
- low
- temperature silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于陶瓷技术领域,公开了一种低温碳化硅陶瓷及其制备方法和应用,所述低温碳化硅陶瓷是将Al粉、Si粉和C粉均匀混合后,先将Al‑Si‑C混合粉体在1500~1800℃下加热反应,然后将反应后所得粉体A在空气或氧气下继续在600~1000℃加热处理,再将热处理后所得粉体B在真空或氩气下1500~1800℃烧结制得。本发明制得的碳化硅陶瓷的致密度为95~100%,粒径为10nm~10μm,硬度为25~40GPa,断裂韧性为8~12MPa·m1/2,抗弯强度800~1500MPa。本发明的碳化硅陶瓷可应用于防弹装甲、航空航天或核能领域中。
Description
技术领域
本发明属于非氧化物陶瓷材料技术领域,更具体地,涉及一种低温碳化硅陶瓷及其制备方法和应用。
背景技术
碳化硅(SiC)陶瓷是一种共价键化合物,类似于金刚石结构,具有非常优异的力学性能和物理、化学性能,因为其高弹性模量、良好的光学性能、低中子吸收截面、优异的抗辐照性能以及抗高温等性能,使其在防弹装甲、航空航天和核能领域具有非常好的应用。
传统的碳化硅制备主要是在高温(>1800℃)高压下(>30MPa)制备得到,而且,因为碳化硅烧结性能低,在烧结过程中SiC的扩散系数极低,因此,通常需要在碳化硅粉体中引入添加剂促进碳化硅陶瓷的烧结,然而,烧结助剂的引入往往存在一定程度的团聚,尤其是纳米颗粒的引入,因此,在研究低温制备碳化硅时,虽然引入的是高烧结活性的原料粉体以及烧结助剂,但是因为在机械混合时已经发生了团聚,这使得碳化硅的烧结性能受到限制。为了迎合碳化硅在工业和军事领域的应用,急需寻求一种低温低压下实现致密碳化硅陶瓷的制备。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明首要的目的在于提供一种低温碳化硅陶瓷。
本发明的另一目的在于提供上述低温碳化硅陶瓷的制备方法。
本发明的再一目的在于提供上述低温碳化硅陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种低温碳化硅陶瓷,所述低温碳化硅陶瓷是将Al粉、Si粉和C粉均匀混合后,先将Al-Si-C混合粉体在1500~1800℃下加热反应,然后将反应后所得粉体A在空气或氧气下继续在600~1000℃加热处理,再将热处理后所得粉体B在真空或氩气下1500~1800℃烧结制得。
优选地,所述的低温碳化硅陶瓷的致密度为95~100%,其粒径为10nm~10μm,硬度为25~40GPa,断裂韧性为8~12MPa·m1/2,抗弯强度800~1500MPa。
优选地,所述的Al粉的纯度为95~99%,Si粉的纯度为95~99%,C粉的纯度为98~100%;所述的Al粉、Si粉和C粉的粒径均为0.01~10μm。
优选地,所述的Al粉、Si粉、C粉的摩尔比为(4~6):(1~1.5):(3.5~4)。
优选地,所述在1500~1800℃下加热反应的时间为0.5~2h,在600~1000℃加热处理的时间为1~10h,所述1500~1800℃烧结的时间为10~120min。
优选地,所述在1500~1800℃加热和在600~1000℃加热的升温速率均为3~20℃/min。
优选地,所述1500~1800℃烧结的温速率为5~200℃/min。
优选地,所述烧结的方式为无压烧、气压烧结、放电等离子烧结、热压烧结或热等静压烧结。
所述的低温碳化硅陶瓷的制备方法,包括如下具体步骤:
S1.将Al粉、Si粉和C粉在磁力搅拌下进行均匀混合,得到Al-Si-C的混合粉体;
S2.将Al-Si-C混合粉体在真空或氩气下1500~1800℃加热反应,制得粉体A;
S3.将粉体A在空气或氧气下继续在600~1000℃加热处理,制得粉体B;
S4.将粉体B在真空或氩气下1500~1800℃烧结,制得碳化硅陶瓷。
所述的低温碳化硅陶瓷在防弹装甲、航空航天或核能领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过原位合成反应实现掺杂Al4SiC4的碳化硅粉体的合成,作为烧结助剂的Al4SiC4均匀分布在碳化硅粉体中,并且Al4SiC4和碳化硅粉体粒径可控。
2.本发明首次将Al-Si-C混合粉体在反应气氛为真空或氩气下通过三步加热,可实现碳化硅的低温致密化。
3.本发明通过对原料粉体的粒径以及后续烧结工艺的选择可对制备碳化硅的晶粒以及性能进行调控。
附图说明
图1为实施例1中经第一步加热反应后所得粉体A的XRD图;
图2为实施例1中经第一步加热反应后所得粉体A的形貌图;
图3为实施例1中经第二步加热热处理后所得粉体B的XRD图;
图4为实施例1中经第二步加热热处理后所得粉体B的形貌图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以Al粉(粒径5μm)、Si粉(粒径为1μm)和C粉(粒径为5μm)为原料,Al-Si-C按质量比为4:1:4的在磁力搅拌下进行混合,混合粉体经混料、干燥后,得到均匀的Al-Si-C混合粉体。
2.将Al-Si-C混合粉体在无压炉中以10℃/min升温到1700℃保温1h,此时为Ar气气氛,得到粉体A;
3.将粉体A在马弗炉空气气氛中进行800℃保温1h热处理后,得到粉体B;
4.将热处理后的粉体B在1700℃无压炉Ar气氛下保温1h烧结,制得致密的SiC陶瓷。
