CN110615763B - 一种羟基喹啉化合物的绿色合成方法 - Google Patents

一种羟基喹啉化合物的绿色合成方法 Download PDF

Info

Publication number
CN110615763B
CN110615763B CN201910790438.7A CN201910790438A CN110615763B CN 110615763 B CN110615763 B CN 110615763B CN 201910790438 A CN201910790438 A CN 201910790438A CN 110615763 B CN110615763 B CN 110615763B
Authority
CN
China
Prior art keywords
substituted
compound
acid
reaction
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910790438.7A
Other languages
English (en)
Other versions
CN110615763A (zh
Inventor
唐晓冬
吴银容
梁恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern Medical University
Original Assignee
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Medical University filed Critical Southern Medical University
Priority to CN201910790438.7A priority Critical patent/CN110615763B/zh
Publication of CN110615763A publication Critical patent/CN110615763A/zh
Application granted granted Critical
Publication of CN110615763B publication Critical patent/CN110615763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/18Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种羟基喹啉化合物的绿色合成方法。所述羟基喹啉化合物的结构如式Ⅰ所示;其制备过程为:以R1取代2‑甲基喹啉化合物和R2取代的苯甲醛化合物为原料,以酸为催化剂,以水作溶剂,加热反应,即可生成式Ⅰ所示羟基喹啉化合物。本发明所述方法以取代2‑甲基喹啉类和取代苯甲醛化合物为原料,以酸为催化剂,以水作为溶剂进行反应,经一步反应即可得到羟基喹啉化合物;所述方法以水作为溶剂,避免了有机溶剂的使用,以酸为催化剂,避免了使用复杂性或高毒性的催化剂;反应条件温和、反应过程简单,符合绿色化学理念;所述反应的后处理简单,仅需简单的萃取、浓缩和柱层析即可获得高纯度的羟基喹啉化合物。

Description

一种羟基喹啉化合物的绿色合成方法
技术领域
本发明涉及有机合成技术领域,更具体地,涉及一种羟基喹啉化合物的绿色合成方法。
背景技术
在有机合成中,大量易燃、易爆、易挥发的有机溶剂的使用给环境带来了巨大的危害,因此,如何减少有机溶剂的使用或者寻找有机溶剂的替代品在有机合成中具有非常重要的作用。近年来,以水作为溶剂的有机合成已成为一个研究热点。随着越来越多水相反应催化剂的发现,不断有相关的水相有机反应被报道(Butler,R.N.and Coyne,A.G.Chem.Rev.2010,110,6302-6337;Kitanosono,T.;Masuda,K.;Xu,P.and Kobayashi,S.Chem.Rev.2018,118,679-746)。与传统溶剂相比,水作为有机反应溶剂具有安全、廉价、无毒、无污染等独特的优势,符合绿色化学的理念。
有机小分子催化剂与金属催化剂相比最大的优点在于:金属催化剂不仅昂贵,而且对水和空气敏感,因而其反应条件一般比较苛刻。有机小分子催化剂具有催化反应条件简单、温和,环境友好,稳定、易得且容易回收,低毒、价廉等优势,因而受到化学家们的广泛关注(Chauhan,P.;Mahajan,S.and Enders,D.Acc.Chem.Res.2017,50,2809-2821;Du,Z.and Shao,Z.Chem.Soc.Rev.2013,42,1337-1378)。
喹啉化合物是一类重要的氮杂环化合物,广泛分布于天然产物以及药物活性分子中,是当今药物研究的一大热点。另一方面,羟基不仅是有机合成中最常见的官能团之一,能进一步转为其他各种官能团,而且是药物活性分子中常见的基团。因此,研究羟基喹啉化合物的绿色合成方法对合成方法学以及药物化学的发展都是非常重要的。
发明内容
本发明的目的在于针对现有技术中,羟基喹啉化合物的制备需要分多步进行,而且每一步反应均需要消耗大量有机溶剂、金属催化剂等,2-甲基喹啉类化合物转化方式单一、反应条件苛刻、副反应繁多、产物分离困难等不足,提供一种羟基喹啉化合物的绿色合成方法。本发明所述方法取代2-甲基喹啉类和取代苯甲醛化合物为原料,以酸为催化剂,以水作为溶剂进行反应,即可制备得到羟基喹啉化合物;所述制备方法避免了有机溶剂的使用,反应条件简单,所使用的催化剂为小分子,避免了使用复杂性或高毒性的催化剂,符合绿色化学理念。
本发明的上述目的是通过以下方案予以实现的:
一种羟基喹啉化合物的绿色合成方法,所述羟基喹啉化合物的结构如式Ⅰ所示:
Figure BDA0002179388320000021
其中R1为氢、卤素、C1~4烷基、C1~4卤代烷基、C1~4烷氧基或C1~4卤代烷氧基;R2为氢、苯基、萘基或取代苯基;所述取代苯基中的取代基为卤素、C1~4烷基、C1~4卤代烷基、C1~4烷氧基、C1~4卤代烷氧基、氰基或苯基中的一种或多种;
其制备过程为:以R1取代2-甲基喹啉化合物和R2取代的苯甲醛化合物为原料,以酸为催化剂,以水作溶剂,加热反应,即可生成式Ⅰ所示羟基喹啉化合物。
本发明所述制备方法中,R1取代二甲基喹啉类在酸的催化下,首先异构化为烯胺;然后,烯胺和取代苯甲醛类发生亲核取代反应,得到羟基喹啉化合物;所述制备方法,采用特定的原料,以酸为催化剂、水为溶剂,取代2-甲基喹啉能与取代苯甲醛化合物发生亲核加成反应,一步反应即可制备得到羟基喹啉化合物,不仅反应过程简单,而且反应不需要用到大量有机溶剂,也不需要金属催化剂,反应条件温和、简单、对环境友好,符合绿色化学理念。
优选地,所述R1取代2-甲基喹啉化合物的结构如式Ⅱ所示:
Figure BDA0002179388320000022
其中,R1为氢、卤素、C1~4烷基、C1~4卤代烷基、C1~4烷氧基或C1~4卤代烷氧基。
优选地,所述R2取代的苯甲醛化合物的结构如式Ⅲ所示:
Figure BDA0002179388320000023
其中,R2为氢、苯基、萘基或取代苯基;所述取代苯基中的取代基为卤素、C1~4烷基、C1~4卤代烷基、C1~4烷氧基、C1~4卤代烷氧基、氰基或苯基中的一种或多种。
更优选地,所述R1为氢、卤素、甲基、乙基、正丙基、异丙基、三氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、三氟甲氧基或三氟乙氧基;R2为氢、苯基、萘基或取代苯基;所述取代苯基中的取代基为卤素、甲基、乙基、正丙基、异丙基、三氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、三氟甲氧基、三氟乙氧基、氰基或苯基中的一种或多种。
更优选地,所述R1为氢、卤素、甲基、乙基、三氟甲基、三氟乙基、甲氧基、乙氧基、三氟甲氧基或三氟乙氧基;R2为氢、苯基、萘基或取代苯基;所述取代苯基中的取代基为卤素、甲基、乙基、三氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、三氟甲氧基、三氟乙氧基、氰基或苯基中的一种或多种。
优选地,所述酸为冰醋酸、盐酸、氢溴酸、三氟乙酸、特戊酸、硝酸、L-脯氨酸、三氯化铁或氯化锌中的一种或多种。
优选地,所述酸为冰醋酸、盐酸、特戊酸或硝酸中的一种或多种;更优选地,所述酸为冰醋酸。
优选地,所述加热反应的温度为80℃~120℃;更优选地,所述加热反应的温度为100℃。
优选地,所述R1取代2-甲基喹啉化合物和R2取代的苯甲醛化合物的摩尔比为1~2:1;更优选地,摩尔比为1.5:1。
优选地,所述R1取代2-甲基喹啉化合物与酸的摩尔比为1:0.1~0.3;更优选地,摩尔比为1:0.2。
优选地,待反应结束后,将反应液采用乙酸乙酯进行萃取,收集有机相并浓缩得到粗品;然后将粗品进行柱层析分离,即可得到式Ⅰ所示羟基喹啉化合物。
优选地,所述柱层析的流动相为石油醚与乙酸乙酯,以体积比为(5~30):1进行梯度洗脱;更优选地,流动相为体积比为20:1的石油醚与乙酸乙酯的混合溶液。
与现有技术相比,本发明具有以下有益效果:
本发明所述方法以取代2-甲基喹啉类和取代苯甲醛化合物为原料,以酸为催化剂,以水作为溶剂进行反应,经一步反应即可得到羟基喹啉化合物;所述方法以水作为溶剂,避免了有机溶剂的使用,以酸为催化剂,避免了使用复杂性或高毒性的催化剂;反应条件温和、反应过程简单,符合绿色化学理念;
所述反应的后处理简单,仅需简单的萃取、浓缩和柱层析即可获得高纯度的羟基喹啉化合物;对于羟基喹啉化合物的制备和应用都具有非常广泛的应用前景。
具体实施方式
下面结合具体实施例对本发明做出进一步地详细阐述,所述实施例只用于解释本发明,并非用于限定本发明的范围。下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。
实施例1
探究酸的种类、溶剂的种类和反应温度对反应的影响,具体过程如下:
以2-甲基喹啉和2-苯氧基苯甲醛为反应原料,酸、溶剂和反应温度如表1所示,在25mL反应管中反应24h,然后冷却至室温,加入适量的水,并用乙酸乙酯萃取三遍收集有机相,并使用旋转蒸发仪减压旋蒸除去溶剂,再通过薄层板分离纯化,得到产物,所用的薄层板展开剂为体积比为(5~30):1的石油醚:乙酸乙酯的混合溶剂。
表1不同的酸、溶剂和反应温度对反应的影响
Figure BDA0002179388320000041
Figure BDA0002179388320000051
注:表格中的“trace”表示痕量,即检测不到。
从上述不同条件的反应来看,当酸为冰醋酸、盐酸、氢溴酸、三氟乙酸、特戊酸(PivOH)、硝酸、L-脯氨酸(L-Proline)、三氯化铁、氯化锌、Ag2CO3或CuBr2任意一种时,上述反应均可发生,但当采用的酸不同时,对于产物的产率有所影响,当酸为冰醋酸、盐酸、特戊酸或硝酸中的任意一种时,产物的产率超过60%,其中当酸为冰醋酸时,产物的产率最高,高达80%以上。
当将溶剂采用常用的有机溶剂,例如甲苯、dioxane、DMSO、DMF、(CH2OH)2或DCE时,反应不发生或较少量发生,产物的产率极低;但当反应溶剂为水时,则反应产物的产率较高;表明上述反应在水中易于发生。
当反应温度在80℃至120℃时,反应均可发生,但反应温度不同时,产物的产率不同,当反应温度为100℃时,反应产物的产率最高。
从上述反应中可知,当酸为冰醋酸,反应溶剂为水,反应温度为100℃时,为最佳反应条件。
实施例2
以上述最佳反应条件进行反应,更换不同的反应原料,具体的反应原料如表2所示,其中取代2-甲基喹啉的用量为0.45mmol,取代苯甲醛的用量为0.3mmol,,冰醋酸的用量为0.06mmol,水的用量为1.5mL,在25mL反应管中反应,反应温度为100℃,反应24h,然后停止加热及搅拌,冷却至室温后,加入适量的水,并用乙酸乙酯萃取三遍收集有机相,并减压旋蒸除去溶剂之后通过薄层板分离纯化得到产物,所用的薄层板展开剂为体积比为(5~30):1的石油醚:乙酸乙酯的混合溶剂,制备得到不同取代基的羟基喹啉化合物。
表2不同取代基的羟基喹啉化合物的制备原料
Figure BDA0002179388320000061
Figure BDA0002179388320000071
Figure BDA0002179388320000081
实施例2~20的化合物的表征数据如下:
实施例2:1H NMR(400MHz,CDCl3)δ8.06(dd,J=8.3,4.2Hz,2H),7.80–7.68(m,3H),7.55–7.49(m,1H),7.37–7.29(m,2H),7.25–7.20(m,1H),7.19–7.13(m,2H),7.08(t,J=7.4Hz,1H),7.02–6.98(m,2H),6.89(dd,J=8.0,1.2Hz,1H),5.65(dd,J=8.9,2.7Hz,1H),3.46(dd,J=15.4,2.8Hz,1H),3.30(dd,J=15.4,8.9Hz,1H).13C NMR(100MHz,CDCl3)δ160.7,157.5,153.0,146.8,136.8,135.2,129.8,129.7,128.6,128.2,127.5,127.4,126.8,126.2,124.0,122.9,122.1,118.8,118.1,67.8,44.5.
实施例3:1H NMR(400MHz,CDCl3)δ8.09–8.00(m,2H),7.75(d,J=7.5Hz,1H),7.50(t,J=8.7Hz,1H),7.41(d,J=8.7Hz,1H),7.34(t,J=7.7Hz,2H),7.30–7.15(m,3H),7.11(t,J=7.3Hz,1H),7.02(d,J=8.1Hz,1H),6.91(d,J=8.0Hz,1H),5.66(d,J=8.7Hz,1H),3.47(d,J=15.3Hz,1H),3.32(dd,J=15.4,8.9Hz,1H).13C NMR(100MHz,CDCl3)δ160.1(d,J=246Hz),160.0(d,J=3Hz),157.4,153.0,144.0,136.1(d,J=5Hz),135.0,131.0(d,J=9Hz),129.7,128.2,127.4,127.3(d,J=10Hz),123.9,123.0,122.8,119.9(d,J=25Hz),118.72,118.1,110.6(d,J=22Hz),67.8,44.6.
实施例4:1H NMR(400MHz,CDCl3)δ8.00–7.93(m,3H),7.78(dd,J=9.0,2.1Hz,1H),7.69(dd,J=7.6,1.5Hz,1H),7.35–7.28(m,2H),7.25–7.12(m,3H),7.08(t,J=7.4Hz,1H),7.01–6.96(m,2H),6.88(dd,J=8.0,1.0Hz,1H),5.62(dd,J=8.8,2.7Hz,1H),3.45(dd,J=15.4,2.7Hz,1H),3.30(dd,J=15.4,8.8Hz,1H).13C NMR(100MHz,CDCl3)δ161.1,157.4,153.0,145.3,135.8,134.9,133.2,130.2,129.8,129.6,128.3,127.9,127.3,124.0,123.0,123.0,120.0,118.7,118.2,67.7,44.6.
实施例5:1H NMR(400MHz,CDCl3)δ8.03(dd,J=13.1,5.2Hz,2H),7.74–7.67(m,2H),7.46(dd,J=8.7,2.0Hz,1H),7.35–7.29(m,2H),7.23(td,J=7.7,1.8Hz,1H),7.18–7.12(m,2H),7.08(t,J=7.4Hz,1H),6.99(dd,J=8.6,0.9Hz,2H),6.88(dd,J=8.0,1.1Hz,1H),5.93(br,1H),5.63(dd,J=8.8,2.7Hz,1H),3.45(dd,J=15.5,2.8Hz,1H),3.30(dd,J=15.5,8.8Hz,1H).13C NMR(100MHz,CDCl3)δ161.8,157.4,153.0,147.2,136.5,135.6,134.9,129.7,128.7,128.2,127.6,127.3,127.2,125.1,123.9,123.0,122.3,118.7,118.1,67.7,44.6.
实施例6:1H NMR(400MHz,CDCl3)δ7.97–7.92(m,2H),7.72(dd,J=7.6,1.7Hz,1H),7.33(ddt,J=7.6,4.3,2.6Hz,3H),7.22(tt,J=5.9,2.9Hz,1H),7.15(td,J=7.5,1.1Hz,1H),7.12–6.98(m,5H),6.88(dd,J=8.0,1.2Hz,1H),5.61(dd,J=8.9,2.6Hz,1H),3.91(s,3H),3.41(dd,J=15.3,2.7Hz,1H),3.25(dd,J=15.3,8.9Hz,1H).13C NMR(100MHz,CDCl3)δ158.0,157.5,153.0,142.8,135.7,135.3,129.9,129.7,128.1,127.8,127.4,124.0,122.9,122.4,122.3,118.7,118.1,105.1,67.8,55.5,44.2.
实施例7:1H NMR(400MHz,CDCl3)δ8.05(d,J=8.4Hz,1H),7.83–7.74(m,2H),7.70(dd,J=10.1,2.4Hz,1H),7.41–7.08(m,7H),7.02(d,J=7.8Hz,2H),6.91(d,J=8.0Hz,1H),6.06(br,1H),5.66(dd,J=8.7,1.8Hz,1H),3.47(dd,J=15.4,2.8Hz,1H),3.32(dd,J=15.4,8.9Hz,1H).13C NMR(100MHz,CDCl3)δ163.2(d,J=248.7Hz),161.8,157.4,153.0,147.9(d,J=12.6Hz),136.6,135.0,129.7,129.6(d,J=9.9Hz),128.2,127.3,123.9,123.8,123.0,121.4(d,J=2.5Hz),118.7,118.1,116.6(d,J=25.3Hz),112.4(d,J=20.5Hz),67.7,44.6.
实施例8:1H NMR(400MHz,CDCl3)δ7.95(d,J=8.1Hz,2H),7.75(d,J=7.6Hz,1H),7.57–7.51(m,2H),7.33(dd,J=11.2,4.6Hz,2H),7.26–7.13(m,2H),7.12–7.06(m,2H),7.03–6.99(m,2H),6.90(d,J=8.0Hz,1H),5.68–5.61(m,1H),3.43(dd,J=15.4,2.2Hz,1H),3.27(dd,J=15.4,8.9Hz,1H),2.53(s,3H).13C NMR(100MHz,CDCl3)δ159.7,157.5,152.9,145.4,136.1,135.9,135.3,132.0,129.7,128.2,128.1,127.4,126.8,126.4,123.9,122.9,122.0,118.7,118.1,67.7,44.3,21.5.
实施例9:1H NMR(400MHz,CDCl3)δ7.96(dd,J=11.9,8.8Hz,2H),7.73(dd,J=9.3,1.6Hz,2H),7.63(dd,J=8.9,2.3Hz,1H),7.36–7.29(m,2H),7.25–7.21(m,1H),7.18–7.13(m,2H),7.09(t,J=7.4Hz,1H),7.01–6.98(m,2H),6.89(dd,J=8.0,1.0Hz,1H),5.65(dd,J=8.9,2.5Hz,1H),3.45(dd,J=15.5,2.8Hz,1H),3.30(dd,J=15.5,8.9Hz,1H).13C NMR(100MHz,CDCl3)δ161.0,157.3,153.0,145.2,135.8,134.9,131.8,130.6,130.2,129.7,128.2,127.3,127.3,126.2,123.9,123.0,123.0,118.7,118.1,67.7,44.6.
实施例10:1H NMR(400MHz,CDCl3)δ8.09(d,J=8.4Hz,1H),7.85(d,J=7.5Hz,2H),7.72(d,J=8.1Hz,1H),7.45(t,J=7.8Hz,1H),7.34(t,J=7.6Hz,2H),7.27–7.16(m,3H),7.10(t,J=7.4Hz,1H),7.02(d,J=8.0Hz,2H),6.90(d,J=7.9Hz,1H),5.71(d,J=8.5Hz,1H),3.52(d,J=16.0Hz,1H),3.36(dd,J=16.0,8.7Hz,1H).13C NMR(100MHz,CDCl3)δ161.7,157.5,152.9,142.9,137.1,135.2,132.8,129.7,129.7,128.1,128.0,127.5,126.5,126.1,123.9,122.9,122.8,118.7,118.1,67.6,43.9.
实施例11:1H NMR(400MHz,CDCl3)δ8.08(d,J=8.3Hz,2H),7.83–7.71(m,3H),7.54(t,J=7.3Hz,1H),7.43–7.40(m,2H),7.30–7.20(m,2H),7.17(d,J=8.4Hz,1H),6.93–6.86(m,3H),5.62(dd,J=8.8,2.7Hz,1H),3.43(dd,J=15.5,2.8Hz,1H),3.31(dd,J=15.5,8.8Hz,1H).13C NMR(100MHz,CDCl3)δ160.5,156.8,152.5,146.8,136.9,135.4,132.6,129.8,128.6,128.3,127.7,127.5,126.8,126.2,124.5,122.0,119.6,119.0,115.3,67.6,44.5.
实施例12:1H NMR(400MHz,CDCl3)δ8.08(d,J=8.3Hz,2H),7.83–7.71(m,3H),7.54(t,J=7.3Hz,1H),7.31–7.15(m,5H),6.91(dd,J=14.5,7.8Hz,3H),5.63(d,J=8.7Hz,1H),3.43(d,J=15.4Hz,1H),3.31(dd,J=15.3,8.9Hz,1H).13C NMR(100MHz,CDCl3)δ160.5,156.2,152.6,146.8,136.9,135.3,129.8,129.7,128.6,128.3,127.9,127.6,127.5,126.8,126.2,124.4,122.0,119.2,118.9,67.6,44.5.
实施例13:1H NMR(400MHz,CDCl3)δ8.06(d,J=8.1Hz,2H),7.78(d,J=8.0Hz,1H),7.70(d,J=7.1Hz,2H),7.51(t,J=7.3Hz,1H),7.18(t,J=7.8Hz,2H),7.10(t,J=7.3Hz,1H),6.96(d,J=8.3Hz,2H),6.87(d,J=8.0Hz,2H),6.78(d,J=8.1Hz,1H),5.70(d,J=8.7Hz,1H),3.79(s,3H),3.49(d,J=15.4Hz,1H),3.31(dd,J=15.2,9.0Hz,1H).13C NMR(100MHz,CDCl3)δ160.8,155.6,154.3,150.5,146.9,136.7,134.2,129.7,128.6,128.0,127.5,127.2,126.8,126.1,123.1,122.1,120.0,117.1,114.8,67.8,55.6,44.5.
实施例14:1H NMR(400MHz,CDCl3)δ8.07(d,J=8.4Hz,2H),7.83–7.76(m,2H),7.73(t,J=7.7Hz,1H),7.54(t,J=7.5Hz,1H),7.30–7.15(m,5H),6.96–6.88(m,3H),5.64(dd,J=8.8,2.7Hz,1H),3.44(dd,J=15.4,2.8Hz,1H),3.32(dd,J=15.4,8.8Hz,1H).13C NMR(101MHz,CDCl3)δ160.5,156.2,152.6,146.8,136.8,135.3,129.8,129.6,128.6,128.3,127.8,127.6,127.5,126.8,126.2,124.4,122.0,119.2,118.8,67.6,44.5.
实施例15:1H NMR(400MHz,CDCl3)δ8.05(d,J=8.2Hz,2H),7.78(d,J=8.0Hz,1H),7.71(t,J=7.6Hz,2H),7.51(t,J=7.3Hz,1H),7.22–7.10(m,5H),6.87(dd,J=21.9,7.6Hz,3H),5.66(d,J=8.8Hz,1H),3.47(d,J=14.2Hz,1H),3.30(dd,J=15.2,9.0Hz,1H),2.32(s,3H).13C NMR(100MHz,CDCl3)δ160.8,155.0,153.5,146.9,136.7,134.8,132.5,130.2,129.7,128.6,128.1,127.5,127.3,126.8,126.1,123.5,122.1,118.3,118.1,67.8,44.5,20.6.
实施例16:1H NMR(400MHz,CDCl3)δ8.06(t,J=6.3Hz,2H),7.78(d,J=8.0Hz,1H),7.71(t,J=8.4Hz,2H),7.52(t,J=7.3Hz,1H),7.33(d,J=7.5Hz,2H),7.21(t,J=7.4Hz,1H),7.15(dd,J=10.5,8.4Hz,2H),6.93(d,J=7.5Hz,2H),6.89(d,J=7.9Hz,1H),5.66(d,J=8.7Hz,1H),3.47(d,J=15.3Hz,1H),3.30(dd,J=15.1,9.0Hz,1H),1.32(s,9H).13C NMR(100MHz,CDCl3)δ160.8,155.0,153.4,146.9,145.9,136.8,135.0,129.7,128.7,128.1,127.5,127.3,126.8,126.5,126.1,123.6,122.1,118.4,117.8,67.8,44.6,34.3,31.5.
实施例17:1H NMR(400MHz,CDCl3)δ8.06(t,J=7.7Hz,2H),7.78(d,J=8.1Hz,1H),7.71(dd,J=11.3,4.2Hz,2H),7.52(t,J=7.2Hz,1H),7.23–7.10(m,3H),7.07(d,J=8.2Hz,1H),6.88–6.84(m,1H),6.81(d,J=2.2Hz,1H),6.76-6.73(m,1H),5.68-5.65(m,1H),3.52-3.47(m,1H),3.34-3.28(m,1H),2.23(s,6H).13C NMR(100MHz,CDCl3)δ160.8,155.2,153.6,146.9,138.2,136.8,134.8,131.3,130.6,129.7,128.6,128.0,127.5,127.2,126.8,126.1,123.4,122.1,119.7,118.1,115.7,67.9,44.5,19.9,18.9.
实施例18:1H NMR(400MHz,CDCl3)δ8.09(t,J=8.4Hz,2H),7.81(d,J=7.3Hz,2H),7.74(t,J=7.4Hz,1H),7.59-7.53(m,5H),7.46(t,J=6.8Hz,2H),7.37(d,J=6.7Hz,1H),7.29(d,J=6.7Hz,1H),7.22(dd,J=15.4,7.7Hz,2H),7.10(d,J=7.6Hz,2H),7.00(d,J=7.6Hz,1H),5.72(s,1H),3.51(d,J=15.3Hz,1H),3.39-3.33(m,1H).13C NMR(100MHz,CDCl3)δ160.7,157.1,152.9,146.9,140.4,136.8,136.0,135.3,129.7,128.7,128.6,128.4,128.2,127.5,127.0,126.8,126.1,124.1,122.0,119.0,118.3,67.8,44.6.
实施例19:1H NMR(400MHz,CDCl3)δ8.06(dd,J=17.3,8.4Hz,2H),7.81(dd,J=7.3,2.4Hz,2H),7.77–7.70(m,1H),7.61–7.51(m,3H),7.36–7.28(m,2H),7.14(d,J=8.4Hz,1H),7.02–6.96(m,3H),5.51(dd,J=8.2,3.4Hz,1H),3.43–3.26(m,2H).13CNMR(100MHz,CDCl3)δ161.5,160.2,150.8,146.8,137.0,136.1,134.1,129.9,128.7,128.5,128.1,127.6,126.8,126.3,125.8,121.9,120.4,118.7,117.4,105.8,67.5,44.5.
实施例20:1H NMR(400MHz,CDCl3)δ8.14–8.06(m,2H),7.87–7.79(m,4H),7.78–7.69(m,2H),7.54(t,J=7.5Hz,1H),7.49–7.38(m,2H),7.32–7.20(m,4H),7.15(d,J=8.4Hz,1H),6.98(d,J=7.9Hz,1H),5.74–5.67(m,1H),3.53(d,J=15.2Hz,1H),3.39(dd,J=15.1,8.8Hz,1H).13C NMR(100MHz,CDCl3)δ160.6,155.3,152.9,146.8,136.9,135.4,134.3,130.0,129.9,129.8,128.5,128.3,127.7,127.5,127.0,126.8,126.5,126.2,124.6,124.2,122.1,119.4,119.2,113.0,67.8,44.6.
按照上述方法,还可制备多种不同取代基的羟基喹啉化合物,制备过程简单、条件温和、对环境友好。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,对于本领域的普通技术人员来说,在上述说明及思路的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (5)

1.一种羟基喹啉化合物的合成方法,其特征在于,所述羟基喹啉化合物的结构如式Ⅰ所示:
其中R1为氢、卤素、C1~4烷基、C1~4卤代烷基、C1~4烷氧基或C1~4卤代烷氧基;R2为氢、苯基、萘基或取代苯基;所述取代苯基中的取代基为卤素、C1~4烷基、C1~4卤代烷基、C1~4烷氧基、C1~4卤代烷氧基、氰基或苯基中的一种或多种;
其制备过程为:以R1取代2-甲基喹啉化合物和R2-O取代的苯甲醛化合物为原料,以酸为催化剂,以水作溶剂,加热反应,即可生成式Ⅰ所示羟基喹啉化合物;所述R1取代2-甲基喹啉化合物的结构如式Ⅱ所示:
所述R2-O取代的苯甲醛化合物的结构如式Ⅲ所示:
所述酸为冰醋酸、盐酸、特戊酸或硝酸;
所述加热反应的温度为80℃~120℃。
2.根据权利要求1所述羟基喹啉化合物的合成方法,其特征在于,所述R1为氢、卤素、甲基、乙基、正丙基、异丙基、三氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、三氟甲氧基或三氟乙氧基;R2为氢、苯基、萘基或取代苯基;所述取代苯基中的取代基为卤素、甲基、乙基、正丙基、异丙基、三氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、三氟甲氧基、三氟乙氧基、氰基或苯基中的一种或多种。
3.根据权利要求1所述羟基喹啉化合物的合成方法,其特征在于,所述R1取代2-甲基喹啉化合物和R2-O取代的苯甲醛化合物的摩尔比为1~2:1;
所述R1取代2-甲基喹啉化合物与酸的摩尔比为1:0.1~0.3。
4.根据权利要求1至3任一所述羟基喹啉化合物的合成方法,其特征在于,待反应结束后,将反应液采用乙酸乙酯进行萃取,收集有机相并浓缩得到粗品;然后将粗品进行柱层析分离,即可得到式Ⅰ所示羟基喹啉化合物。
5.根据权利要求4所述羟基喹啉化合物的合成方法,其特征在于,所述柱层析的流动相为石油醚与乙酸乙酯,以体积比为(5~30):1进行梯度洗脱。
CN201910790438.7A 2019-08-26 2019-08-26 一种羟基喹啉化合物的绿色合成方法 Active CN110615763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910790438.7A CN110615763B (zh) 2019-08-26 2019-08-26 一种羟基喹啉化合物的绿色合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910790438.7A CN110615763B (zh) 2019-08-26 2019-08-26 一种羟基喹啉化合物的绿色合成方法

Publications (2)

Publication Number Publication Date
CN110615763A CN110615763A (zh) 2019-12-27
CN110615763B true CN110615763B (zh) 2023-04-07

Family

ID=68922001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910790438.7A Active CN110615763B (zh) 2019-08-26 2019-08-26 一种羟基喹啉化合物的绿色合成方法

Country Status (1)

Country Link
CN (1) CN110615763B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824585A (zh) * 2019-03-29 2019-05-31 马鞍山市泰博化工科技有限公司 一种酸性离子液体催化制备1-芳基-2-喹啉基乙醇化合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824585A (zh) * 2019-03-29 2019-05-31 马鞍山市泰博化工科技有限公司 一种酸性离子液体催化制备1-芳基-2-喹啉基乙醇化合物的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"高温水中2-甲基喹啉及2-甲基吡啶与芳醛的反应研究";肖尚友 等;《有机化学》;20170418;第37卷;第2159-2164页 *
Fang-Fang Wang等."Brønsted acid promoted benzylic C–H bond functionalization of azaarenes:nucleophilic addition to aldehydes".《Organic & Biomolecular Chemistry》.2012,第10卷第8605-8608页,支持信息第S2页倒数第1段. *

Also Published As

Publication number Publication date
CN110615763A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN111675662B (zh) 一种2-三氟甲基取代的喹唑啉酮化合物的制备方法
CN107200705B (zh) 一种3-硝基-2-吲哚酮衍生物的制备方法
CN114195711B (zh) 一种喹啉-4(1h)-酮化合物的制备方法
CN108912044B (zh) 一种铜催化烯基叠氮合成多取代吡啶的方法
CN110615763B (zh) 一种羟基喹啉化合物的绿色合成方法
CN110483387B (zh) 一种一锅法合成烟酰亚胺酰胺衍生物的方法
CN111675653A (zh) 一种4-氨基喹啉类化合物的杂质制备方法及其用途
CN103694182B (zh) 一种喹喔啉类化合物的制备方法
CN101327450B (zh) 氨基酸离子液体支载的Salen金属催化剂及制备方法
CN107915687B (zh) 一种多取代吩嗪类衍生物及其氧化物的高效制备方法
CN103113174B (zh) 一种酚类化合物的制备方法
CN112094220B (zh) 一种3-砜甲基-1h-吲哚化合物的绿色合成方法
CN112851652B (zh) 一种2-(取代氧杂蒽基)苯并呋喃类化合物的催化氧化合成方法
CN114989063A (zh) 一种β-卤代吡咯类化合物的合成方法
CN111662290A (zh) 一种苯并吲哚嗪类化合物及其合成方法
CN109265409B (zh) 一种2-取代的苯并噁唑和2-取代的苯并噻唑及其衍生物的合成方法
CN115197124B (zh) 碘化铵催化下基于α,β-不饱和肟酯合成多取代吡啶衍生物的方法
CN114621220B (zh) 吲哚并[3,2-c]喹啉类化合物及其合成方法
CN111217847A (zh) 一种硫代硅烷配体及其制备方法和在芳基硼化催化反应中的应用
CN108707138A (zh) 一种二芳基喹啉衍生物的制备方法
CN111848430B (zh) 2-([1,1’-联苯]-4-基)-2-甘氨酸类化合物的合成方法
CN115611860B (zh) 合成尼拉帕尼的方法
RU2778789C1 (ru) Способ получения s-никотина
CN114773385B (zh) 一种含双膦邻位碳硼烷二价铜配合物及其制备与应用
CN115286609B (zh) 一种2-三氟甲基取代的二氢苯并色烯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant