CN110624558A - 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途 - Google Patents

一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途 Download PDF

Info

Publication number
CN110624558A
CN110624558A CN201910990193.2A CN201910990193A CN110624558A CN 110624558 A CN110624558 A CN 110624558A CN 201910990193 A CN201910990193 A CN 201910990193A CN 110624558 A CN110624558 A CN 110624558A
Authority
CN
China
Prior art keywords
sno
electrostatic spinning
preparation
temperature
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910990193.2A
Other languages
English (en)
Other versions
CN110624558B (zh
Inventor
李星
刘语舟
黄水平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Dragon Totem Technology Achievement Transformation Co ltd
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201910990193.2A priority Critical patent/CN110624558B/zh
Publication of CN110624558A publication Critical patent/CN110624558A/zh
Application granted granted Critical
Publication of CN110624558B publication Critical patent/CN110624558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/39Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a secondary hydroxyl group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开了一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途,本发明以乙酸钴四水合物和四氯化锡五水合物为主要原料,加入适量的高分子(PVP)为粘合剂,在高电压条件下利用静电纺丝技术,制备静电纺丝产品,然后在马弗炉中,在空气氛围下,进行程序控制阶梯升温和高温烧结,得到一种Co3O4·SnO2复合物纳米线材料,该复合物纳米线作为催化氧化安息香的催化剂具有良好的催化性能,因而具有广阔的应用前景。在整个制备过程中,操作简单,绿色环保,设备投资少,适合批量生产。

Description

一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途
技术领域
本发明属于材料化学领域,具体涉及到一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途。
背景技术
随着科学技术的不断发展,人类社会在信息、环境、能源、生物技术等领域的发展日新月异,对材料的性能要求也越来越高,单一的材料已经无法满足当前的需要,复合材料往往具有单一组分所不具有的特性,因此,发展性能好、科技含量高的新型复合材料有着重要的作用和意义。纳米材料由于具有小尺寸效应、量子效应、表面效应和宏观量子轨道效应等特殊效应引起了人们的广泛关注,纳米材料是指在三维空间中至少有一维处于纳米尺度范围或以纳米结构作为基本单元构成的材料,由于具有这些特性,纳米材料具有普通材料所不具备的特性,纳米材料可作为光学材料、电子材料、磁性材料以及高强度、高密度材料,在催化、生物医学、环保、工程材料等领域得到了广泛的应用。一维纳米材料合成方法主要包括相转移法、水热法、静电纺丝法、化学气相沉积法、气相蒸发法等方法,其中静电纺丝技术是制备连续纳米纤维最简单有效的方法,D.Li等人(Advance Materials,2004,16:1151-1170)综述了静电纺丝法的工作原理及各个因素对纳米纤维形貌的影响。静电纺丝装置主要包括纺丝前驱液,纺丝针头,高压电源,纺丝收集装置等部分。静电纺丝纤维形貌主要受以下几个因素的影响:系统参数(如聚合物的分子量,前驱体溶液的电导率、黏度、介电常数等),操作参数(如针头的规格、电压、流速、喷丝头与纺丝收集装置之间的距离等),环境参数(如湿度、温度等),此外,纺丝纤维退火过程中的参数(如煅烧温度、氛围、升温速率等)对纳米纤维材料的结构、形貌和性能都有很大的影响。
过渡金属氧化物Co3O4是一种重要的磁性p型半导体,在锂离子电池、超级电容器、气体传感器和作为催化氧化剂等领域有广泛的应用,其制备方法有热分解法、化学喷雾热分解法、化学气相沉积法、静电纺丝法、溶胶-凝胶法等方法,由于Co3O4制备方法不同,形貌也大不相同,有纳米球、纳米立方体、纳米棒、纳米片、纳米纤维等形貌, Y,Ding等人(Materials Letters,2008,62:3410-3412)报道了Co3O4纳米纤维作为锂离子负极材料,经过40圈充放电循环后保持604mA h-1的容量。金属氧化物SnO2是一种n 型宽带隙半导体材料,其在催化、气敏器件、锂离子电池等方面具有广阔的应用,L,Li 等人(Electrochemistry Communications,2010,12:1383-1386)报道了SnO2纳米管作为锂离子电池负极材料,在180mA g-1电流密度下50圈充放电循环后容量还保持807mA h-1。然而单一组分材料在电池充放电过程中存在体积膨胀或循环性能差,催化氧化性能不够高稳定性不好等问题。
发明内容
本发明所要解决的技术问题是针对现有技术,利用静电纺丝技术与高温烧结技术相结合,提供一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途。
本发明为解决上述技术问题所采取的技术方案为:一种四氧化三钴(Co3O4)与氧化锡(SnO2)复合物纳米线的制备方法,所述制备方法利用静电纺丝技术以乙酸钴·四水合物、四氯化锡·五水合物为主要原料,加入适量的高分子为粘合剂,磁力搅拌一段后得到澄清透明纺丝前驱液,利用静电纺丝技术在高电压条件下,制备静电纺丝产品,随后在马弗炉中空气氛围下进行烧结,得到一种Co3O4与SnO2复合物纳米线,具体包括以下步骤:
(1)在烧杯中加入一定量的乙酸钴四水合物(C4H6CoO4·4H2O),加入适量的N,N-二甲基甲酰胺(DMF)搅拌1h,使乙酸钴四水合物完全溶解,再加入适量PVP(K-120,聚乙烯吡咯烷酮)、无水乙醇、冰醋酸和四氯化锡五水合物(SnCl4·5H2O),搅拌12h,得到澄清透明的纺丝前驱液;
(2)将澄清透明的纺丝前驱液吸入注射器中,在13~18kV的电压,针头与接收器的距离为15~19cm,流率为0.8mL h-1,空气湿度为45%,温度为28~35℃条件下进行静电纺丝,得纺丝产品并在100℃空气氛围下干燥3h;
(3)将干燥后的静电纺丝产物转移到马弗炉中,在空气氛围下,程序控制阶梯升温,首先在200℃条件下保温200min,然后经过180min升温,在600℃~800℃温度下保温200min,自然冷却,得到一种Co3O4与SnO2复合物纳米线;
所述复合物的化学简式为Co3O4·SnO2
进一步的,本发明还提供了上述制备得到的四氧化三钴与氧化锡(Co3O4·SnO2)复合物纳米线的用途,该复合物纳米线作为催化氧化安息香的催化剂,在空气氛围下,在DMF和水体积比为1:2的混合溶剂中,反应温度为50oC、反应40min,苯偶酰的收率达到80%以上;催化剂循环使用三次,苯偶酰的收率可达到68%以上。
与现有技术相比,本发明合成的复合物纳米线的特点如下:
(a)本发明采用静电纺丝合成技术;(b)本发明制得的Co3O4·SnO2复合物形貌为纳米线,平均直径为650nm;(c)本发明制得的复合物纳米线作为催化氧化安息香的催化剂,循环使用三次,在DMF和水混合溶剂中50℃、反应40min,苯偶酰的收率达到68%以上,该复合物纳米线在催化材料领域具有广阔的应用前景。
附图说明
图1为本发明制得的Co3O4·SnO2复合物纳米线的XRD图;
图2为本发明制得的Co3O4·SnO2复合物纳米线的SEM图;
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1:
在烧杯中加入3mmoL乙酸钴四水合物,加入5.0mL N,N-二甲基甲酰胺(简写为DMF)搅拌1h,使乙酸钴四水合物完全溶解,再加入1.5g PVP(K-120,聚乙烯吡咯烷酮)、10.0mL无水乙醇、2mL冰醋酸和3mmoL四氯化锡五水合物(SnCl4·5H2O),搅拌12h,得到澄清透明的纺丝前驱液;将澄清透明的纺丝前驱液装入10mL注射器中,在13kV的电压,针头与铂丝网接收器的距离为15cm,流率为0.8mL h-1,温度为35℃,空气湿度为45%条件下进行静电纺丝;收集静电纺丝产物并在100℃空气氛围下干燥 3h,然后将其转移到坩埚中,将坩埚置于马弗炉中,然后设置加热程序,空气氛围下,从室温经过60min升温至200℃并保温200min,再经过180min升温至600℃并保温 200min后,自然冷却,得到复合物Co3O4·SnO2纳米线,将得到的复合物Co3O4·SnO2纳米线进行X射线粉末衍射分析(XRD)和扫描电子显微镜分析(SEM)。
实施例2:
在烧杯中加入3mmoL乙酸钴四水合物(C4H6CoO4·4H2O),加入5.0mL N,N-二甲基甲酰胺(DMF)搅拌1h,使乙酸钴四水合物完全溶解,再加入1.5g PVP、10.0mL 无水乙醇、2mL冰醋酸和3mmoL四氯化锡五水合物(SnCl4·5H2O),搅拌12h,得到澄清透明的纺丝前驱液;将澄清透明的纺丝前驱液装入10mL注射器中,在18kV的电压,针头与铂丝网接收器的距离为19cm,流率为0.8mL h-1,温度为28℃,空气湿度为45%条件下进行静电纺丝;收集静电纺丝产物并在100℃空气氛围下干燥3h,然后将其转移到坩埚中,将坩埚置于马弗炉中,然后设置加热程序,空气氛围下,从室温经过60min升温至200℃并保温200min,再经过180min升温至700℃并保温200min后,自然冷却,得到复合物Co3O4·SnO2纳米线,将得到的复合物Co3O4·SnO2纳米线进行X 射线粉末衍射分析,扫描电子显微镜分析。
实施例3:
在烧杯中加入3mmoL乙酸钴四水合物(C4H6CoO4·4H2O),加入5.0mL N,N-二甲基甲酰胺(DMF)搅拌1h,使乙酸钴四水合物完全溶解,再加入1.5g PVP、10.0mL无水乙醇、2mL冰醋酸和3mmoL四氯化锡五水合物(SnCl4·5H2O),搅拌12h,得到澄清透明的纺丝前驱液;将澄清透明的纺丝前驱溶液装入10mL注射器中,在15kV的电压,针头与铂丝网接收器的距离为17cm,流率为0.8mL h-1,温度为32℃,空气湿度为45%条件下进行静电纺丝;收集静电纺丝产物并在100℃空气氛围下干燥3h,然后将其转移到坩埚中,将坩埚置于马弗炉中,然后设置加热程序,空气氛围下,从室温经过60min升温至200℃并保温200min,再经过180min升温至800℃并保温200min后,自然冷却,得到复合物Co3O4·SnO2纳米线,将得到的复合物Co3O4·SnO2纳米线进行X 射线粉末衍射分析(XRD),扫描电子显微镜分析(SEM)。
由图1可以看出,实施例1-3成功合成出复合物Co3O4·SnO2纳米线;由图2可以看出,实施例1-3制得的Co3O4·SnO2复合物形貌为纳米线,平均直径为650nm。
将上述实施例中所制得的Co3O4·SnO2复合物纳米线作为催化氧化安息香的催化剂,在DMF和水体积比为1:2的混合溶剂中,反应温度50oC、反应40min,苯偶酰的收率达到80%以上;反应结束后对上述反应的催化剂进行回收循环使用,结果显示催化剂循环使用三次,苯偶酰的收率可达到68%以上,反应简式如下式所示:

Claims (2)

1.一种四氧化三钴与氧化锡复合物纳米线的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)在烧杯中加入一定量的乙酸钴四水合物,加入适量的N,N-二甲基甲酰胺,搅拌1h,使乙酸钴四水合物完全溶解,再加入适量的K-120型聚乙烯吡咯烷酮、无水乙醇、冰醋酸和四氯化锡五水合物,搅拌12h,得到澄清透明的纺丝前驱液;
(2)将澄清透明的纺丝前驱溶液吸入注射器中,在13~18kV的电压,针头与接收器的距离为15~19cm,流率为0.8mL h-1,空气湿度为45%,温度为28~35℃条件下进行静电纺丝,得纺丝产品并在100℃空气氛围下干燥3h;
(3)将干燥后的静电纺丝产物转移马弗炉中,在空气氛围下,程序控制阶梯升温,首先在200℃条件下保温200min,然后经过180min升温,在600℃~800℃温度下保温200min,自然冷却,得到一种Co3O4与SnO2复合物纳米线;
所述复合物的化学简式为Co3O4·SnO2
2.一种如权利要求1所述制备方法得到的四氧化三钴与氧化锡复合物纳米线的用途,其特征在于,该复合物纳米线作为催化氧化安息香的催化剂,在空气氛围下,在DMF和水体积比为1:2的混合溶剂中,反应温度50℃、反应40min,苯偶酰的收率达到80%以上;催化剂循环使用三次,苯偶酰的收率可达到68%以上。
CN201910990193.2A 2019-10-17 2019-10-17 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途 Active CN110624558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910990193.2A CN110624558B (zh) 2019-10-17 2019-10-17 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910990193.2A CN110624558B (zh) 2019-10-17 2019-10-17 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途

Publications (2)

Publication Number Publication Date
CN110624558A true CN110624558A (zh) 2019-12-31
CN110624558B CN110624558B (zh) 2022-12-02

Family

ID=68975428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910990193.2A Active CN110624558B (zh) 2019-10-17 2019-10-17 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途

Country Status (1)

Country Link
CN (1) CN110624558B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540887A (zh) * 2020-04-24 2020-08-14 宁波大学 一种碳包覆四氧化三钴与二氧化锡复合物锂电池材料及其制备方法
CN111554892A (zh) * 2020-04-24 2020-08-18 宁波大学 一种锂电池负极材料Co3O4纳米纤维的制备方法
CN111647972A (zh) * 2020-04-20 2020-09-11 北京邮电大学 一种静电纺丝法制备金属元素掺杂型氧化钴(Co3O4)纳米纤维电极的方法
CN112517021A (zh) * 2020-12-09 2021-03-19 扬州大学 钴掺杂改性的二氧化锡催化剂、制备方法及其应用
CN114225954A (zh) * 2021-12-16 2022-03-25 济南大学 一种氧空位和酸性位协同光催化碳碳键偶联制备安息香异丙醚的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966697A (zh) * 2014-05-16 2014-08-06 北京化工大学 一种p-n复合结构纳米金属氧化物及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966697A (zh) * 2014-05-16 2014-08-06 北京化工大学 一种p-n复合结构纳米金属氧化物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAVAD SAFARI, ET AL.: "Co3O4-decorated carbon nanotubes as a novel efficient catalyst in the selective oxidation of benzoins", 《COMPTES RENDUS CHIMIE》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647972A (zh) * 2020-04-20 2020-09-11 北京邮电大学 一种静电纺丝法制备金属元素掺杂型氧化钴(Co3O4)纳米纤维电极的方法
CN111540887A (zh) * 2020-04-24 2020-08-14 宁波大学 一种碳包覆四氧化三钴与二氧化锡复合物锂电池材料及其制备方法
CN111554892A (zh) * 2020-04-24 2020-08-18 宁波大学 一种锂电池负极材料Co3O4纳米纤维的制备方法
CN111540887B (zh) * 2020-04-24 2021-05-14 宁波大学 一种碳包覆四氧化三钴与二氧化锡复合物锂电池材料及其制备方法
CN111554892B (zh) * 2020-04-24 2021-07-30 宁波大学 一种锂电池负极材料Co3O4纳米纤维的制备方法
CN112517021A (zh) * 2020-12-09 2021-03-19 扬州大学 钴掺杂改性的二氧化锡催化剂、制备方法及其应用
CN114225954A (zh) * 2021-12-16 2022-03-25 济南大学 一种氧空位和酸性位协同光催化碳碳键偶联制备安息香异丙醚的方法
CN114225954B (zh) * 2021-12-16 2023-06-27 济南大学 一种氧空位和酸性位协同光催化碳碳键偶联制备安息香异丙醚的方法

Also Published As

Publication number Publication date
CN110624558B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
CN110624558B (zh) 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途
Tekmen et al. Titania nanofibers prepared by electrospinning
CN102683710B (zh) 碳纳米纤维负载二氧化钛薄膜负极材料及其制备方法
CN110144674B (zh) 一种柔性导电陶瓷纤维膜的制备方法
CN103456934B (zh) 一种锂离子电池负极用纳米TiO2(B)/碳复合纤维的制备方法和应用
CN107099880B (zh) 一种氧化钴镍/二氧化锡复合纳米管及其制备方法和用途
CN101786600B (zh) 一种制备二氧化锡/氧化锌复合多晶纳米带的方法
CN102965766A (zh) 一种合成纳米金属颗粒负载碳纳米纤维的新方法
CN110079895B (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN103706350B (zh) 一种In2O3/ZnO异质结构纳米管及其制备方法与应用
CN104357937A (zh) 一种静电纺丝制备多孔碳化钼纳米纤维的方法
CN105668617A (zh) 一种静电纺丝制备杨桃状SnO2/C微纳米颗粒的方法及所得产品
CN106229544A (zh) 一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法
CN107055510A (zh) 一种金属有机配合物纳米管及其衍生多孔碳纳米管的制备方法
CN109904418A (zh) 一种锂离子电池负极材料及其制备方法
CN108611702B (zh) CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途
CN114242986B (zh) 一种自支撑多级结构氮化钒基碳纳米纤维复合材料及其制备方法与应用
CN111540887B (zh) 一种碳包覆四氧化三钴与二氧化锡复合物锂电池材料及其制备方法
CN105948108B (zh) 一种钛酸锂钠纳米线及其制备方法
CN108649200B (zh) 一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法
CN102618967B (zh) 一种含TiO2/SnO2异质结纳米纤维的制备方法
CN114551986A (zh) 一种高电导率的复合固体电解质及其制备方法
KR101176863B1 (ko) 금속 산화물 나노튜브의 제조방법 및 이를 이용하여 제조된 금속 산화물 나노튜브
CN108914253A (zh) 一种基于静电纺丝和高温碳化制备碳纳米纤维及其修饰电极的方法
CN110586104A (zh) 一种二氧化钛、氧化铜与钛酸钴复合物纳米纤维及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231212

Address after: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen dragon totem technology achievement transformation Co.,Ltd.

Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818

Patentee before: Ningbo University

TR01 Transfer of patent right