图1为本实施例中第一步加热制得的粉体A的XRD图;从图1中可知,粉体A中主要成分为β-SiC、Al4SiC4相以及碳,说明粉体A含有碳杂质;图2为本实施例中经第一步加热反应后所得粉体A的形貌图。图2中片状晶粒为石墨相,进一步证明经第一步加热后存在片状形的碳,图3为本实施例中经第二步热处理后粉体B的XRD图,图3中只有β-SiC和Al4SiC4相,说明经第二步热处理在去除碳杂质的同时并没有引入其他杂质相,图4为本实施例中经第二步热处理后粉体B的形貌图,图4中并没有观察到片状碳的存在,进一步证明碳杂质相的彻底清除。
本实施例制备得到的碳化硅陶瓷的致密度为99%,粒径为5μm,硬度为30GPa,断裂韧性为12MPa·m1/2,弯曲强度为1200MPa。
实施例2
与实施例1不同在于:Al粉的粒径为0.01μm,Si粉的粒径为0.01μm,C粉的粒径为0.01μm,Al-Si-C的质量为4.5:1:3.5,第一步加热温度为1750℃保温1h,第二步热处理为600℃保温5h,第三步加热为在放电等离子烧结设备中进行1500℃保温10min,加压30MPa,Ar气氛,烧结制得致密碳化硅陶瓷。
本实施例制备得到的碳化硅陶瓷的致密度为99%,粒径为10nm,硬度为38GPa,断裂韧性为10MPa·m1/2,弯曲强度为1500MPa。
实施例3
与实施例1不同在于:Al粉的粒径为0.1μm,Si粉的粒径为0.1μm,C粉的粒径为0.1μm,第二步加热为在800℃保温5h,第三步加热为在无压烧结炉中Ar气氛下加热到1600℃保温1h,通过无压、低温烧结制得碳化硅陶瓷。
本实施例制备得到的碳化硅陶瓷的致密度为99%,粒径为0.1μm,硬度为35GPa,断裂韧性为10MPa·m1/2,弯曲强度为1000MPa。
实施例4
与实施例1不同在于:Al粉的粒径为10μm,Si粉的粒径为10μm,C粉的粒径为10μm,第二步加热为1200℃保温1h,第三步加热为无压烧结炉中真空气氛加热到1800℃保温1h,烧结制备制得碳化硅陶瓷。
本实施例制备得到的碳化硅陶瓷的致密度为99%,粒径为10μm,硬度为25GPa,断裂韧性为12MPa·m1/2,弯曲强度为1000MPa。
实施例5
与实施例1不同在于:Al粉的粒径为1μm,Si粉的粒径为1μm,C粉的粒径为1μm,第一步加热为1500℃保温1h,第二步加热为1000℃保温1h,第三步加热为在热等静压中进行1600℃保温1h,烧结制备制得碳化硅陶瓷。
本实施例制备得到的碳化硅陶瓷的致密度为99%,粒径为5μm,硬度为30GPa,断裂韧性为10MPa·m1/2,弯曲强度为1200MPa。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种低温碳化硅陶瓷,其特征在于,所述低温碳化硅陶瓷是将Al粉、Si粉和C粉均匀混合后,先将Al-Si-C混合粉体在1500~1800℃下加热反应,然后将反应后所得粉体A在空气或氧气下继续在600~1000℃加热处理,再将热处理后所得粉体B在真空或氩气下1500~1800℃烧结制得。
2.根据权利要求1所述的低温碳化硅陶瓷,其特征在于,所述的低温碳化硅陶瓷的致密度为95~100%,其粒径为10nm~10μm,硬度为25~40GPa,断裂韧性为8~12MPa·m1/2,抗弯强度800~1500MPa。
3.根据权利要求1所述的低温碳化硅陶瓷,其特征在于,所述的Al粉的纯度为95~99%,Si粉的纯度为95~99%,C粉的纯度为98~100%;所述的Al粉、Si粉和C粉的粒径均为0.01~10μm。
4.根据权利要求1所述的低温碳化硅陶瓷,其特征在于,所述的Al粉、Si粉、C粉的摩尔比为(4~6):(1~1.5):(3.5~4)。
5.根据权利要求1所述的低温碳化硅陶瓷,其特征在于,所述在1500~1800℃下加热反应的时间为0.5~2h,在600~1000℃加热处理的时间为1~10h,所述1500~1800℃烧结的时间为10~120min。
6.根据权利要求1所述的低温碳化硅陶瓷,其特征在于,所述在1500~1800℃加热和在600~1000℃加热的升温速率均为3~20℃/min。
7.根据权利要求1所述的低温碳化硅陶瓷,其特征在于,所述1500~1800℃烧结的温速率为5~200℃/min。
8.根据权利要求1所述的低温碳化硅陶瓷,其特征在于,所述烧结的方式为无压烧、气压烧结、放电等离子烧结、热压烧结或热等静压烧结。
9.根据权利要求1-8任一项所述的低温碳化硅陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将Al粉、Si粉和C粉在磁力搅拌下进行均匀混合,得到Al-Si-C的混合粉体;
S2.将Al-Si-C混合粉体在真空或氩气下1500~1800℃加热反应,制得粉体A;
S3.将粉体A在空气或氧气下继续在600~1000℃加热处理,制得粉体B;
S4.将粉体B在真空或氩气下1500~1800℃烧结,制得碳化硅陶瓷。
10.权利要求1-8任一项所述的低温碳化硅陶瓷在防弹装甲、航空航天或核能领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910882493.9A CN110627507B (zh) | 2019-09-18 | 2019-09-18 | 一种低温碳化硅陶瓷及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910882493.9A CN110627507B (zh) | 2019-09-18 | 2019-09-18 | 一种低温碳化硅陶瓷及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110627507A true CN110627507A (zh) | 2019-12-31 |
CN110627507B CN110627507B (zh) | 2022-02-25 |
Family
ID=68971183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910882493.9A Active CN110627507B (zh) | 2019-09-18 | 2019-09-18 | 一种低温碳化硅陶瓷及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110627507B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113372121A (zh) * | 2021-08-03 | 2021-09-10 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | 一种利用废弃石墨坩埚制备多孔SiC的方法 |
CN114349520A (zh) * | 2021-12-02 | 2022-04-15 | 北京科技大学 | 一种高炉本体用Al4SiC4-SiC复合耐火材料及其制备方法 |
CN117466645A (zh) * | 2023-12-27 | 2024-01-30 | 之江实验室 | 一种碳硅化铝晶须及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1239468A (zh) * | 1996-12-02 | 1999-12-22 | 圣戈本工业陶瓷股份有限公司 | 碳化硅增强的碳化硅复合物 |
CN1352317A (zh) * | 2000-11-06 | 2002-06-05 | 中国科学院金属研究所 | 一种原位热压/固-液相反应制备钛铝碳块体材料的方法 |
CN1369463A (zh) * | 2002-03-15 | 2002-09-18 | 中国科学院上海硅酸盐研究所 | 含反应合成碳硼铝化合物相的碳化硅陶瓷及其液相烧结法 |
JP2007238382A (ja) * | 2006-03-09 | 2007-09-20 | Chubu Electric Power Co Inc | 炭化ケイ素焼結体の製造方法および炭化ケイ素焼結体 |
CN101423403A (zh) * | 2008-11-20 | 2009-05-06 | 武汉科技大学 | 一种碳硅化铝和碳化硅复合材料及其制备方法 |
CN107746279A (zh) * | 2017-10-27 | 2018-03-02 | 南京柯瑞特种陶瓷股份有限公司 | Al4SiC4及Al复合增强的碳化硅蜂窝陶瓷及其制备方法 |
CN107814575A (zh) * | 2017-11-03 | 2018-03-20 | 江苏高淳陶瓷股份有限公司 | 一种Al4SiC4增强的碳化硅蜂窝陶瓷及其制备方法 |
CN108698940A (zh) * | 2015-12-21 | 2018-10-23 | 赛峰航空陶瓷技术公司 | 由化学反应生产陶瓷的方法 |
CN109608200A (zh) * | 2018-12-10 | 2019-04-12 | 武汉科技大学 | 一种碳硅化铝结合SiC质耐火材料及其制备方法 |
-
2019
- 2019-09-18 CN CN201910882493.9A patent/CN110627507B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1239468A (zh) * | 1996-12-02 | 1999-12-22 | 圣戈本工业陶瓷股份有限公司 | 碳化硅增强的碳化硅复合物 |
CN1352317A (zh) * | 2000-11-06 | 2002-06-05 | 中国科学院金属研究所 | 一种原位热压/固-液相反应制备钛铝碳块体材料的方法 |
CN1369463A (zh) * | 2002-03-15 | 2002-09-18 | 中国科学院上海硅酸盐研究所 | 含反应合成碳硼铝化合物相的碳化硅陶瓷及其液相烧结法 |
JP2007238382A (ja) * | 2006-03-09 | 2007-09-20 | Chubu Electric Power Co Inc | 炭化ケイ素焼結体の製造方法および炭化ケイ素焼結体 |
CN101423403A (zh) * | 2008-11-20 | 2009-05-06 | 武汉科技大学 | 一种碳硅化铝和碳化硅复合材料及其制备方法 |
CN108698940A (zh) * | 2015-12-21 | 2018-10-23 | 赛峰航空陶瓷技术公司 | 由化学反应生产陶瓷的方法 |
CN107746279A (zh) * | 2017-10-27 | 2018-03-02 | 南京柯瑞特种陶瓷股份有限公司 | Al4SiC4及Al复合增强的碳化硅蜂窝陶瓷及其制备方法 |
CN107814575A (zh) * | 2017-11-03 | 2018-03-20 | 江苏高淳陶瓷股份有限公司 | 一种Al4SiC4增强的碳化硅蜂窝陶瓷及其制备方法 |
CN109608200A (zh) * | 2018-12-10 | 2019-04-12 | 武汉科技大学 | 一种碳硅化铝结合SiC质耐火材料及其制备方法 |
Non-Patent Citations (4)
Title |
---|
H. GHEZELBASH等: "The effect of aluminum additive on pressureless sintering of SiC", 《JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY》 * |
HAI-BO JIN等: "Microwave synthesis of Al-doped SiC powders and study of their dielectric properties", 《MATERIALS RESEARCH BULLETIN》 * |
JIN-SEOK LEE等: "Effect of Al4SiC4 additive on the densification of β-silicon carbide under vacuum", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
常启兵: "《复合材料 案例式 case study》", 30 September 2018, 江苏凤凰美术出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113372121A (zh) * | 2021-08-03 | 2021-09-10 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | 一种利用废弃石墨坩埚制备多孔SiC的方法 |
CN114349520A (zh) * | 2021-12-02 | 2022-04-15 | 北京科技大学 | 一种高炉本体用Al4SiC4-SiC复合耐火材料及其制备方法 |
CN117466645A (zh) * | 2023-12-27 | 2024-01-30 | 之江实验室 | 一种碳硅化铝晶须及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110627507B (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110002879B (zh) | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 | |
Hu et al. | Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics | |
CN110627507B (zh) | 一种低温碳化硅陶瓷及其制备方法和应用 | |
CN112851365B (zh) | 一种氮化硅基复相导电陶瓷的制备方法 | |
US5656218A (en) | Method for making high performance self-reinforced silicon carbide using a pressureless sintering process | |
CN108439995B (zh) | 一种复相陶瓷及其制备方法 | |
CN113121237B (zh) | 一种碳化硼基复合陶瓷及其制备工艺 | |
CN107473730B (zh) | 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法 | |
CN110698204A (zh) | 一种max相陶瓷的制备方法 | |
CN112028635A (zh) | 一种超高温陶瓷复合材料及制备方法 | |
CN101417879B (zh) | 一种原位反应热压合成Nb4AlC3块体陶瓷 | |
Lao et al. | Effects of various sintering additives on the properties of β-SiAlON–SiC ceramics obtained by liquid phase sintering | |
JP3607939B2 (ja) | 炭化ケイ素−窒化ホウ素複合材料の反応合成 | |
KR20190048811A (ko) | 우수한 열전도도 및 열내구성을 가지는 탄화규소 소결체의 제조방법 | |
CN109400176A (zh) | 一种高性能氮化硅陶瓷及其制备方法和应用 | |
CN113307644A (zh) | 一种氮化改性反应烧结碳化硅陶瓷表面的方法 | |
CN109053192B (zh) | 一种MgAlON透明陶瓷粉体的制备方法 | |
CN114573351B (zh) | 一种碳化硼基复合材料及其制备方法 | |
CN113979765B (zh) | 一种碳化硅多孔陶瓷及其制备方法 | |
CN101955357B (zh) | 可加工复相陶瓷材料及其制备方法和二次硬化热处理方法 | |
CN110330349B (zh) | 一种氮化硅纳米纤维增强氮化硼陶瓷及其制备方法 | |
CN113582698A (zh) | 一种ZrB2-SiC增韧B4C防弹片的制备方法 | |
Kennedy et al. | Effect of additive composition on porosity and flexural strength of porous self-bonded SiC ceramics | |
CN101956115B (zh) | 可加工复相陶瓷材料及其制备方法和二次硬化热处理方法 | |
WO2003057625A1 (fr) | Materiau graphite permettant de synthetiser un diamant semiconducteur et diamant semiconducteur produit avec ce materiau |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |