CN110612580A - 稀土类烧结磁体和用于稀土类烧结磁体的稀土类烧结磁体用烧结体、及可用于制造它们的磁场施加装置 - Google Patents

稀土类烧结磁体和用于稀土类烧结磁体的稀土类烧结磁体用烧结体、及可用于制造它们的磁场施加装置 Download PDF

Info

Publication number
CN110612580A
CN110612580A CN201880030265.2A CN201880030265A CN110612580A CN 110612580 A CN110612580 A CN 110612580A CN 201880030265 A CN201880030265 A CN 201880030265A CN 110612580 A CN110612580 A CN 110612580A
Authority
CN
China
Prior art keywords
rare earth
width direction
earth sintered
sintered magnet
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880030265.2A
Other languages
English (en)
Other versions
CN110612580B (zh
Inventor
藤川宪一
山本贵士
齐藤正一朗
尾崎孝志
久米克也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of CN110612580A publication Critical patent/CN110612580A/zh
Application granted granted Critical
Publication of CN110612580B publication Critical patent/CN110612580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种不增大磁体单元的大小、重量、而可以仅在厚度方向上的一面产生具有在实际使用上有用的表面磁通密度的磁束的稀土类烧结磁体等。一种稀土类烧结磁体,其具有将含有稀土类物质、且各自具有易磁化轴的多个磁体材料粒子一体烧结而成的结构。其具备在厚度方向上对置的第1面和第2面,在与宽度方向及厚度方向平行的平面内,以在从所述宽度方向的两端部的各个端部朝向所述宽度方向的中央部的区域、易磁化轴的取向方向逐渐变化的方式,对磁体材料粒子进行磁化。第1面的最大表面磁通密度与第2面的最大表面磁通密度满足(D1/D2)≥4的关系。易磁化轴的取向方向可以在宽度方向的两端部的各个端部与宽度方向的中央部相差90°±5°、或180°±5°。

Description

稀土类烧结磁体和用于稀土类烧结磁体的稀土类烧结磁体用 烧结体、及可用于制造它们的磁场施加装置
技术领域
本发明涉及稀土类烧结磁体和用于稀土类烧结磁体的稀土类烧结磁体用烧结体、及可用于制造它们的磁场施加装置。
背景技术
在半导体、液晶制造用的工业用马达、电动剃刀等多种装置中使用线性电机。例如,像日本特开2004-297843中说明的那样,在液晶显示器的制造工序中,有时通过搭载图像处理装置等的工作台进行玻璃基板的检查,作为该工作台的驱动装置,使用可以高精度且高速进行处理的线性电机。这种线性电机具有定子和转子,该定子具备包含隔着空隙相对地配置的多个永久磁体的磁体单元,该转子在磁空隙内包含3相线圈,通过在3相线圈中流动驱动电流,从而得到用于驱动转子的驱动力。
在这样的线性电机中,为了得到充分的驱动力,磁体必须具有充分的磁力,换言之,由磁体产生的磁束的表面磁通密度必须充分大,其结果,磁体需要某种程度的容积、厚度。另一方面,为了以高速驱动工作台,需要降低磁体单元的大小、重量,并不希望磁体的容积、厚度变大。另外,为了减少由连接朝向转子侧的厚度方向上的磁体的一面(主面)、与其对置的另一面的磁路带来的漏磁通,磁体单元通常设置有磁轭,但存在因这些磁轭导致磁体单元的大小、重量增大的担忧。此外,例如在上述的线性电机中,只要在配置有转子的一面产生磁束即可,在另一面产生的磁束基本上是不需要的,反而由于会成为由磁路带来的漏磁通的主要原因等而不优选。
现有技术文献
专利文献
专利文献1:日本特开2004-297843号公报
发明内容
发明所要解决的问题
本申请发明为了解决这样的现有技术中的问题而成,其目的在于,提供可以仅在厚度方向上的一面、或主要在厚度方向上的一面产生具有在实际使用上有用的表面磁通密度的磁束、而不增大磁体单元的大小、重量的稀土类烧结磁体和用于稀土类烧结磁体的稀土类烧结磁体用烧结体。此外,本发明的目的在于,提供可用于制造它们的磁场施加装置。
解决问题的方法
为了解决上述的问题,本发明的一个方式的稀土类烧结磁体具有将含有稀土类物质、且各自具有易磁化轴的多个磁体材料粒子一体烧结而成的构成,其中,该稀土类烧结磁体为具有宽度方向、厚度方向和长度方向的立体形状,且具备在厚度方向上对置的第1面和第2面,在与上述宽度方向及上述厚度方向平行的平面内,以在从上述宽度方向的两端部的各个端部朝向上述宽度方向的中央部的区域、易磁化轴的取向方向逐渐变化的方式,使上述磁体材料粒子进行取向,上述第1面的最大表面磁通密度与上述第2面的最大表面磁通密度满足(D1/D2)≥4的关系。
根据该方式的稀土类烧结磁体,可提供一种稀土类烧结磁体,其可以仅在厚度方向上的磁体的第1面(一面)、或主要在厚度方向上的一面产生具有在实际使用上有用的表面磁通密度的磁束,因此,不需要在第2面(另一面)设置大量磁体材料,而且不需要为了捕捉从磁路中漏出的漏磁通而设置磁轭、或者仅设置少量的磁轭即可,其结果,可提供小型、轻质化的稀土类烧结磁体。
在上述方式的稀土类烧结磁体中,上述易磁化轴的取向方向可以在上述宽度方向的两端部的各个端部与上述宽度方向的中央部相差90°±5°、或180°±5°。
另外,在上述方式的稀土类烧结磁体中,上述易磁化轴的取向方向可以在上述宽度方向的两端部的各个端部与上述宽度方向的中央部相差90°±5°,且在上述第1面仅产生N极或S极。
此外,在上述方式的稀土类烧结磁体中,上述易磁化轴的取向方向可以在上述宽度方向的两端部的各个端部与上述宽度方向的中央部相差180°±5°,在上述第1面的上述宽度方向上的一侧产生N极或S极,并且在上述第1面的上述宽度方向上的另一侧产生与上述一侧相反极性的S极或N极。
在上述方式的稀土类烧结磁体中,上述第1面的最大表面磁通密度优选为0.25T以上。
通过将第1面的最大表面磁通密度设定为大的值,可以设为对线性电机的驱动等也有用的表面磁通密度。
另外,在上述方式的稀土类烧结磁体中,上述第2面的最大表面磁通密度优选为0.15T以下。
通过将第2面的最大表面磁通密度设定为小的值,可减少漏磁通。
在上述方式的稀土类烧结磁体中,用上述第1面的最大表面磁通密度除以上述第1面与上述第2面之间的厚度方向上的厚度尺寸而得到的每单位厚度的最大表面磁通密度优选为0.06T/mm以上。
由此,可以高效地提高最大表面磁通密度。
在上述方式的稀土类烧结磁体中,在上述长度方向上的多个位置得到上述宽度方向上的表面磁通密度分布,将在上述多个位置得到的上述表面磁通密度分布彼此相互比较,由此得到的轴向对称性优选为0.7以下。
通过作出优异的对称性,可以容易地进行线性电机等的控制,可以抑制推力变化。
在上述方式的稀土类烧结磁体中,上述厚度方向上的厚度尺寸优选为10mm以下。
厚度尺寸过大时,不能通过目前可利用的磁场施加装置对稀土类烧结磁体用烧结体施加充分的磁场,因此,为了将烧结体充分磁化,得到期望的表面磁通密度,优选将厚度方向上的厚度尺寸限制为一定的大小。
在上述方式的稀土类烧结磁体中,上述平面的上述宽度方向上的宽度尺寸优选为40mm以下。
宽度尺寸过大时,不能通过目前可利用的磁场施加装置对稀土类烧结磁体用烧结体施加充分的磁场,因此,为了将烧结体充分磁化,得到期望的表面磁通密度,优选将宽度方向上的宽度尺寸限制为一定的大小。
上述方式的稀土类烧结磁体可以具有长方体形状。
为了解决上述的问题,本发明的一个方式的稀土类烧结磁体用烧结体具有将含有稀土类物质、且各自具有易磁化轴的多个磁体材料粒子一体烧结而成的构成,该稀土类烧结磁体用烧结为具有宽度方向、厚度方向和长度方向的立体形状,且具备在厚度方向上对置的第1面和第2面,在与上述宽度方向及上述厚度方向平行的平面内,以在从上述宽度方向的两端部的各个端部朝向上述宽度方向的中央部的区域、易磁化轴的取向方向逐渐变化的方式,使上述磁体材料粒子进行取向,以使具有在与该第1面交叉的方向上取向的易磁化轴的磁体材料粒子在上述第1面的最大表面磁通密度、与具有在与该第2面交叉的方向上取向的易磁化轴的磁体材料粒子在上述第2面的最大表面磁通密度满足(D1’/D2’)≥4的关系的方式,使磁体材料粒子进行取向。
根据该方式的稀土类烧结磁体用烧结体,可以仅在厚度方向上的磁体的第1面(一面)、或主要在厚度方向上的一面产生具有在实际使用上有用的表面磁通密度的磁束,因此,不需要在第2面(另一面)设置大量磁体材料,而且,不需要为了捕捉从磁路中漏出的漏磁通而设置磁轭、或者仅设置少量的磁轭即可,其结果,可提供小型、轻质化的用于稀土类烧结磁体的稀土类烧结磁体用烧结体。
在上述方式的稀土类烧结磁体用烧结体中,上述易磁化轴的取向方向可以在上述宽度方向的两端部的各个端部与上述宽度方向的中央部相差90°±5°、或180°±5°。
另外,在上述方式的稀土类烧结磁体用烧结体中,上述易磁化轴的取向方向可以在上述宽度方向的两端部的各个端部与上述宽度方向的中央部相差90°±5°,且在上述第1面仅产生N极或S极。
此外,在上述方式的稀土类烧结磁体用烧结体中,上述易磁化轴的取向方向可以在上述宽度方向的两端部的各个端部与上述宽度方向的中央部相差180°±5°,在上述第1面的上述宽度方向上的一侧产生N极或S极,并且在上述第1面的上述宽度方向上的另一侧产生与上述一侧相反极性的S极或N极。
在上述方式的稀土类烧结磁体用烧结体中,上述厚度方向上的厚度尺寸优选为10mm以下。
厚度尺寸过大时,不能通过目前可利用的磁场施加装置对稀土类烧结磁体用烧结体施加充分的磁场,因此,为了将烧结体充分磁化,得到期望的磁通密度,优选将厚度方向上的厚度尺寸限制为一定的大小。
在上述方式的稀土类烧结磁体用烧结体中,上述平面的上述宽度方向上的宽度尺寸优选为40mm以下。
宽度尺寸过大时,磁体不能通过目前可利用的磁场施加装置对稀土类烧结磁体用烧结体施加充分的磁场,因此,为了将烧结体充分磁化,得到期望的表面磁通密度,优选将宽度方向上的宽度尺寸限制为一定的大小。
为了解决上述的问题,本发明的一个方式的磁场施加装置具备在宽度方向上隔开间隔设置的一对磁轭脚及形成于该一对磁轭脚之间的凹部的磁性体磁轭,在与上述一对磁轭脚的各上表面的上述凹部相邻的一侧,形成有给定宽度的工件载置面,在上述一对磁轭脚之间形成有跨越上述磁性体磁轭的上述凹部的工件载置部,对载置于上述工件载置部的工件形成磁场,该磁场从上述一对磁轭脚中的一个经过该一个磁轭脚的上表面的相当于上述工件载置面的部分,在宽度方向上通过载置于上述工件载置部的工件,经过相当于上述一对磁轭脚的另一个的上表面的上述工件载置面的部分,到达上述另一个磁轭脚,由此对工件施加磁场。
在上述方式的磁场施加装置中,可以进一步具备配置于上述一对磁轭脚的上表面上的一对非磁性体磁轭,以在与上述磁性体磁轭的上述凹部相邻的一侧留有给定宽度的工件载置面的方式,将上述一对非磁性体磁轭的各个非磁性体磁轭在上述一对磁轭脚的各上表面上相对于对应的磁轭脚进行定位,在上述一对非磁性体磁轭之间形成跨越上述磁性体磁轭的上述凹部的工件载置部,对载置于上述工件载置部的工件形成磁场,该磁场从上述一对磁轭脚中的一个经过该一个磁轭脚的上表面的相当于上述工件载置面的部分,在宽度方向上通过载置于上述工件载置部的工件,经过上述一对磁轭脚的另一个的上表面的相当于上述工件载置面的部分,到达上述另一个磁轭脚,
在上述方式的磁场施加装置中,上述一对磁轭脚具有与该凹部一起向与上述凹部的宽度方向和厚度方向这两个方向正交的长度方向延伸的部分,上述要形成的磁场利用沿着上述长度方向配置于上述凹部的第1导体、在上述宽度方向上相对于上述一对磁轭脚中的一个在与上述凹部相反的一侧沿着上述长度方向配置的第2导体、以及在上述宽度方向上相对于上述一对磁轭脚中的另一个在与上述凹部相反的一侧沿着上述长度方向配置的第3导体而形成。
另外,在上述方式的磁场施加装置中,在上述第1导体中流动的电流的朝向、与在上述第2导体及第3导体中流动的电流的朝向成为相互相反的方向。
此外,优选在上述方式的磁场施加装置中,上述第1导体由在上述宽度方向上分离的一对导体构成,配置于在上述宽度方向上离上述一对磁轭脚中的一个近的一侧的上述一对导体中的一个导体与上述第2导体连结,配置于在上述宽度方向上离上述一对磁轭脚中的另一个近的一侧的上述一对导体中的另一个导体与上述第3导体连结。
在上述方式的磁场施加装置中,上述磁性体磁轭可以进一步具备:在宽度方向上相互隔开间隔设置于上述一对磁轭脚之间的多个附加磁轭脚;和形成于上述一对磁轭脚与上述多个附加磁轭脚之间、及上述多个附加磁轭脚彼此之间的凹部,相邻的上述一对磁轭脚及上述多个附加磁轭脚之间、在上述宽度方向上交替地形成第一磁场和第二磁场,该第一磁场从上述一磁轭脚的上表面,向与上述多个附加磁轭脚中的一磁轭脚相邻的上述一对磁轭脚中的一个磁轭脚的上表面、和/或向与上述一磁轭脚相邻的上述多个附加磁轭脚中的任意另一磁轭脚的上表面,在宽度方向上通过载置于上述工件载置部的工件,该第二磁场从与上述多个附加磁轭脚中的一磁轭脚相邻的上述一对磁轭脚中的一个磁轭脚的上表面、和/或与上述一磁轭脚相邻的上述多个附加磁轭脚中的任意另一磁轭脚的上表面,向上述一磁轭脚的上表面,在宽度方向上通过载置于上述工件载置部的工件。
另外,在上述方式的磁场施加装置中,上述一对磁轭脚及上述多个附加磁轭脚可以具有与该凹部一起向与上述凹部的宽度方向和厚度方向这两个方向正交的长度方向延伸的部分,上述第一磁场及上述第二磁场利用多个导体而形成,上述多个导体在上述宽度方向上以夹持上述多个附加磁轭脚的各个附加磁轭脚的方式配置,且沿着上述长度方向配置于上述凹部。
此外,在上述方式的磁场施加装置中,对于上述多个附加磁轭脚的各个附加磁轭脚,在配置于上述宽度方向上的一侧的导体中流动的电流的朝向、与在配置于上述宽度方向上的另一侧的导体中流动的电流的朝向可以成为相互相反的方向。
此外,在上述方式的磁场施加装置中,对于上述多个附加磁轭脚的各个附加磁轭脚,优选配置于上述宽度方向上的一侧的导体与配置于上述宽度方向上的另一侧的导体相互连结。
发明的效果
根据本申请发明,可以提供可以仅在厚度方向上的一面、或主要在厚度方向上的一面产生具有在实际使用上有用的表面磁通密度的磁束、而不增大磁体单元的大小、重量的稀土类烧结磁体、和用于稀土类烧结磁体的稀土类烧结磁体用烧结体。此外,可以提供可用于制造它们的磁场施加装置。
附图说明
图1是示出本发明的一个实施方式的一极极各向异性稀土类烧结磁体的立体图。
图2是示出本发明的一个实施方式的二极极各向异性稀土类烧结磁体的立体图。
图3是示出本发明的一个实施方式的一个方式的三极极各向异性稀土类烧结磁体的立体图。
图4是示出本发明的一个实施方式的其它方式的三极极各向异性稀土类烧结磁体的立体图。
图5是示出通过图1中示出的一极极各向异性稀土类烧结磁体得到的表面磁通密度分布的一例的图。
图6是示出图1中示出的稀土类烧结磁体的使用例的图。
图7是示出通过图2中示出的二极极各向异性稀土类烧结磁体得到的表面磁通密度分布的一例的图。
图8是示出图2中示出的稀土类烧结磁体的使用例的图。
图9是示出通过图3中示出的一个方式的三极极各向异性稀土类烧结磁体得到的表面磁通密度分布的一例的图。
图10是示出通过图4中示出的其它方式的三极极各向异性稀土类烧结磁体得到的表面磁通密度分布的一例的图。
图11是示出取向角及取向轴角度的示意图。
图12是示出求出取向角不均角度的顺序的图表。
图13示出的基于EBSD解析的取向角的分布的表示,(a)示出的是表示稀土类烧结磁体的轴的方向的立体图,(b)示出的是通过EBSD解析而得到的该磁体的中央部与两端部极点图的例子,(c)示出的是沿着(a)中的A2轴的磁体截面的取向轴角度。
图14是示出稀土类磁体形成用材料的生成工序的一部分的图。
图15是示出预烧处理中的优选升温速度的图表。
图16是在烧结工序中进行的热处理的示意图。
图17是可用于制造图2中示出的二极极各向异性稀土类烧结磁体的磁场施加装置的端部的立体图。
图18是图17中示出的磁场施加装置的剖面图。
图19是示出可用于产生脉冲磁场的电路的一例的图。
图20是示出图17中示出的磁场施加装置的使用例的图。
图21是可用于制造图4中示出的三极极各向异性稀土类烧结磁体的磁场施加装置的剖面图。
图22是示出图21中示出的磁场施加装置的使用例的图。
图23是可用于制造图1中示出的一极极各向异性稀土类烧结磁体的磁场施加装置的剖面图。
图24是示出用于求出轴向对称性的表面磁通密度分布的图。
图25是示出为了求出轴向对称性而需要测定表面磁通密度的测定位置的图。
附图标记说明
11 一面(第1面)
12 另一面(第2面)
13 侧面
14 端面(平面)
21 一面(第1面)
21a 一侧
21b 另一侧
22 另一面(第2面)
23 侧面
24 端面(平面)
具体实施方式
参照附图,对本发明的优选实施方式进行说明。以下,为了方便说明,仅示出优选实施方式,当然,本发明不限定于这些优选实施方式。
[1.稀土类烧结磁体]
图1至图4中,以概念图的方式示出本发明的一个实施方式的稀土类烧结磁体1至4的各个构成方式。
在这些稀土类烧结磁体中,在与宽度方向“α”及厚度方向“β”平行的平坦的端面、即在图1的稀土类烧结磁体1的端面14a、图2的稀土类烧结磁体2的端面24a、图3的稀土类烧结磁体3的端面34a、图4的稀土类烧结磁体4的端面44a分别示出的多个箭头示意性地示出构成这些稀土类烧结磁体的磁体材料粒子的易磁化轴的取向轴方向(易磁化轴的取向方向)。该方向可以相当于磁体材料粒子的磁化方向,换言之,可以相当于与稀土类烧结磁体的磁化的方向相同或大致对应的方向。虽然没有特别图示,但可以认为在对置侧的端面、即端面14b等也形成相同方向的取向轴。
图1是示出一极极各向异性稀土类烧结磁体1的立体图,进一步换言之,该稀土类烧结磁体1仅在厚度方向“β”上的一面11、或主要在厚度方向上的一面可产生具有在实际使用上有用的表面磁通密度的磁束,且在该一面11实质上仅具有N极或S极中的任一极性。
特别地,图1(a)示出在一面11实质上仅产生N极的稀土类烧结磁体1A,另外,图1(b)示出在一面11实质上仅产生S极的稀土类烧结磁体1B。可以认为这些稀土类烧结磁体1A与稀土类烧结磁体1B之间的实质区别仅在于,在面11发挥的相反极性,其它方面实质上相同。
图2是示出二极极各向异性稀土类烧结磁体2的立体图,进一步换言之,该稀土类烧结磁体2仅在厚度方向“β”上的一面21、或主要在厚度方向上的一面可产生具有在实际使用上有用的表面磁通密度的磁束,且在该一面21实质上各具有一个N极及S极的极性。
特别地,图2(a)示出从位于一面21中的宽度方向“α”上的中央部的垂直面23c观察时、在一侧21a产生N极、且在另一侧21b产生S极的稀土类烧结磁体2A,另外,图2(b)示出从位于一面21中的宽度方向“α”上的中央部的垂直面23c观察时、在一侧21a产生S极、且在另一侧21b产生N极的稀土类烧结磁体2B。可以认为这些稀土类烧结磁体2A与稀土类烧结磁体2B之间的实质区别仅在于,在面21发挥的极性为相反方向,其它方面实质上相同。
图3、图4是示出三极极各向异性稀土类烧结磁体3、4的立体图,进一步换言之,该稀土类烧结磁体3、4仅在厚度方向“β”上的一面31、41、或主要在厚度方向上的一面可产生具有在实际使用上有用的表面磁通密度的磁束,且在该一面31、41实质上依次具有“N极、S极、N极”或“S极、N极、S极”。
图3的稀土类烧结磁体3在其一面31中的宽度方向“α”上的中央部产生S极,且从位于中央部的垂直面33c观察时,在一侧31a及另一侧31b分别产生N极。另一方面,图4的稀土类烧结磁体4在其一面41中的宽度方向“α”上的中央部产生N极,且从位于中央部的垂直面43c观察时,在一侧41a及另一侧41b分别产生S极。需要说明的是,虽然没有特别图示,如但图1(a)、(b)、图2(a)、(b)所示,也可以使磁化的方向相反,制成在面31、41发挥的相反极性方向的磁体。
另外,图3中示出的稀土类烧结磁体3可以视为将图1中示出的稀土类烧结磁体1A与稀土类烧结磁体1B在它们的侧面相互结合而成的烧结磁体,进一步换言之,可以视为具有与图3中示出的结构实质上相同的构成。同样,图4中示出的稀土类烧结磁体4可以设为将图2中示出的稀土类烧结磁体2A与稀土类烧结磁体2B在它们的侧面相互结合而成的烧结磁体,进一步换言之,可以视为具有与图6中示出的结构的一部分实质上相同的构成。由此,根据图3、图4的稀土类烧结磁体3、4,不用专门进行,就可以得到结合了稀土类烧结磁体1、稀土类烧结磁体2的形状的磁体。
图1至图4中示出的稀土类烧结磁体1至4均包含具有相互正交的宽度方向(图示箭头“α”方向)、厚度方向(图示箭头“β”方向)、及长度方向(图示箭头“γ”方向)的立体形状。如图1至图4所示,它们例如可以具有长方体形状。但并不必须是长方体形状,只要包含可规定宽度方向、厚度方向、及长度方向的立体形状即可。由此,例如,宽度方向及厚度方向上的面可以为弧状、梯形。需要说明的是,宽度方向、厚度方向、及长度方向的术语用于规定易磁化轴的取向方向、可产生具有在实际使用上有用的表面磁通密度的磁束的面(主面)及与其对置的面,仅出于方便而使用,并不规定例如它们之间的长度关系。
稀土类烧结磁体1至4的宽度方向“α”上的宽度尺寸“W”在符合实际使用的范围内优选小的情况,如果考虑目前可利用的磁场施加装置的性能,则认为必须为10mm以上且40mm以下,优选为30mm以下,更优选为20mm以下,进一步优选为10mm以下。宽度尺寸“W”过小或过大时,无法利用目前可利用的磁场施加装置对稀土类烧结磁体用烧结体施加充分的磁场,因此,为了将烧结体充分磁化、得到期望的表面磁通密度,优选将宽度方向上的宽度尺寸限制为一定的大小。
厚度方向“β”上的厚度尺寸“t”在符合实际使用的范围内优选小的情况。通过减小厚度尺寸,可以减小磁体单元的大小、重量。过小时,不能产生充分的表面磁通密度,因此,必须至少为1mm以上。另一方面,厚度尺寸过大时,不能对稀土类烧结磁体用烧结体施加充分的磁场,因此,如果考虑目前可利用的磁场施加装置的性能,为了将烧结体充分磁化,认为必须为12mm以下,优选为10mm以下,更优选为8mm以下,更优选为6mm以下,进一步优选为4mm以下。另外,如后文所述,厚度尺寸过大时,不能高效地提高最大表面磁通密度,因此,从将最大表面磁通密度设为期望值、并高效地提高最大表面磁通密度的观点考虑,也优选将厚度方向上的厚度尺寸限制为一定的大小。
关于长度方向“γ”上的长度尺寸“K”,可以比较自由地确定,但如果考虑目前可利用的磁场施加装置的性能,优选为5mm~100mm,更优选为5mm~50mm,进一步优选为5mm~40mm。
<一极极各向异性稀土类烧结磁体>
图5中示出通过图1中示出的一极极各向异性稀土类烧结磁体1得到的表面磁通密度分布的一例。分别地,横轴示出离位于稀土类烧结磁体1的宽度方向”α”上的中央部的垂直面13c的距离(mm),纵轴示出该位置的表面磁通密度(mT)。图中,实线表示在从一面11向与另一面12相反的方向在厚度方向“β”上仅分开给定距离的位置、例如仅分开1mm的位置测定的表面磁通密度分布,另一方面,虚线表示在从另一面12向与一面11相反的方向在厚度方向“β”上仅分开给定距离的位置、例如仅分开1mm的位置测定的表面磁通密度分布。
通过调整易磁化轴的取向方向等,从而设定表面磁通密度分布,此处,使其成为大致左右对称的形状。
根据图4可明确,例如,图1(a)中示出的稀土类烧结磁体1A在一面11中的宽度方向”α”上的中央部(13c)产生给定的极性(此处为N极)的具有最大的表面磁通密度(以下称为最大表面磁通密度)D1的磁束,并且在位于宽度方向“α”上的两端部的侧面13a、13b附近产生相反极性(此处为S极)的具有比较大的表面磁通密度D3a、D3b的磁束。另一方面,在另一面12的比宽度方向”α”上的中央部(13c)更靠近侧面13a、13b的位置产生S极的具有小的最大表面磁通密度D2a、D2b的磁束,并且在进一步靠近侧面13a、13b的位置产生S极的具有比较大的表面磁通密度D4a、D4b的磁束。
由此可明确,稀土类烧结磁体1仅在厚度方向“β”上的一面11、或主要在厚度方向上的一面、此处特别地在宽度方向”α”上的中央部(13c)附近产生具有在实际使用上有用的表面磁通密度的磁束。
如图6所示,利用在侧面13a、13b产生的磁力,可以使多个稀土类烧结磁体1A、1B在它们的侧面13a、13b彼此相互对接的状态下交替地排列,而实质上不受到磁力的排斥。由此,可以容易地构成N极和S极在一面11交替排列的磁体排列。
<二极极各向异性稀土类烧结磁体>
图7中示出通过图2中示出的二极极各向异性稀土类烧结磁体2得到的表面磁通密度分布的一例。此处,表面磁通密度的测定通过与图5同样的方法进行。通过调整易磁化轴的取向方向等,设定表面磁通密度分布,此处,使其成为大致左右对称的形状。
例如,对于图2(a)中示出的稀土类烧结磁体2A而言,在一面21的宽度方向”α”上的中央部(23c),表面磁通密度几乎为0,在其一面21的一侧21a、靠近宽度方向“α”上的一侧面23a的位置,产生给定的极性(此处为N极)的、具有最大表面磁束D1a的磁束,并且在该一面21的另一侧21b、靠近宽度方向“α”上的另一侧面23b的位置,产生与一侧21a相反极性、即S极的具有最大表面磁通密度D1b的磁束。另一方面,在另一面22的与一面21在宽度方向“α”上同样的位置,产生与一面21相反极性的具有最大表面磁通密度D2a、D2b的磁束,但这些最大表面磁通密度D2a、D2b与最大表面磁通密度D1a、D1b相比非常小,不会发生成为问题的漏磁通。
由此可明确,稀土类烧结磁体2仅在厚度方向“β”上的一面21、或主要在厚度方向上的一面,此处特别地在比宽度方向”α”上的中央部(23c)更靠近一侧面23a或另一侧面23b的位置产生具有在实际使用上有用的表面磁通密度的磁束。
需要说明的是,在位于宽度方向“α”上的两端部的侧面23a、23b产生的磁力相互产生一些排斥,但其排斥力弱,因此,如图8所示,可以使多个稀土类烧结磁体2A、2B在它们的侧面23a、23b彼此相互对接的状态下交替地排列。由此,可构成N极和S极在一面21交替地排列的磁体排列。
<三极极各向异性稀土类烧结磁体>
图9、图10中分别示出通过图3、图4中示出的三极极各向异性稀土类烧结磁体3、4得到的表面磁通密度分布的一例。此处,表面磁通密度的测定通过与图5同样的方法进行。通过调整易磁化轴的取向方向等,设定表面磁通密度分布,此处,使其成为大致左右对称的形状。
根据图9可明确,例如,对于图3中示出的稀土类烧结磁体3而言,在其一面31中的宽度方向”α”上的中央部(33c)产生给定的极性(此处为S极)的具有最大表面磁通密度D1c的磁束,并且在该一面31的一侧31a、靠近宽度方向“α”上的一侧面33a的位置产生给定的极性(此处为N极)的具有最大表面磁束D1a的磁束,并且在该一面31的另一侧31b、靠近宽度方向“α”上的另一侧面33b的位置产生与一侧31a相同极性、即N极的、具有最大表面磁通密度D1b的磁束。另一方面,在另一面32的与一面31在宽度方向“α”上同样的位置产生与一面相同极性的具有最大表面磁通密度D2a、D2b(此处是大致为0的值)的磁束,但这些最大表面磁通密度D2a、D2b与最大表面磁通密度D1a、D1b相比非常小,不会发生成为问题的漏磁通。
另一方面,根据图10可明确,对于图4的稀土类烧结磁体4而言,例如,在其一面41产生与图3中示出的稀土类烧结磁体3同样的磁束,另一方面,在另一面42的与一面41在宽度方向“α”上同样的位置产生与一面41相反极性的具有最大表面磁通密度D2a、D2b的磁束。
由此可明确,稀土类烧结磁体3、4仅在厚度方向“β”上的一面31、41、或主要在厚度方向上的一面,此处特别是在宽度方向”α”上的中央部(33c、43c)、和比宽度方向”α”上的中央部(33c、43c)更靠近一侧面33a、43a或另一侧面33b、43b的位置产生具有在实际使用上有用的表面磁通密度的磁束。
通过与图6、图8中示出的方法同样的方法,也可以使图3、图4中示出的稀土类烧结磁体3、4在侧面33a、33b彼此、或者侧面43a、43b彼此相互对接的状态下交替地排列。由此,可以构成N极和S极在一面31、41交替地排列的磁体排列。
这样一来,图1至图4中示出的稀土类烧结磁体1至4均仅在厚度方向“β”上的一面、或主要在厚度方向上的一面产生具有在实际使用上有用的表面磁通密度的磁束,因此,不需要在另一面设置大量磁体材料,而且不需要为了捕捉从磁路漏出的漏磁通而设置磁轭,或者可以仅设置少量磁轭即可,其结果,这些稀土类烧结磁体1至4成为小型、轻质化的稀土类烧结磁体。
[2.稀土类烧结磁体用烧结体]
图1至图4中示出的稀土类烧结磁体1至4通过对稀土类烧结磁体1至4用的烧结体(以下称为“稀土类烧结磁体用烧结体”)进行磁化而得到。磁化处理不对稀土类烧结磁体用烧结体的形状及尺寸带来实质性的变化。因此,稀土类烧结磁体用烧结体与稀土类烧结磁体1至4同样,包含具有宽度方向(图示箭头“α”方向)、厚度方向(图示箭头“β”方向)、及长度方向(图示箭头“γ”方向)的立体形状,可以认为具有与稀土类烧结磁体1至4对应的形状、例如像图1至4中示出那样的长方体形状。另外,可以认为稀土类烧结磁体用烧结体的大小与稀土类烧结磁体1至4大致相同,但制造稀土类烧结磁体1至4时,也有时为了对稀土类烧结磁体用烧结体进行表面修整,而进行研磨,因此,也有时成为略有不同的大小。
作为稀土类烧结磁体用烧结体的基础的稀土类磁体形成用材料包含含有稀土类物质的磁体材料。作为磁体材料,可使用例如Nd-Fe-B系磁体材料。在该情况下,可以将Nd-Fe-B系磁体材料设为例如以重量百分率计以27.0~40.0wt%、更优选以27.0~35wt%的比例含有R(R为含有Y的稀土类元素中的1种或2种以上),以0.6~2wt%、更优选以0.6~1.1wt%的比例含有B,以60~75wt%的比例含有作为电解铁的Fe。典型的是,Nd-Fe-B系磁体材料以27~40wt%的比例含有Nd,以0.8~2wt%的比例含有B,以60~70wt%的比例含有Fe。以提高磁特性为目的,可以在该磁体材料中少量含有Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等其它元素。
磁体材料以微细的磁体材料粒子的状态包含于稀土类磁体形成用材料中。稀土类烧结磁体1至4、稀土类烧结磁体用烧结体具有将这些磁体材料粒子一体烧结而成的构成,也就是说,无论在磁体、烧结体的哪个位置,磁体材料粒子都具有与磁体、烧结体以特有的结合结构相互结合的形态,因此,具有与例如从磁体、烧结体中切出期望形状的片并将多个切出的片相互接合而得到的磁体、磁体形成用烧结体不同的构成。
磁体材料粒子分别具有在图1至图4中箭头所示那样的给定方向上取向的易磁化轴。这些易磁化轴在由图1至图4中的各个“α方向”和“β方向”形成的平面内、例如在平坦的前端面14a、24a、34a、44a、及后端面14b、24b、34b、44b的各个面内,处于在由图示箭头示意性地示出的给定方向上取向的状态。进一步换言之,这些易磁化轴在与长度方向“γ”正交的“α-β”方向上的各个截面中,在图示箭头中示出的方向上取向。
例如,在对图1的稀土类烧结磁体1进行磁化之前的稀土类烧结磁体用烧结体中的易磁化轴的取向方向上,进一步换言之在实质上沿着这样的取向方向的方向上,之后进行磁化,由此产生的图1的稀土类烧结磁体1中的磁化的方向在宽度方向”α”上的两端部(13a、13b)的各个端部与宽度方向”α”上的中央部(13c)相差90°±5°,根据附图无法明确,但在从宽度方向”α”上的两端部(13a、13b)的各个端部朝向宽度方向“α”上的中央部(13c)的区域逐渐变化。此处,设为“±5°”是考虑到根据测定的状况、磁场的施加方法而存在少量误差,但这种程度的误差不会对表面磁通密度的测定造成明显的影响(以下相同)。
同样地,例如,在对图2的稀土类烧结磁体2进行磁化之前的稀土类烧结磁体用烧结体中的易磁化轴的取向方向上,进一步换言之在实质上沿着这样的取向方向的方向上之后进行磁化,由此产生的图2的稀土类烧结磁体2中的磁化的方向在宽度方向”α”上的两端部(23a、23b)的各个端部与宽度方向”α”上的中央部(23c)相差90°±5°,根据附图无法明确,但在从宽度方向”α”上的两端部(23a、23b)的各个端部朝向宽度方向”α”上的中央部(23c)的区域逐渐变化。
另外,例如,在对图3的稀土类烧结磁体3进行磁化之前的稀土类烧结磁体用烧结体中的易磁化轴的取向方向上,进一步换言之在实质上沿着这样的取向方向的方向上之后进行磁化,由此产生的图3的稀土类烧结磁体3中的磁化的方向在宽度方向”α”上的两端部(33a、33b)的各个端部与宽度方向”α”上的中央部(33c)相差90°±5°,根据附图无法明确,但在从宽度方向”α”上的两端部(33a、33b)的各个端部朝向宽度方向”α”上的中央部(33c)的区域逐渐变化。
此外,例如,在对图4的稀土类烧结磁体4进行磁化之前的稀土类烧结磁体用烧结体中的易磁化轴的取向方向上,进一步换言之在实质上沿着这样的取向方向的方向上之后进行磁化,由此产生的图4的稀土类烧结磁体4中的磁化的方向在宽度方向”α”上的两端部(43a、43b)的各个端部与宽度方向”α”上的中央部(43c)相差180°±5°,根据附图无法明确,但在从宽度方向”α”上的两端部(43a、43b)的各个端部朝向宽度方向”α”上的中央部(43c)的区域逐渐变化。
需要说明的是,易磁化轴通常不具有极性,但通过对磁体材料粒子进行磁化,使其成为具有极性的向量,因此,在图1至图4中,考虑要进行磁化的预定极性,在易磁化轴上示出赋予方向性的箭头。即,在本说明书中,“易磁化轴的取向方向”这样的术语或同样的术语考虑这样地被磁化的预定极性而作为表示其方向的术语使用。
以下,对与取向有关术语的含义进行说明。
〔取向角〕
取向角是指,磁体材料粒子的易磁化轴的取向轴方向相对于预先确定的基准线的角度。
〔取向轴角度〕
取向轴角度是在磁体的特定面内处于预先确定的区域内的磁体材料粒子的取向角中、频率最高的取向角。确定取向轴角度的划分区域设为包括至少30个、例如200个~300个磁体材料粒子的4边形划分区域或一边为35μm的正方形划分区域。
“取向轴角度”是由图1至图4中示出的箭头表示的这些取向轴与一条基准线之间的角度。基准线可以任意设定,但如图1至图4中示出的例子那样,在一面11、21、31、41、另一面12、22、32、42或者侧面13、23、33、43的截面由直线表示的情况下,将构成这些面的截面的线作为基准线是便利的。图11是示出确定各个磁体材料粒子的易磁化轴的“取向角”及“取向轴角度”的顺序的示意性放大图。作为一例,在此将图1(a)中示出的稀土类烧结磁体1A的任意位置、例如图1(a)中示出的4边形区域R放大表示。该4边形划分区域R中,包括30个以上、例如200个~300个这样的大量的磁体材料粒子P。4边形划分区域中所含的磁体材料粒子数越多,测定精度越高,但30个左右也能以充分的精度进行测定。各个磁体材料粒子P具有易磁化轴P-1。
如图11所示,各个磁体材料粒子P的易磁化轴P-1具有该易磁化轴指向的方向与基准线之间的角度、即“取向角”。而且,将图11中示出的4边形划分区域R内的磁体材料粒子P的易磁化轴P-1的“取向角”中、频率最高的取向角作为“取向轴角度”B,将由该“取向轴角度”确定的方向作为“易磁化轴的取向方向”。该方向实质上也与磁体材料粒子的磁化方向、稀土类烧结磁体1至4中的“磁化的方向”及“易磁化轴的取向方向”对应。
〔取向角不均角度〕
求出任意的4边形划分区域中的取向轴角度与在该区域内存在的全部磁体材料粒子的易磁化轴的取向角之差,将由该取向角之差的分布中的半值宽度表示的角度的值作为取向角不均角度。图12是示出求出取向角不均角度的顺序的图表。在图12中,由曲线C来表示各个磁体材料粒子的易磁化轴相对于易磁化轴的取向角之差Δθ的分布。将纵轴中示出的累积频率成为最大的位置设为100%,累积频率成为50%的取向角差Δθ的值为半值宽度。
〔取向角的测定〕
各个磁体材料粒子P中的易磁化轴P-1的取向角可通过基于扫描电子显微镜(SEM)图像的“电子背散射衍射解析法”(EBSD解析法)求出。作为用于该解析的装置,有具备Oxford Instruments公司制EBSD检测器(AZtecHKL EBSD NordlysNano Integrated)的扫描电子显微镜,即东京都昭岛市所在的日本电子株式会社制JSM-70001F,或者具备EDAX公司制EBSD检测器(Hikari High Speed EBSD Detector)的扫描电子显微镜、即ZEISS公司制SUPRA40VP。另外,作为通过外部委托进行EBSD解析的事业单位,有东京都中央区日本桥所在的JFE Techno Research株式会社及大阪府茨木市所在的株式会社日东分析中心。根据EBSD解析,可以求出在给定划分区域内存在的磁体材料粒子的易磁化轴的取向角及取向轴角度,基于这些值,也可以获得取向角不均角度。图13示出的是利用EBSD解析法的易磁化轴的取向表示的一例,图13(a)示出表示稀土类烧结磁体的轴的方向的立体图,图13(b)示出通过EBSD解析得到的中央部和两端部的极点图的例子。另外,图13(c)中示出沿着A2轴的磁体的截面中的取向轴角度。取向轴角度可以将磁体材料粒子的易磁化轴的取向向量分成包含A1轴和A2轴的平面中的成分、和包含A1轴和A3轴的平面中的成分来表示。A2轴为宽度方向,A1轴为厚度方向。图13(b)的中央的图表示在磁体的宽度方向上央,易磁化轴的取向为大致沿着A1轴的方向。与此相对,图13(b)的左图示出磁体的宽度方向左端部的易磁化轴的取向从下向右上方向沿着A1轴-A2轴的面倾斜。同样地,图13(b)的右图示出磁体的宽度方向右端部的易磁化轴的取向从下向左上方向沿着A1轴-A2轴的面倾斜。将这样的取向作为取向向量示于图13(c)。需要说明的是,图13(b)中示出的极点图是通过具备EDAX公司制EBSD检测器(Hikari High Speed EBSD Detector)的扫描电子显微镜、即ZEISS公司制SUPRA40VP获得的极点图。
[3.稀土类烧结磁体的制法]
对可用于制造图1至图4中示出的稀土类烧结磁体1至4的本发明的一个实施方式的制造方法进行说明。
(1)稀土类磁体形成用材料的生成
准备作为稀土类烧结磁体1至4的基础的稀土类磁体形成用材料3。图14示出稀土类磁体形成用材料的生成工序的一部分。首先,通过铸造法制造包含给定分率的Nd-Fe-B系合金的磁体材料的铸锭。代表性地,钕磁体所使用的Nd-Fe-B系合金具有以Nd为30wt%、优选为电解铁的Fe为67wt%、B为1.0wt%的比例含有的组成。接下来,使用捣碎机或破碎机等公知的装置将该铸锭粗粉碎成粒径200μm左右的大小。作为代替,将铸锭溶解,也可以利用带铸法制作薄片,利用氢破碎法进行粗粉化。由此,得到粗粉碎磁体材料粒子115(参照图14(a))。
接下来,通过利用珠磨机116的湿法或使用了气流粉碎机的干法等对粗粉碎磁体材料粒子115进行微粉碎。例如,在使用了利用珠磨机116的湿法的微粉碎中,在溶剂中将粗粉碎磁体粒子115微粉碎成给定范围的粒径、例如0.1μm~5.0μm,使磁体材料粒子成为在溶剂中分散的状态(参照图14(b))。然后,通过减压干燥等方法使湿式粉碎后的溶剂所含的磁体粒子干燥,将干燥后的磁体粒子取出(未图示)。此处,对粉碎所使用的溶剂的种类没有特殊限制,可使用异丙醇、乙醇、甲醇等醇、乙酸乙酯等脂类、戊烷、己烷等低级烃类、苯、甲苯、二甲苯等芳香族类、酮类、它们的混合物等有机溶剂、或液氮、液氦、液氩等无机溶剂。在该情况下,优选使用溶剂中不含氧原子的溶剂。
另一方面,在使用利用气流粉碎机的干法的微粉碎中,通过气流粉碎机将经粗粉碎的磁体材料粒子115在(a)氧含量为0.5%以下、优选实质上为0%的包含氮气、Ar气体、He气体等非活性气体的气氛中、或在(b)氧含量为0.0001~0.5%的包含氮气、Ar气体、He气体等非活性气体的气氛中进行微粉碎,制成具有6.0μm以下,例如0.7μm~5.0μm这样的给定范围的平均粒径的微粒。此处,氧浓度实质上为0%是指,不限定于氧浓度完全为0%的情况,也可以含有在微粉的表面极其少量地形成氧化覆膜程度的量的氧。如果磁粉中残存有氢,则有机成分变质,因此,优选将氢从经微粉碎后的磁粉中除去。为了将氢除去,例如可以进行升温,例如可以用0.5小时从室温升温至120℃以上,然后将该温度保持给定时间、例如1小时以上。
接下来,将用珠磨机116等进行了微粉碎后的磁体材料粒子成型为期望形状。为了该磁体材料粒子的成型,准备将如上所述地微粉碎后的磁体材料粒子和包含树脂材料的粘合剂混合而成的混合物、即复合材料。作为粘合剂使用的树脂优选为在结构中不含氧原子、且具有解聚性的聚合物。另外,为了可如后文所述地对将磁体粒子和粘合剂的复合材料成型为期望形状时产生的复合材料的残余物进行再利用,并且为了可以对复合材料进行加热而在软化的状态下进行磁场取向,作为树脂材料,优选使用热塑性树脂。具体而言,合适地使用包括由以下的通式(1)表示的单体形成的1种或2种以上的聚合物或共聚物的聚合物。
[化学式1]
(其中,R1及R2表示氢原子、低级烷基、苯基或乙烯基)
作为符合上述条件的聚合物,存在例如作为异丁烯的聚合物的聚异丁烯(PIB)、作为异戊二烯的聚合物的聚异戊二烯(异戊橡胶、IR)、聚丙烯、使α-甲基苯乙烯聚合而成的聚(α-甲基苯乙烯)、聚乙烯、作为1,3-丁二烯的聚合物的聚丁二烯(丁二烯橡胶、BR)、作为苯乙烯的聚合物的聚苯乙烯、作为苯乙烯和异戊二烯的共聚物的苯乙烯-异戊二烯嵌段共聚物(SIS)、作为异丁烯和异戊二烯的共聚物的丁基橡胶(IIR)、作为苯乙烯和丁二烯的共聚物的苯乙烯-丁二烯嵌段共聚物(SBS)、作为苯乙烯和乙烯、丁二烯的共聚物的苯乙烯-乙烯-丁二烯-苯乙烯共聚物(SEBS)、作为苯乙烯和乙烯、丙烯的共聚物的苯乙烯-乙烯-丙烯-苯乙烯共聚物(SEPS)、作为乙烯和丙烯的共聚物的乙烯-丙烯共聚物(EPM)、使二烯单体与乙烯、丙烯一起共聚而成的EPDM、作为2-甲基-1-戊烯的聚合物的2-甲基-1-戊烯聚合树脂、作为2-甲基-1-丁烯的聚合物的2-甲基-1-丁烯聚合树脂等。另外,作为用于粘合剂的树脂,也可以设为少量包含含有氧原子、氮原子的单体的聚合物或共聚物(例如,聚甲基丙烯酸丁酯、聚甲基丙烯酸甲酯等)的构成。此外,也可以共聚一部分不属于上述通式(1)的单体。即使在该情况下,也可实现本发明的目的。
需要说明的是,作为用于粘合剂的树脂,为了适当进行磁场取向,优选使用在250℃以下软化的热塑性树脂,更具体而言,期望使用玻璃化转变温度或流动开始温度为250℃以下的热塑性树脂。
为了使磁体材料粒子分散于热塑性树脂中,期望适量添加取向润滑剂。作为取向润滑剂,期望添加醇、羧酸、酮、醚、脂、胺、亚胺、酰亚胺、酰胺、氰、磷系官能团、磺酸、具有双键、三键等不饱和键的化合物、液态饱和烃化合物中的至少一种。可以将这些物质中的多种混合使用。而且,如后文所述,在对磁体材料粒子和粘合剂的混合物即复合材料施加磁场而对该磁体材料进行磁场取向时,对混合物进行加热而在粘合剂成分软化的状态下进行磁场取向处理。
作为在磁体材料粒子中混合的粘合剂,通过使用满足上述条件的粘合剂,可以降低烧结后的烧结体内残存的碳量及氧量。具体而言,将烧结后在烧结体内残存的碳量设为2000ppm以下,更优选设为1000ppm以下。另外,将烧结后在烧结体内残存的氧量设为5000ppm以下,更优选设为2000ppm以下。
在对浆料或加热熔融后的复合材料进行成型的情况下,为了提高作为成型的结果而得到的成型体的厚度精度,将粘合剂的添加量设为可适当填充磁体材料粒子间的空隙的量。例如,将粘合剂相对于磁体材料粒子和粘合剂的总量的比率设为1wt%~40wt%,更优选设为2wt%~30wt%,进一步优选设为3wt%~20wt%,特别优选设为5wt%~15wt%。另外,将该树脂相对于用于粘合剂的树脂和磁体材料粒子的总量的比率优选设为1wt%~30wt%,更优选设为2wt%~20wt%,进一步优选设为3wt%~15wt%,特别优选设为3.5wt%~12wt%。
在以下的实施方式中,在将由磁体材料粒子和粘合剂构成的混合物即复合材料117暂时成型为片状的未烧结成型体(以下称为“生片”)后,制成用于取向处理的成型体形状。在将复合材料特别地成型为片状的情况下,可采用利用下述方法进行的成型:例如,对作为磁体材料粒子和粘合剂的混合物的复合材料117进行加热后,成型为片状的热熔涂敷的方法;将作为磁体材料粒子和粘合剂的混合物的复合材料117放入成型模具中,并进行加热及加压的方法;将复合材料挤出,并通过成型机挤出,由此进行成型的方法;或者将含有磁体材料粒子、粘合剂和有机溶剂的浆料涂敷在基材上,由此成型为片状的浆料涂敷等。
以下,特别对使用了热熔涂敷的生片成型进行说明,但本发明不限定于这样的特定成型法。例如,可以将复合材料117放入成型用模具中,一边加热至室温~300℃,一边加压至0.1~100MPa的压力,由此进行成型。在该情况下,更具体而言,可采用对加热至软化的温度的复合材料117施加注射压,并压入模具中进行填充,从而进行成型的方法。
如上所述,通过将粘合剂与用珠磨机116等微粉碎的磁体材料粒子混合,制作由磁体材料粒子和粘合剂构成的粘土状的混合物即复合材料117。此处,作为粘合剂,可以如上所述地使用树脂及取向润滑剂的混合物。例如,作为树脂,优选使用包含结构中不含氧原子、且具有解聚性的聚合物的热塑性树脂,另一方面,作为取向润滑剂,优选添加醇、羧酸、酮、醚、脂、胺、亚胺、酰亚胺、酰胺、氰、磷系官能团、磺酸、具有双键、三键等不饱和键的化合物中的至少一种。
这些当中,优选使用具有不饱和键的化合物,作为这种化合物,可列举具有双键的化合物、具有三键的化合物,特别是从可期待减少烧结体的裂纹的效果的观点出发,更优选具有三键的化合物。
作为具有三键的上述化合物,优选使用可在后面叙述的预烧处理中容易地除去的化合物,因此,优选使用的化合物不具有杂原子,特别优选为仅由烃构成的化合物。另外,为了可以与磁体材料粒子的表面更强地相互作用、可发挥高取向润滑效果,优选具有三键的化合物在末端具有三键。
为了通过提高沸点从而容易进行处理具有三键的上述化合物中,作为其构成元素的碳的数量优选为10以上,更优选为14以上,进一步优选为16以上,特别优选为18以上。碳原子数的上限没有特别限定,可设为例如30以下。
为了可与磁体材料粒子的表面更强地相互作用、可发挥高取向润滑效果,作为具有双键的上述化合物,优选使用包含具有杂原子的官能团的化合物,更优选使用在末端包含具有杂原子的官能团的化合物。
具有双键的化合物中的构成碳原子数优选为6以上,更优选为10以上,进一步优选为12以上,特别优选为14以上。碳原子数的上限没有特别限定,可设为例如30以下。
需要说明的是,也可以将具有三键的上述化合物和具有双键的上述化合物组合使用。
另外,对于粘合剂的添加量,设为使如上所述地添加后的复合材料117中的粘合剂相对于磁体材料粒子和粘合剂的总量的比率成为1wt%~40wt%,更优选成为2wt%~30wt%,进一步优选成为3wt%~20wt%,特别优选成为5wt%~15wt%。另外,该树脂相对于用于粘合剂的树脂与磁体材料粒子的总量的比率优选设为1wt%~30wt%,更优选设为2wt%~20wt%,进一步优选设为3wt%~15wt%,特别优选设为3.5wt%~12wt%。
这里,取向润滑剂的添加量优选根据磁体材料粒子的粒径确定,推荐的是磁体材料粒子的粒径越小,添加量越多。作为具体的添加量,相对于磁体材料粒子100重量份,设为0.01重量份~20重量份,更优选设为0.3重量份~10重量份,进一步优选设为0.5重量份~5重量份,特别优选设为0.8重量份~3重量份。在添加量少的情况下,分散效果小,存在取向性降低的忧虑。另外,在添加量过多的情况下,存在污染磁体材料粒子的忧虑。在磁体材料粒子中添加的取向润滑剂附着于磁体材料粒子的表面,使磁体材料粒子分散,得到粘土状混合物,并且在后面所述的磁场中的取向处理中,以辅助磁体材料粒子的转动的方式发挥作用。其结果,施加磁场时,可以使取向容易进行,使磁体粒子的易磁化轴方向在大致相同方向上抑制,即可以提高取向度。特别是在磁体材料粒子中混合粘合剂时,由于在粒子表面存在粘合剂,因此,磁场取向处理时的摩擦力变高,因此,粒子的取向性可能会降低,添加取向润滑剂的效果进一步提高。
期望磁体材料粒子和粘合剂的混合在由氮气、Ar气体、He气体等非活性气体构成的气氛下进行。磁体材料粒子和粘合剂的混合例如通过将磁体材料粒子和粘合剂分别投入搅拌机中、并用搅拌机进行搅拌而进行。在该情况下,为了促进混炼性,可以进行加热搅拌。此外,期望磁体材料粒子和粘合剂的混合也在由氮气、Ar气体、He气体等非活性气体构成的气氛中进行。另外,特别是利用湿法对磁体材料粒子进行粉碎的情况下,可以不将磁体粒子从粉碎中使用的溶剂中取出,而将粘合剂添加至溶剂中,进行混炼,然后使溶剂挥发,得到复合材料117。
接下来,通过将复合材料117成型为片状来制作上述的生片。在采用热熔涂敷的情况下,通过对复合材料117加热而使该复合材料117熔融,成为具有流动性的状态后,涂敷于支撑基材118上。然后,通过放热使复合材料117凝固,在支撑基材118上形成长条片状的生片119(参照图14(d))。在该情况下,对复合材料117进行加热熔融时的温度根据使用的粘合剂的种类、量而不同,通常设为50℃~300℃。但是需要设为比使用的粘合剂的流动开始温度高的温度。需要说明的是,在使用浆料涂敷的情况下,使磁体材料粒子和粘合剂、及任意使用的有助于取向的取向润滑剂分散于大量的溶剂中,将浆料涂敷于支撑基材118上。然后进行干燥,使溶剂挥发,由此在支撑基材118上形成长条片状的生片119。
这里,熔融后的复合材料117的涂敷方式优选使用狭缝模具方式或压延辊方式等层厚控制性优异的方式。特别是为了实现高厚度精度,特别期望使用层厚控制性优异的、即作为可在基材的表面涂敷高精度的厚度的层的方式的模具方式、逗号涂敷方式。例如,在狭缝模具方式中,通过齿轮泵压送进行加热而成为具有流动性的状态的复合材料117,并注入模具,然后从模具中喷出,由此进行涂敷。另外,在压延辊方式中,以控制的量将复合材料117送入在加热后的2根辊的夹持间隙,一边使辊旋转,一边在支撑基材118上涂敷因辊的热而熔融的复合材料117。作为支撑基材118,优选使用例如有机硅处理聚酯膜。此外,优选通过使用消泡剂、或进行加热减压脱泡,充分进行脱泡处理,从而使涂敷展开的复合材料117的层中不残留有气泡。或者,也可以不在支撑基材118上进行涂敷,而一边通过挤出成型、注射成型将熔融后的复合材料117成型为片状,一边在支撑基材118上挤出,由此使生片119成型于支撑基材118上。
在图14中示出的实施方式中,使用狭缝模具120进行复合材料117的涂敷。在利用该狭缝模具方式形成生片119的工序中,期望对涂敷后的生片119的片厚度进行实测,通过基于该实测值的反馈控制,调节狭缝模具120与支撑基材118之间的夹持间隙。在该情况下,期望尽量降低向狭缝模具120供给的流动性复合材料117量的变动,例如抑制为±0.1%以下的变动,进而还期望尽量降低涂敷速度的变动,例如抑制为±0.1%以下的变动。通过这样的控制,可以提高生片119的厚度精度。需要说明的是,优选将形成的生片119的厚度精度相对于例如1mm这样的设计值设为±10%以内,更优选设为±3%以内,进一步优选设为±1%以内。在压延辊方式中,同样地基于实测值对压延条件进行反馈控制,由此可以控制转印至支撑基材118的复合物117的膜厚。
期望将生片119的厚度设定为0.05mm~20mm的范围。如果使厚度比0.05mm薄,则为了达到需要的磁体厚度,必须将多层层叠,因此生产性会降低。
最后,从通过上述的热熔涂敷在支撑基材118上形成的生片119中切出与期望的磁体尺寸对应的尺寸,制作加工用片。加工用片之后填充于烧结用模具内,成为稀土类烧结磁体的基础,因此,可以作为稀土类磁体形成用材料的一例。另外,生片119是该加工用片的材料,成为稀土类烧结磁体的基础,因此,当然其也包括在稀土类磁体形成用材料的概念中。此外,如后面所叙述,不限定于通过以上说明的生片方法制造的成型体,例如,也可以将通过压粉工法制造的成型体作为稀土类磁体形成用材料使用。这一点在后面叙述。
从生片119中切出加工用片时,其形状设为考虑了作为最终产品的稀土类烧结磁体1至4的形状,切出的实际的尺寸预估烧结工序中的加压方向上的尺寸缩小,以在烧结工序后得到给定的磁体尺寸的方式来确定。如后面所叙述,烧结工序通过加压烧结进行,因此,虽然在加工用片中,在加压方向(图1至图4的长度方向“γ”方向)上发生收缩,但是根据本发明,抑制各向异性收缩,因此,作为最终产品的稀土类烧结磁体1至4与加工用片的不同仅在于,作为最终产品的稀土类烧结磁体1至4沿着加压方向“γ”的长度收缩至加工用片在同一方向“β”上的边的长度“d”的约一半左右。需要说明的是,稀土类烧结磁体1至4通过对将加工用片烧结而成的材料进行磁化而得到,因此,考虑对加工用片进行烧结而成的烧结体也具有与稀土类烧结磁体1至4相同的形状及尺寸即可。
(2)取向工序
对加工用片进行加热,并沿着图1至图4中示意性地示出的箭头方向施加逐渐变化的磁场。通过磁场的施加,加工用片中所含的磁体材料粒子的易磁化轴沿磁场的方向、换言之沿着图1至图4中示意性地示出的箭头方向取向。通过在施加磁场时进行加热,加工用片中所含的粘合剂软化,其结果,磁体材料粒子可以在粘合剂内转动,它们的易磁化轴在沿磁场的方向上取向。施加了磁场后的加工用片的表面温度(以下称为“取向温度”)为50℃~150℃,优选为60℃~120℃。
用于对加工用片进行加热的温度及时间根据使用的粘合剂的种类及量而不同,例如在40~250℃下设为0.1~60分钟。无论哪种情况,为了使加工用片内的粘合剂,都需要将加热温度设定为使用的粘合剂的玻璃化转变温度或流动开始温度以上的温度。作为用于对加工用片进行加热的方法,有例如利用热板进行的加热、或将像硅油这样的热介质用于热源的方式。可以将磁场施加中的磁场的强度设为5000[Oe]~150000[Oe],优选设为10000[Oe]~120000[Oe],特别优选设为25000[Oe]~70000[Oe]。其结果,加工用片所含的磁体材料粒子的结晶的易磁化轴向沿磁场的方向取向。在该磁场施加工序中,也可以设为对多个加工用片同时施加磁场的构成。为此,使用具有多个模腔的模具,或者多个模具并列,同时施加磁场即可。对加工用片施加磁场的工序可以与加热工序同时进行,也可以在进行了加热工序之后,且加工用片的粘合剂凝固之前进行。
(3)预烧工序
在调节至大气压、或者比大气压高的压力或比大气压低的压力、例如0.1MPa~70MPa、优选为1.0Pa或1.0MPa的非氧化性气氛中,在粘合剂分解温度下,将易磁化轴经取向的取向后的加工用片保持至少2小时以上、优选数小时~数十小时、例如5小时,从而进行预烧处理。在该处理中,推荐的是使用氢气气氛或氢气与非活性气体的混合气体气氛。在基于氢气气氛进行预烧处理的情况下,将预烧中的氢的供给量设为2~6L/min、例如设为5L/min,但根据用于进行预烧的炉的大小、加工用片的填充量适宜变更基即可。通过进行预烧处理,可以使粘合剂、换言之在热塑性树脂中混合有磁体材料粒子的复合物中所含的有机化合物通过解聚反应、其它反应分解成单体,飞散并除去。即,进行降低在加工用片残存的碳量的处理、即脱碳处理。另外,预烧处理中,期望在将加工用片内残存的碳量设为2000ppm以下,更优选设为1000ppm以下的条件下进行。由此,可以在之后的烧结处理中对加工用片整体致密地进行烧结,抑制残留磁通密度及顽磁力的降低。需要说明的是,在将进行上述的预烧处理时的加压条件设为高于大气压的压力的情况下,期望将压力设为15MPa以下。此处,如果将加压条件设为高于大气压的压力、更具体而言设为0.2MPa以上,则可以特别地期待残存碳量减少的效果。预烧处理的温度根据粘合剂的种类而不同,但设为250℃~600℃、更优选设为300℃~550℃、例如设为450℃即可。
在上述的预烧处理中,与一般的稀土类烧结磁体的烧结处理相比,优选减小升温速度。具体而言,通过将升温速度设为2℃/min以下,例如设为1.5℃/min,可得到优选的结果。因此,在进行预烧处理的情况下,如图15所示地以2℃/min以下的给定的升温速度升温,得到预先设定的设定温度、即粘合剂分解温度后,在该设定温度下保持数小时~数十小时保持,由此进行预烧处理。这样一来,通过在预烧处理中减小升温速度,不会将加工用片内的碳急剧地除去,而是将其阶段性地除去,因此,可以使残余碳量减少至充分的水平,使烧结后的永磁体形成用烧结体的密度上升。即,通过减少残留碳量,可以减少永磁体中的空隙。如上所述,如果将升温速度设为2℃/min左右,则可以使烧结后的永磁体形成用烧结体的密度为98%以上、例如7.40g/cm3以上,可期待在磁化后的磁体中达到高的磁体特性。
(4)脱油工序
可以在预烧处理前进行使取向润滑剂、增塑剂等油成分挥发的脱油处理。脱油处理的温度根据所含的油成分的种类而不同,设为60℃~120℃、更优选设为80℃~100℃即可。在上述脱油处理中,通过将升温速度设为5℃/min以下,例如设为0.7℃/min,从而可以单独优选的结果。另外,脱油工序在减压气氛下进行,由此得到更优选的结果,优选在0.01Pa~20Pa、更优选在0.1Pa~10Pa的减压下进行。需要说明的是,作为最终产品的稀土类烧结磁体的磁特性不会根据是否进行脱油处理而变化。
(5)烧结工序
在图16中示出在烧结工序中进行的热处理的概要。在该图中,分别地,横轴表示时间,纵轴表示温度(℃)。烧结工序除烧结处理“A”以外,还包括之后进行的高温热处理“B”(热处理1)、和再之后进行的低温热处理“C”(热处理2)。这样一来,通过在烧结处理“A”之后特别地进行高温热处理“B”,可以显著提高经过烧结工序“A”而得到的烧结体、作为最终产品的稀土类烧结磁体的特性。需要说明的是,为了方便起见,将高温热处理“B”和低温热处理“C”作为烧结工序的一部分进行说明,但根据以下的记载可明确,这些处理是单纯的热处理,与烧结处理“A”中的加压烧结不同。
烧结工序在将加工用片填充至预先准备的由一对凸型模具和凹型模具构成的烧结用模具(未图示)的内部的状态下进行。烧结用模具具备与作为最终产品的稀土类烧结磁体对应的形状的模腔、例如具有与加工用片对应的形状的截面的模腔。填充至烧结用模具内时,加工用片的易磁化轴成为在一个平面内取向的状态、即在由图1至图4的宽度方向“α”和厚度方向“γ”形成的一个平面内取向的状态。
<烧结处理>
在烧结处理“A”中,将预烧后的加工用片夹入凸型模具和凹型模具之间,施加压制压力,由此一边作用加压力,一边加热,进行烧结,也就是说进行加压烧结。加压方向设为与加工用片中的易磁化轴的取向方向(图1至图4的箭头方向)正交的方向(图1至图4的长度方向“γ”)。通过在该方向上进行加压,可以抑制对磁体材料粒子赋予的易磁化轴的取向变化,可得到取向性更高的烧结体。夹持于凸型模具与凹型模具之间时的初始负载设定为例如0.5MPa这样的比较小的恒定压力(图16中没有特别示出初始负载)。但是,并不一定必须施加初始负载。在该状态下,使加工用片从室温升温至升压开始温度。升温优选在恒定的升温速度下进行。升温速度可以为3℃/分~30℃/分,例如可以为20℃/分。
升压在例如温度达到300℃时开始(在图16中示出的例子中,将升压开始温度显示出为约700℃附近)。这是因为通过达到300℃,稀土类磁体形成用材料中所含的磁体材料粒子彼此之间开始熔融,稀土类磁体形成用材料的强度增加,由此,可以一边加压一边进行烧结,而不会产生稀土类磁体形成用材料的裂纹。由此,如果达到至少300℃就是充分的,当然也可以在300℃以上的温度下开始升压。更优选在500℃~900℃的范围,进一步优选在700℃~850℃的范围内开始升压。在升压的开始温度过高的情况下,由于稀土类磁体形成用材料的烧结收缩而在稀土类磁体形成用材料与烧结模具之间产生空隙,由于在产生了空隙的状态下加压,成为产生稀土类磁体形成用材料的裂纹、表面凹凸的原因。然后,以一定的升压速度从初始负载升压至达到预先确定的最终到达负载为止。升压速度可以为例如14kPa/秒以上。最终到达负载(加压力)例如为1MPa~30MPa,优选为3MPa~30MPa,更优选为3MPa~15MPa。特别优选设置为3MPa以上。在小于3MPa的情况下,加工用片3的收缩不仅在加压方向产生,而且在全部方向上产生,或者加工用片3产生了起伏,因此,即使之后进行高温热处理“B”,也难以控制作为最终产品的磁体的形状等。通过将加压力设为至少3MPa以上,形状的控制变得容易。加压即使在达到最终到达负载后,也会继续至向加压方向的收缩率在给定时间实质上成为零为止。此处所述的“给定时间”是例如加压方向的平均每10秒钟的变化率为5分钟左右期间保持为零的情况。确认了向加压方向的收缩率实质上成为零后,结束加压。
达到升压开始温度后,加工用片3还以上述一定的升温速度加热至达到预先确定的最高到达温度。最高到达温度优选设定例如在数Pa以下的减压气氛中高于900℃。设为900℃以下的情况下,在加工用片3产生空隙,然后进行高温热处理“B”时,加工用片3的收缩不仅在加压方向上产生,而且在全部方向上产生,因此,变得难以控制作为最终产品的磁体的形状等。通过将最高到达温度设定为高于900℃,形状的控制变得容易。最高到达温度优选考虑形成加工用片3的磁体材料粒子等的平均粒径、组成而确定。一般而言,在平均粒径大的情况下,需要设为更高温,在稀土类少的组成的情况下,也需要设为更高温。需要说明的是,对于上述的最终到达负载而言,优选在达到最高到达温度之前达到。
通过进行以上的烧结处理“A”,可以抑制烧结时产生的收缩的不均,得到期望形状的稀土类烧结磁体形成用烧结体(为了方便,称为烧结体“1A”)。需要说明的是,可认为作为最终产品的稀土类烧结磁体1至4和烧结体1A大小及形状相同,因此,图1(b)中示出的稀土类烧结磁体1表示烧结体1A(对于后面叙述的烧结体“1B”、“1C”也同样)。另外,在烧结处理“A”中,由于对预烧后的加工用片在与易磁化轴的取向方向(图1、图2的箭头方向)正交的方向(图1至图4的长度方向“γ”)上作用给定大小的加压力,同时加热至烧结温度来进行烧结,由此,可抑制对加工用片内的磁体材料粒子赋予的易磁化轴的取向变化。因此,根据该方法,可得到取向性更高的磁体。此外,通过经过烧结处理“A”,加工用片内的树脂材料、例如,热塑性树脂因烧结热而几乎全部飞散(蒸散),残存树脂量即使残留,也为非常微量,因此,可形成对使树脂飞散后的磁体材料粒子相互一体烧结而成的烧结体1A。
作为在烧结处理“A”中使用的加压烧结技术,可采用例如热压烧结、热等静压(HIP)烧结、超高压合成烧结、气体加压烧结、放电等离子体(SPS)烧结等公知的技术中的任意技术。特别优选使用在可在单轴方向上加压的烧结炉内设置有热源的内热式加压烧结装置。
<高温热处理(热处理1)>
将进行了烧结处理“A”后的烧结体1A冷却至室温,接着以高温热处理“B”再加热至给定的温度。至室温的冷却可以是自然冷却。加热基于减压气氛下、再换言之基于至少低于烧结处理“A”中的加压力的压力进行。需要说明的是,如果是氩气、氮气、氦气这样的非活性气体气氛下,则也可以不是减压气氛。在高温热处理“B”中,以使烧结体1A在给定时间内、例如10小时以内、更优选为5小时以内,进一步优选为2小时以内达到对高温热处理预先设定的最高到达温度的方式升温。将对高温热处理设定的最高到达温度设为高于900℃且1100℃以下的范围内。另外,以与在烧结处理“A”中到达的最高到达温度之差成为250℃以内、优选成为150℃以内、更优选成为100℃以内的方式设定该设定温度。通过将与在烧结处理“A”中到达的最高到达温度之差设为上述范围内,从而可以在提高烧结后密度的同时,实现由高温热处理“B”带来的磁特性的提高。达到最高到达温度后,将该温度保持给定时间(图16中示出的区间“b”)、例如1~50小时。在高温热处理中,对烧结体赋予的总热量也是重要的,因此,该保持时间优选根据与最高到达温度的关系确定。再换言之,只要总热量实质上没变化,最高到达温度、保持时间可以少量变动,在最高到达温度附近保持约1~50小时则是充分的。根据后面叙述的图10可推导,优选最高到达温度和保持时间满足以下的关系。
-1.13x+1173≥y≥-1.2x+1166(其中,1100℃≥x>900℃)
其中,x(℃)表示最高到达温度,y(时间)表示在最高到达温度附近的保持时间。
另外,最高到达温度的设定受到微粉碎后的磁体材料粒子的平均粒径的影响。例如,优选对于平均粒径1μm设定为高于900℃,对于平均粒径5μm设定为1100℃以下。平均粒径使用激光衍射/散射式粒径分布测定装置(装置名:LA950、HORIBA制)测定。具体而言,以比较低的氧化速度使微粉碎后的磁体材料粒子缓慢氧化后,将数百mg的缓慢氧化粉与硅油(产品名:KF-96H-100万cs、信越化学制)均匀地混合,成为膏状,将其夹持于石英玻璃,作为被试验样品(HORIBA膏法),将粒度分布(体积%)的图表中的D50的值设为平均粒径。然而,在粒度分布为双峰的情况下,仅对粒径小的峰计算出D50,将其作为平均粒径。
<低温热处理(热处理2)>
将进行了高温热处理“B”后的烧结体(为了方便,称为烧结体“1B”)再冷却至室温,接着在低温热处理“C”中再加热至给定的温度。至室温的冷却可以为自然冷却。加热可以与高温热处理“B”同样地在减压气氛下进行。需要说明的是,如果是氩气、氮气、氦气这样的非活性气体气氛下,则也可以不是减压气氛。在低温热处理“C”中,以使烧结体1B在给定时间内、例如10小时以内、优选为5小时以内,进一步优选为2小时以内达到对低温热处理预先设定的最高到达温度的方式升温。对低温热处理设定的最高到达温度以成为低于高温热处理温度的温度、例如成为350℃~650℃、优选成为450℃~600℃、更优选成为450℃~550℃的方式设定。达到最高到达温度后,将该温度保持给定时间(图7中示出的区间“c”)、例如2小时。优选在保持结束后立即进行骤冷。
(6)磁化工序
可以使用例如以下进行说明的磁场施加装置5,对进行了低温热处理后的烧结体(为了方便称为烧结体“1C”)进行磁化。但并不是必须使用磁场施加装置5,也可以使用目前可利用的其它一般的磁场施加装置。经过磁化工序,烧结体1C成为稀土类烧结磁体1。然后将经磁化后的稀土类烧结磁体1设置于例如线性电机。
[4.磁场施加装置]
<二极极各向异性稀土类烧结磁体用磁场施加装置>
图17、图18中示出可用于制造二极极各向异性稀土类烧结磁体、例如图2中示出的稀土类烧结磁体2的磁场施加装置5的一例。图17是磁场施加装置5的端部的立体图,图18是沿着与磁场施加装置5的长度方向“γ”正交的“α-β”方向的剖面图。
通过使用磁场施加装置5,对工件、例如作为稀土类磁体形成用材料的一例的加工用片施加磁场,可以使磁体材料粒子的易磁化轴进行取向。进而,通过使用该装置5,可以对稀土类烧结磁体用烧结体进行磁化,制造稀土类烧结磁体2。在不仅在取向时、在磁化时也使用了装置5的情况下,可以容易地使易磁化轴的取向方向、与磁化的方向、换言之与稀土类烧结磁体1至4的磁化的方向一致,能够以更高的精度进行磁化。但是,取向及磁化都并不是必须使用装置5。
磁场施加装置5在宽度方向“α”上具有对称形状,具备沿着长度方向“γ”的磁性体磁轭60、和由沿着长度方向“γ”的一对非磁性体磁轭51A、51B构成的非磁性体磁轭51。
磁性体磁轭60具备沿着长度方向“γ”的一对磁轭脚61A、61B、和形成于该一对磁轭脚61A、61B之间的沿着长度方向“γ”的凹部62。一对磁轭脚61A、61B各自具有平坦的上表面61a、61b,在宽度方向“α”上隔开间隔“w3”而设置。
一对非磁性体磁轭51A、51B分别配置于一对磁轭脚61A、61B的上表面61a、61b的各个上表面上,在一对磁轭脚61A、61B的上表面61a、61b的各个上表面上,以与磁性体磁轭60的凹部62相邻的一侧留有给定宽度“w2”的工件载置面61a1、61b1的方式,相对于对应的磁轭脚61A、61B进行定位。
为了载置工件、例如加工用片、稀土类烧结磁体用烧结体,形成具有与工件对应的形状的腔体的工件载置部67。工件载置部67在宽度方向“α”上、在一对非磁性体磁轭51A、51B之间,以跨越磁性体磁轭60的凹部62的状态形成。也可以在工件载置部67中设置收容工件的磁场施加用的模具70。模具70由底部72、在宽度方向“α”上相互分离的侧壁73a、73b、在长度方向“γ”上相互分离的前壁73c、以及后壁73d(未图示)来规定。为了收容工件,在模具70的上方71设置进出开口。但是并不是必须需要模具70。
为了对载置于工件载置部67的工件形成磁场,可使用具有大致直线状的部分的线圈。这些线圈包含例如将其一部分沿着长度方向“γ”配置的第1导体81(81A、81B)、第2导体82A、及第3导体82B。第1导体81配置于凹部62,第2导体82A配置于在宽度方向“α”上相对于磁轭脚61A与凹部62相反的一侧,第3导体82B配置于在宽度方向“α”上相对于磁轭脚61B与凹部62相反的一侧。第1导体81可以由在宽度方向“α”上分离的一对导体81A、81B构成。在导体81中流动的电流方向与在导体82A、82B中流动的电流方向成为相互相反的方向。此时,配置于在宽度方向“α”上离磁轭脚61A近的一侧的导体81A可以通过例如回线部分83A与第2导体82A连结,另外,配置于在宽度方向“α”上离磁轭61B近的一侧的导体81B可以通过例如回线部分83B与第3导体82B连结。通过将导体彼此连结,可以使相互相反的方向的电流在这些导体中同时流动。导体的直径当然没有特别限定,但从使磁场稳定等的观点考虑,此处,可使用直径1.4mm的导体。
图19中示出可用于产生脉冲磁场的电路的一例。该电路9具备:相对于电源(未图示)并联连接的电容器91和二极管92、以及在它们之间串联连接的闸流晶体管93。从电源供给的电流在具有给定容量的电容器91中蓄电后,利用闸流晶体管93,在第1导体81A、81B、与第2导体82A及第3导体82B之间作为具有给定峰值电流(kA)及给定脉冲宽度(ms)的脉冲电流流动给定次数。其结果,从导体81、82对工件施加给定的脉冲磁场。峰值电流可以设定为例如约12kA,脉冲宽度可以设定为例如约0.7ms。峰值电流优选为10kA~30kA,更优选为10kA~20kA,脉冲宽度优选为0.3ms~500ms,更优选为0.5ms~100ms。通过将峰值电流和脉冲宽度设为上述范围,可以抑制取向的不均,同时可抑制线圈的发热。
图20中示出图17、图18中示出的装置5的使用例。脉冲磁场如图20所示,例如,用按压板66等按压工件6的上部,由此,以在厚度方向“β”上施加压力的状态施加。图20中示出的箭头示出通过脉冲磁场的施加形成的磁场的一例,且示出特别是电流向图示的朝向在导体81、82中流动时形成的磁场、进一步换言之制造图2(a)中示出的稀土类烧结磁体2A时使用的磁场。可以明确,制造图2(b)中示出的稀土类烧结磁体2B时,电流在导体81、82中向与图20中示出的朝向相反的方向,只要形成与图20中示出的箭头相反方向的磁场即可。此时,导体81A和导体82A主要形成使工件的宽度方向“α”上的一侧进行取向或磁化的磁场,另外,导体81B和导体82B主要形成使工件的宽度方向“α”上的另一侧进行取向或磁化的磁场,此外,导体81A和导体81B主要形成在方向“α”上贯通工件的磁场。电流在导体81、82中沿着图示的朝向流动时形成的磁场主要对载置于工件载置部67的工件6,从磁轭脚61A经过该磁轭脚61A的上表面61a的相当于工件载置面的部分61a1,沿着宽度方向“α”通过载置于工件载置部67的工件6,经过磁轭脚61B的上表面61b的相当于工件载置面的部分61b1,到达磁轭脚61B。
<三极极各向异性稀土类烧结磁体用磁场施加装置>
图21、图22中示出可用于制造三极极各向异性稀土类烧结磁体、例如图4中示出的稀土类烧结磁体4的磁场施加装置5A的一例。这些图分别相当于上述的图18、图20,对于与图18等中示出的构件同样的构件,标记同样的参考编号。
磁场施加装置5A在宽度方向“α”上具有对称形状,具备在长度方向“γ”上延伸的磁性体磁轭60B。磁性体磁轭60B与图18等中示出的装置5,具备在长度方向“γ”上延伸的一对磁轭脚61A、61B。该一对磁轭脚61A、61B各自具有平坦的上表面61a、61b,在宽度方向“α”上隔开间隔“w3”而设置。磁性体磁轭60B除一对磁轭脚61A、61B以外,进一步具备:在它们之间、在宽度方向“α”上隔开间隔“wA”、“wB”、“wD”、“wE”设置的多个附加磁轭脚61C、61D、61E;和形成于一对磁轭脚61A、61B与附加磁轭脚61C、61D、61E之间、及形成于附加磁轭脚61C、61D、61E彼此之间的凹部62A、62B、62D、62E。
为了载置工件,在磁性体磁轭60B上设置具有与工件对应的形状的腔体的工件载置部67。工件载置部67在宽度方向“α”上、在一对磁性体磁轭61A、61B之间以跨越附加磁轭脚61C至61E和凹部62A、62B、62D、62E的状态形成。工件可以在例如收容于壳体68等的状态下载置于工件载置部67上。但并不是必须需要壳体。
为了对载置于工件载置部67的工件形成磁场,可以使用大致直线状的导体。这些导体可以形成导体对8A至8C,形成各导体对8A至8C的导体的一部分沿着长度方向“γ”配置于凹部62A、62B、62D、62E。导体对8A在宽度方向“α”上、以从一侧和另一侧夹持磁轭脚61D的方式跨越凹部62A、62D而配置,导体对8C在宽度方向“α”上、以从一侧和另一侧夹持磁轭脚61C的方式跨越凹部62D、62E而配置,导体对8B在宽度方向“α”上、以从一侧和另一侧夹持磁轭脚61E的方式跨越凹部62E、62B而配置。在形成各导体对8A至8C的一个导体81A至81C中的电流方向、与在另一个导体82A至82C中流动的电流方向成为相互相反的方向。形成这些导体对8A至8C的导体如上述的图17所示,优选相互连结形成回线。由此,可以使电流容易地向给定的朝向流动。导体的直径当然没有特别限定,但从使磁场稳定等的观点考虑,此处使用直径1.4mm的导体。作为脉冲磁场的基础的电流可以使用图19中示出的电路而产生。
脉冲磁场如图22所示,例如,用矩形的壳体68按压工件6的上部,由此,以在厚度方向“β”上施加压力的状态施加。图22中示出的箭头是示出通过脉冲磁场的施加形成的磁场的一例,且示出特别是电流向图示的朝向在导体对8A至8C中流动时形成的磁场、进一步换言之制造图4中示出的稀土类烧结磁体4时使用的磁场。可以明确,制造在面41(参照图4)中发挥的极性为相反方向的磁体时,电流在导体对8A至8C中向与图22中示出的朝向相反的方向流动,形成与图22中示出的箭头相反方向的磁场即可。此时,对于收容于壳体68中的工件6,导体对8A中包含的导体82A主要形成使工件的宽度方向“α”上的一侧沿着厚度方向“β”进行取向或磁化的磁场,线圈对8B中包含的线圈82B主要形成使工件的宽度方向“α”上的另一侧沿着厚度方向“β”进行取向或磁化的磁场,此外,线圈对8A中包含的线圈81A和线圈对8C中包含的线圈82C、及线圈对8C中包含的线圈81C和线圈对8B中包含的线圈81B分别主要可形成使工件的宽度方向“α”上的中间部在厚度方向“β”上进行取向或磁化的磁场、及使工件沿着厚度方向“β”进行取向或磁化的磁场。电流在线圈对8A至8C中流动时,在相邻的磁轭脚61A至61D的上表面彼此之间形成磁场。可以根据在线圈对8A至8C中流动的电流的朝向,形成从磁轭脚的上表面朝向其它磁轭脚的上表面的磁场74,相反,也可以形成从其它磁轭脚的上表面朝向磁轭脚的上表面的磁场75。
特别是在图22中示出的例子中,对于磁轭脚61D,从与磁轭脚61D相邻的磁轭脚61A的上表面61a朝向磁轭脚61D、并且从与磁轭脚61D相邻的磁轭脚61C朝向磁轭脚61D形成磁场75。另外,从磁轭脚61C朝向与磁轭脚61C相邻的磁轭脚61D、并且从磁轭脚61C朝向与磁轭脚61C相邻的磁轭脚61E的上表面61e形成磁场74。另外,对于磁轭脚61E,从与磁轭脚61E相邻的磁轭脚61B的上表面61b朝向磁轭脚61E的上表面61e、并且从与磁轭脚61E相邻的磁轭脚61C朝向磁轭脚61E的上表面61e形成磁场75。从磁轭脚的上表面朝向其它磁轭脚的上表面的磁场74、与相反地从其它磁轭脚的上表面朝向磁轭脚的上表面的磁场75在相邻的一对磁轭脚61A、61B及附加磁轭脚61C、61D、61E之间、在宽度方向“α”上交替地形成。通过形成这些磁场,在位于磁轭脚彼此之间的工件的一部分形成在宽度方向“α”上通过工件的磁场。需要说明的是,在装置5A中,未使用非磁性体磁轭,但与图18等中示出的装置同样,可以按照与一对磁轭脚61A、61B的关系使用非磁性体磁轭。由此,装置5A并不排除非磁性体磁轭的使用。
<一极极各向异性稀土类烧结磁体用磁场施加装置>
图23中示出可用于制造图1中示出的稀土类烧结磁体1的磁场施加装置5B的一例。图23是相当于上述的图20的图,对与图20等中示出的构件同样的构件标记同样的参考编号。该装置5B可视为对装置5施加少量变更而成的装置。此处,仅使用一对线圈(81、82),不使用非磁性体磁轭51。图23中示出的箭头示出通过脉冲磁场的施加形成的磁场的一例,且示出电流向图示的朝向在一对线圈中包含的线圈81、82中流动时产生的磁场,进一步换言之,示出制造图1(a)中示出的稀土类烧结磁体1A时使用的磁场。可以明确,制造图1(b)中示出的稀土类烧结磁体1B时,电流在线圈81、82中向与图21中示出的朝向相反的方向流动,形成与图23中示出的箭头相反方向的磁场即可。
[5.实施例]
对使用图17至图20中示出的磁场施加装置5制造的图2(a)中示出的稀土类烧结磁体2A,分析、评价了一面21和另一面22各自的最大表面磁通密度“D1”、“D2”(T)、磁通密度比(D1/D2)、一面21中的每单位厚度的最大表面磁通密度、及轴向对称性。
(1)最大表面磁通密度(T)
最大表面磁通密度(T)为:在从一面21向与另一面22相反的方向在厚度方向“β”上仅分开1mm的位置,成为最大的表面磁通密度的值“D1”(T);以及,在从另一面22向与一面21相反的方向在厚度方向“β”上仅分开1mm的位置成为最大的表面磁通密度的值“D2”(T)。一般优选表面磁通密度“D1”大的情况,另一方面,优选表面磁通密度“D2”小的情况。由此,可以减少由连接磁体的一面和与其对置的另一面的磁路引起的漏磁通。表面磁通密度的值是相对于面21与法线方向平行的成分。这些测定使用IMS制造的三维磁场向量分布测定装置(MTX-5R)。
(2)磁通密度比(D1/D2)
磁通密度比(D1/D2)是上述(1)中求出的一面21的最大表面磁通密度“D1”与另一面22的最大表面磁通密度“D2”之比(D1/D2)。磁通密度比大于1时,意味着一面21的最大表面磁通密度大于另一面22的最大表面磁通密度。通过使磁通密度比为大的值,具有在另一面不需要磁轭等的效果,因此,必须至少为3以上,优选为4以上。
(3)每单位厚度的最大表面磁通密度(T/mm)
每单位厚度的最大表面磁通密度(T/mm)是用上述(1)中求出的一面21的最大表面磁通密度“D1”(T)除以一面21与另一面22之间的厚度方向“β”上的厚度尺寸“t”(mm)而得到的值。从高效地提高最大表面磁通密度“D1”的观点考虑,该值可成为规定稀土类烧结磁体的厚度尺寸的指标,值越大越优选。最大表面磁通密度随着厚度变大而变大,因此,出于增加最大表面磁通密度的方面,应当增加厚度,但另一方面,每单位厚度的最大表面磁通密度随着厚度变大而变小,因此,出于高效地提高第1面的最大表面磁通密度D1的方面,厚度不应当过大。为了将最大表面磁通密度设为期望值,并高效地提高最大表面磁通密度,可利用该指标决定最佳的厚度尺寸。
(4)轴向对称性
轴向对称性是在长度方向“γ”上的多个位置得到宽度方向“α”上的表面磁通密度分布,通过将在这些多个位置得到的表面磁通密度分布彼此相互比较而得到的特性。轴向对称性值小时,意味着对称性优异。通过改善对称性,可以使例如线性电机等的控制变得容易,而且可以抑制推力变化。
求出轴向对称性时,作为准备阶段,首先对一面21作成与图7对应的图24。对于将稀土类烧结磁体2在长度方向“γ”上4等分的3条线2a~2c(图25参照)的每一条,将从各线2a~2c的宽度方向“α”上的一个端部“d1”至另一个端部“d2”的长度部分以0.004mm的间隔在宽度方向“α”上错开,同时依次采样,得到多个表面磁通密度值,对得到的多个值进行绘制,从而作成该图。此处,对表面磁通密度的测定使用与上述(1)相同的装置,另外,与上述(1)同样地在从一面21分开1mm的位置测定表面磁通密度。
接着,使用残差平方和,从宽度方向“α”上的端部“d1”起每0.004mm间隔的距离,对线2a的表面磁通密度与线2c的表面磁通密度的一致率进行数值化,得到轴向对称性的值。数值化时使用下式。
[数学式1]
此处,分别地,N表示采样的总数,n表示为第n次采样,Xn表示第n次采样时离端部“d1”的距离、更详细而言表示0.004×n(mm),参数Fa(Xn)表示在线2a上的Xn的表面磁通密度的值、更详细而言表示从端部“d1”仅分开“Xn”的位置的表面磁通密度的值,同样地,参数Fb(Xn)表示在线2c上的Xn的表面磁通密度的值、更详细而言表示从端部“d1”仅分开“Xn”的位置的表面磁通密度的值。
将分析结果示于以下的表1中。
[表1]
〔实施例1〕
使用图17至图20中示出的磁场施加装置5,在以下的条件下作成图2(a)中示出的稀土类烧结磁体2A,对一面21和另一面22各自的最大表面磁通密度“D1”(T)、“D2”(T)、磁通密度比(D1/D2)、一面21中的每单位厚度的最大表面磁通密度(T/mm)、及轴向对称性进行分析、评价。
<粗粉碎>
在室温下使通过带铸法得到的合金吸留氢,在0.85MPa下保持1天。然后,一边用液态Ar进行冷却,一边在0.2MPa下保持1天,由此进行了氢破碎。合金的组成为“包含Nd:25.25wt%、Pr:6.75wt%、B:1.01wt%、Ga:0.13wt%、Nb:0.2wt%、Co:2.0wt%、Cu:0.13wt%、Al:0.1wt%、剩余部分为Fe、其它不可避免的杂质”。
<微粉碎>
相对于经过粗粉碎后的合金粗粉100重量份,混合己酸甲酯1重量份后,利用氦气流粉碎机粉碎装置(装置名:PJM-80HE、NPK制)进行粉碎。粉碎后的合金粒子的捕集通过旋风分离器方式分离回收,将超微粉除去。将粉碎时的供给速度设为4.3kg/h,He气的导入压力为0.6MPa,流量为1.3m3/min,氧浓度为1ppm以下,露点为-75℃以下。粉碎后的微粒的平均粒径约为3um。
<磁粉的脱氢>
将经微粉碎后的磁粉在减压下用0.5小时从室温升温至180℃,然后保持5小时保持,由此进行了磁粉的脱氢。
<混炼>
相对于100重量份经脱氢后的磁粉,配合作为苯乙烯-异戊二烯嵌段共聚物的SIS树脂(Quintac 3390:日本ZEON制)4重量份、1-十八碳炔1.5重量份、和1-十八碳烯4.5重量份,进行混炼,得到了混合有磁粉和有机物的工件(加工用片)。
<成型>
在具有宽19mm、厚4mm、长14mm的腔体的模具中填充上述工件,在80℃下保持3分钟,以3MPa进行加压,由此进行了成型。
<磁场取向>
将成型后的工件设置于图17等中示出的磁场施加装置(取向器)5中,在电容器容量5000μF、充电电压755V的条件下对工件施加脉冲磁场,由此进行了取向处理。将施加磁场时的最大电流设为12.4kV,将脉冲宽度设为0.25ms,另外,将脉冲磁场的施加次数设为连续3次。施加了3次脉冲磁场后的工件表面温度、即取向温度为120℃。
<预烧(脱碳)工序>
对施加了脉冲磁场后的工件在0.8Mpa的氢气加压气氛下进行了脱碳处理。以约1℃/min的升温速度用8h从室温升温至500℃,保持2h。另外,将氢气流量设为2~3L/min。
<烧结>
将脱碳工序后的样品收纳于石墨制的烧结模具中。需要说明的是,上述石墨制的烧结模具以可在样品的长度方向上加压的方式形成有滑动用孔,将在滑动用孔中收纳的加压用石墨制推针插入。
利用加压烧结装置,在减压气氛下,通过对加压用石墨针进行加压,从而对收纳于石墨制烧结模具中的样品在样品的长度方向上加压,同时进行烧结。烧结条件为:在减压气氛中一边施加0.7MPa的负载,一边用35分钟从室温升温至700℃,然后一边施加6.6MPa的负载,一边用13份中升温至950℃,在该状态下保持15分钟,由此进行了加压烧结。
<退火(高温热处理及低温热处理)>
用1.5小时将冷却至室温的烧结体从室温升温至1000℃,保持4小时。然后,冷却至室温后,再次用0.5小时升温至500℃后,在500℃下保持1小时,然后进行淬火,由此进行了退火。退火工序在减压气氛下进行。
<研磨>
通过研磨机对退火后的烧结体进行表面修整,制成宽19mm、厚4mm、长6.8mm的尺寸的烧结体。
<磁化>
利用磁场取向时使用的磁场施加装置5,对经研磨后的烧结体施加一次脉冲磁场,进行磁化,制成二极的方形极各向异性稀土类烧结磁体。脉冲磁场的施加以电容器容量1000μF、充电电压1300V的条件进行。此时的最大电流值为13kA、脉冲宽度为1.5ms。
对在以上的条件下作成的稀土类烧结磁体按照与上述“(4)轴向对称性”中说明的顺序相同的顺序进行采样,对结果进行绘制,关于表面磁通密度,得到了上述的图7中示出的结果。
例如,在驱动用于半导体、液晶制造用的工业用马达、电动剃刀等的线性电机的情况下,一面(主面)的表面磁通密度最低也必须为0.2T以上,优选为0.25T以上、更优选为0.3T以上,进一步优选为0.4T以上。根据实施例1,一面(第1面)21的最大表面磁通密度、更详细而言长度方向“β”上的中央(图25的线2b)的表面磁通密度的最大值(绝对值)D1为0.473T,充分大于0.2T。因此,对于驱动例如在上述的目的中使用的线性电机是充分的。
另外,在驱动这种线性电机的情况下,另一面的表面磁通密度取决于主面的表面磁通密度,但最高也必须为0.2T以下,优选为0.15T以下、更优选为0.1T以下,进一步优选为0.095T以下。根据实施例1,另一面(第2面)的最大表面磁通密度的最大值(绝对值)D2为0.095T,可得到充分低于0.2T的表面磁通密度。
此外,由于利用这些求出的磁通密度比为5.0(≈0.473/0.095),因此,在该稀土类烧结磁体中,可以使具有在实际使用上有用的表面磁通密度的磁束仅在一面、或主要在一面集中。因此,漏磁通小,也不需要在另一面设置磁轭。
认为每单位厚度的最大表面磁通密度在实际使用时必须至少为0.04T/mm以上,优选为0.06T/mm以上,更优选为0.08T/mm以上,进一步优选为0.1T/mm以上,更优选为0.12T/mm以上,上限没有特别限定,可设为例如0.5T/mm以下。根据实施例1,每单位厚度的最大表面磁通密度为0.12(≈0.473/4)T/mm,从高效地提高最大表面磁通密度“D1”的观点考虑,是充分的值。
轴向对称性优选为0.7以下,更优选为0.6以下,更优选为0.5以下,进一步优选为0.3以下。根据实施例1,轴向对称性为0.11,可得到充分低于0.7的值,在长度方向“γ”上具有充分的对称性。认为这是由于,通过使工件进行脉冲磁场取向,从而可提高取向的精度,而且通过加压烧结,可一边保持一边进行烧结。
〔实施例2、3、4、5〕
变更表1中记载的条件,除此以外,进行与实施例1相同的操作。特别地,实施例2~5彼此除了对稀土类烧结磁体的厚度进行变更以外,全部设为相同条件。
在按照实施例2制作的厚度3mm的稀土类烧结磁体中,第1面的最大表面磁通密度D1为0.434(T),第2面的最大表面磁通密度的最大值(绝对值)D2为0.083(T),磁通密度比为5.2,每单位厚度的最大表面磁通密度为0.14(T/mm),对于这些值而言,得到了不逊色于实施例1的结果。轴向对称性为0.58,与实施例1相比,长度方向“γ”上的对称性稍差。
另外,在按照实施例3制作的厚度2mm的稀土类烧结磁体中,第1面的最大表面磁通密度D1为0.337(T),第2面的最大表面磁通密度的最大值(绝对值)D2为0.073(T),磁通密度比为4.6,每单位厚度的最大表面磁通密度为0.17(T/mm),对于这些值而言,与实施例2同样,得到了不逊色于实施例1的结果。轴向对称性为0.26,与实施例1相比,在长度方向“γ”上的对称性有些差。
在按照实施例4制作的厚度6mm的稀土类烧结磁体中,第1面的最大表面磁通密度D1为0.547(T),第2面的最大表面磁通密度的最大值(绝对值)D2为0.071(T),磁通密度比为7.7,每单位厚度的最大表面磁通密度为0.09(T/mm)。
在按照实施例5制作的厚度10mm的稀土类烧结磁体中,第1面的最大表面磁通密度D1为0.591(T),第2面的最大表面磁通密度的最大值(绝对值)D2为0.051(T),磁通密度比为11.6,每单位厚度的最大表面磁通密度为0.06(T/mm)。
根据这些结果也可以明确,每单位厚度的最大表面磁通密度随着厚度变大而变小,与此相对,最大表面磁通密度随着厚度变大而变大。如果考虑每单位厚度的最大表面磁通密度与最大表面磁通密度之间的平衡,则稀土类烧结磁体的厚度优选为10mm以下,更优选为8mm以下。在稀土类烧结磁体的厚度比10mm(实施例5)厚的情况下,第1面的最大表面磁通密度D1变大,但每单位厚度的最大表面磁通密度小于0.04T/mm,其结果,可能难以高效地提高第1面的最大表面磁通密度D1。
根据这些实施例1至5的结果也可以明确,在本发明的稀土类烧结磁体1至5中,具有在实际使用上有用的表面磁通密度的磁束仅在厚度方向“β”上的一面21、或主要在厚度方向上的一面集中,磁束在另一面22变得稀疏,一面21的最大表面磁通密度“D1”与另一面的最大表面磁通密度“D2”22之间至少满足磁通密度比(D1/D2)≥4的关系。该磁通密度比的上限没有特别限定,可以设为8以上、10以上,另外,根据实施例的结果可知,其至少增加到了12左右。
对于磁化前的稀土类烧结磁体用烧结体,未示出特别详细的结果,但可以认为稀土类烧结磁体用烧结体与稀土类烧结磁体同样。更详细而言稀土类烧结磁体用烧结体尚未磁化,但可以明确其中包含的磁体材料粒子通过磁场取向,具有在与厚度方向“β”上的一面11、21交叉的方向上取向的易磁化轴的磁体材料粒子、及具有在与厚度方向“β”上的另一面12、22交叉的方向上取向的易磁化轴的磁体材料粒子产生具有给定的表面磁通密度的磁束,这些表面磁通密度之比与稀土类烧结磁体的表面磁通密度之比对应,因此,与稀土类烧结磁体同样,具有在与该一面11交叉的方向上取向的易磁化轴的磁体材料粒子在一面11的最大表面磁通密度(D1’)、与具有在与该另一面12交叉的方向上取向的易磁化轴的磁体材料粒子在另一面12的最大表面磁通密度(D2’)之间至少满足(D1’/D2’)≥4的关系。
本发明不限定于上述的实施方式,可进行其它各种变更。因此,附图及说明只不过是示例,并不限定于此。

Claims (26)

1.一种稀土类烧结磁体,其具有将含有稀土类物质、且各自具有易磁化轴的多个磁体材料粒子一体烧结而成的结构,其中,
该稀土类烧结磁体为具有宽度方向、厚度方向和长度方向的立体形状,且具备在厚度方向上对置的第1面和第2面,
在与所述宽度方向及所述厚度方向平行的平面内,以在从所述宽度方向的两端部的各个端部朝向所述宽度方向的中央部的区域、易磁化轴的取向方向逐渐变化的方式,使所述磁体材料粒子进行取向,
所述第1面的最大表面磁通密度D1与所述第2面的最大表面磁通密度D2满足(D1/D2)≥4的关系。
2.根据权利要求1所述的稀土类烧结磁体,其中,
所述易磁化轴的取向方向在所述宽度方向的两端部的各个端部与所述宽度方向的中央部相差90°±5°、或180°±5°。
3.根据权利要求2所述的稀土类烧结磁体,其中,
所述易磁化轴的取向方向在所述宽度方向的两端部的各个端部与所述宽度方向的中央部相差90°±5,在所述第1面仅产生N极或S极。
4.根据权利要求2所述的稀土类烧结磁体,其中,
所述易磁化轴的取向方向在所述宽度方向的两端部的各个端部与所述宽度方向的中央部相差180°±5°,在所述第1面的所述宽度方向上的一侧产生N极或S极,并且在所述第1面的所述宽度方向上的另一侧产生与所述一侧相反极性的S极或N极。
5.根据权利要求1至4中任一项所述的稀土类烧结磁体,其中,
所述第1面的最大表面磁通密度为0.25T以上。
6.根据权利要求1至5中任一项所述的稀土类烧结磁体,其中,
所述第2面的最大表面磁通密度为0.15T以下。
7.根据权利要求1至6中任一项所述的稀土类烧结磁体,其中,
用所述第1面的最大表面磁通密度除以所述第1面与所述第2面之间的厚度方向上的厚度尺寸而得到的每单位厚度的最大表面磁通密度为0.06T/mm以上。
8.根据权利要求1至7中任一项所述的稀土类烧结磁体,其中,
在所述长度方向上的多个位置得到所述宽度方向上的表面磁通密度分布,通过对在所述多个位置得到的所述表面磁通密度分布彼此相互比较而得到的轴向对称性为0.7以下。
9.根据权利要求1至8中任一项所述的稀土类烧结磁体,其中,
所述厚度方向上的厚度尺寸为10mm以下。
10.根据权利要求1至9中任一项所述的稀土类烧结磁体,其中,
所述宽度方向上的宽度尺寸为40mm以下。
11.根据权利要求1至10中任一项所述的稀土类烧结磁体,其中,
所述稀土类烧结磁体具有长方体形状。
12.一种稀土类烧结磁体用烧结体,其具有将含有稀土类物质、且各自具有易磁化轴的多个磁体材料粒子一体烧结而成的结构,其中,
该稀土类烧结磁体用烧结体为具有宽度方向、厚度方向和长度方向的立体形状,且具备在厚度方向上对置的第1面和第2面,
在与所述宽度方向及所述厚度方向平行的平面内,以在从所述宽度方向的两端部的各个端部朝向所述宽度方向的中央部的区域、易磁化轴的取向方向逐渐变化的方式,使所述磁体材料粒子进行取向,
以使具有在与该第1面交叉的方向上取向的易磁化轴的磁体材料粒子在所述第1面的最大表面磁通密度D1’、与具有在与该第2面交叉的方向上取向的易磁化轴的磁体材料粒子在所述第2面的最大表面磁通密度D2’满足(D1’/D2’)≥4的关系的方式,使磁体材料粒子进行取向。
13.根据权利要求12所述的稀土类烧结磁体用烧结体,其中,
所述易磁化轴的取向方向在所述宽度方向的两端部的各个端部与所述宽度方向的中央部相差90°±5°、或180°±5°。
14.根据权利要求13所述的稀土类烧结磁体用烧结体,其中,
所述易磁化轴的取向方向在所述宽度方向的两端部的各个端部与所述宽度方向的中央部相差90°±5°,在所述第1面仅产生N极或S极中的一者。
15.根据权利要求13所述的稀土类烧结磁体用烧结体,其中,
所述易磁化轴的取向方向在所述宽度方向的两端部的各个端部与所述宽度方向的中央部相差180°±5°,在所述第1面的所述宽度方向上的一侧产生N极或S极,在所述第1面的所述宽度方向上的另一侧产生与所述一侧相反极性的S极或N极。
16.根据权利要求12至15中任一项所述的稀土类烧结磁体用烧结体,其中,
所述厚度方向上的厚度尺寸为10mm以下。
17.根据权利要求12至16中任一项所述的稀土类烧结磁体用烧结体,其中,
所述宽度方向上的宽度尺寸为40mm以下。
18.一种磁场施加装置,其用于对工件施加磁场,所述磁场施加装置的特征在于,具备磁性体磁轭,所述磁性体磁轭具备在宽度方向上隔开间隔设置的一对磁轭脚及形成于该一对磁轭脚之间的凹部,
在所述一对磁轭脚的各上表面的与所述凹部相邻的一侧形成有给定宽度的工件载置面,在所述一对磁轭脚之间形成有跨越所述磁性体磁轭的所述凹部的工件载置部。
19.根据权利要求18所述的磁场施加装置,其中,进一步具备配置于所述一对磁轭脚的上表面上的一对非磁性体磁轭,
以在与所述磁性体磁轭的所述凹部相邻的一侧留有给定宽度的工件载置面的方式,将所述一对非磁性体磁轭的各个非磁性体磁轭在所述一对磁轭脚的各上表面上相对于对应的磁轭脚进行定位,在所述一对非磁性体磁轭之间形成有跨越所述磁性体磁轭的所述凹部的工件载置部,
对载置于所述工件载置部的工件形成磁场,该磁场从所述一对磁轭脚中的一个磁轭脚经过该一个磁轭脚的上表面的相当于所述工件载置面的部分,在宽度方向上通过载置于所述工件载置部的工件,经过所述一对磁轭脚中的另一个磁轭脚的上表面的相当于所述工件载置面的部分,到达所述另一个磁轭脚。
20.根据权利要求19所述的磁场施加装置,其中,
所述一对磁轭脚具有与该凹部一起向与所述凹部的宽度方向和厚度方向这两个方向正交的长度方向延伸的部分,要形成的所述磁场利用沿着所述长度方向配置于所述凹部的第1导体、在所述宽度方向上相对于所述一对磁轭脚中的一个磁轭脚在与所述凹部相反的一侧沿着所述长度方向配置的第2导体、以及在所述宽度方向上相对于所述一对磁轭脚中的另一个磁轭脚在与所述凹部相反的一侧沿着所述长度方向配置的第3导体而形成。
21.根据权利要求20所述的磁场施加装置,其中,
在所述第1导体中流动的电流的朝向、与在所述第2导体及第3导体中流动的电流的朝向成为相互相反的方向。
22.根据权利要求20或21所述的磁场施加装置,其中,
所述第1导体由在所述宽度方向上分离的一对导体构成,配置于在所述宽度方向上离所述一对磁轭脚中的一个磁轭脚近的一侧的所述一对导体中的一个导体与所述第2导体连结,配置于在所述宽度方向上离所述一对磁轭脚中的另一个磁轭脚近的一侧的所述一对导体中的另一个导体与所述第3导体连结。
23.权利要求18所述的磁场施加装置,其中,
所述磁性体磁轭进一步具备:在宽度方向上相互隔开间隔设置于所述一对磁轭脚之间的多个附加磁轭脚;和形成于所述一对磁轭脚与所述多个附加磁轭脚之间、及所述多个附加磁轭脚彼此之间的凹部,
在相邻的所述一对磁轭脚及所述多个附加磁轭脚之间、在所述宽度方向上交替地形成第一磁场和第二磁场,该第一磁场从所述一磁轭脚的上表面,向与所述多个附加磁轭脚中的一磁轭脚相邻的所述一对磁轭脚中的一个磁轭脚的上表面、和/或向与所述一磁轭脚相邻的所述多个附加磁轭脚中的任意另一磁轭脚的上表面,在宽度方向上通过载置于所述工件载置部的工件,该第二磁场从与所述多个附加磁轭脚中的一磁轭脚相邻的所述一对磁轭脚中的一个磁轭脚的上表面、和/或与所述一磁轭脚相邻的所述多个附加磁轭脚中的任意另一磁轭脚的上表面,向所述一磁轭脚的上表面,在宽度方向上通过载置于所述工件载置部的工件。
24.根据权利要求23所述的磁场施加装置,其中,
所述一对磁轭脚及所述多个附加磁轭脚具有与该凹部一起向与所述凹部的宽度方向和厚度方向这两个方向正交的长度方向延伸的部分,
所述第一磁场及所述第二磁场利用多个导体而形成,所述多个导体在所述宽度方向上以夹持所述多个附加磁轭脚的各个附加磁轭脚的方式配置,且沿着所述长度方向配置于所述凹部。
25.根据权利要求24所述的磁场施加装置,其中,
对于所述多个附加磁轭脚的各个附加磁轭脚,在配置于所述宽度方向上的一侧的导体中流动的电流的朝向、与在配置于所述宽度方向上的另一侧的导体中流动的电流的朝向成为相互相反的方向。
26.根据权利要求25所述的磁场施加装置,其中,
对于所述多个附加磁轭脚的各个附加磁轭脚,配置于所述宽度方向上的一侧的导体、与配置于所述宽度方向上的另一侧的导体相互连结。
CN201880030265.2A 2017-05-08 2018-05-08 稀土类烧结磁体和稀土类烧结磁体用烧结体、及可用于制造它们的磁场施加装置 Active CN110612580B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017092487 2017-05-08
JP2017-092487 2017-05-08
PCT/JP2018/017794 WO2018207777A1 (ja) 2017-05-08 2018-05-08 希土類焼結磁石とこれに用いる希土類焼結磁石用焼結体、及び、これらを製造するために用いることができる磁場印加装置

Publications (2)

Publication Number Publication Date
CN110612580A true CN110612580A (zh) 2019-12-24
CN110612580B CN110612580B (zh) 2023-02-28

Family

ID=64104768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880030265.2A Active CN110612580B (zh) 2017-05-08 2018-05-08 稀土类烧结磁体和稀土类烧结磁体用烧结体、及可用于制造它们的磁场施加装置

Country Status (6)

Country Link
US (1) US20200161032A1 (zh)
EP (1) EP3624144A4 (zh)
JP (1) JP7274826B2 (zh)
KR (1) KR20200003813A (zh)
CN (1) CN110612580B (zh)
WO (1) WO2018207777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091944A (zh) * 2019-12-31 2020-05-01 浙江大学 一种富镧铈钇多主相细晶稀土永磁材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021201414A1 (de) * 2021-02-15 2022-08-18 Mimplus Technologies Gmbh & Co. Kg Verfahren zur Herstellung eines Rohmagneten aus einem magnetischen Ausgangsmaterial

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418410U (zh) * 1990-06-04 1992-02-17
JPH0613223A (ja) * 1991-09-30 1994-01-21 Kawasaki Steel Corp 内面閉磁路型異方性磁石
JPH0661036A (ja) * 1991-09-30 1994-03-04 Kawasaki Steel Corp 側面配向型異方性磁石
JPH08148315A (ja) * 1994-11-24 1996-06-07 Shin Etsu Chem Co Ltd 希土類磁石の製造方法
EP1063659A2 (en) * 1999-06-22 2000-12-27 Toda Kogyo Corporation Anisotropic permanent magnet
CN101889318A (zh) * 2007-12-06 2010-11-17 丰田自动车株式会社 永磁体及其制造方法以及转子和内置永磁体电机
CN103081038A (zh) * 2011-06-24 2013-05-01 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617609A (ja) * 1984-06-21 1986-01-14 Nichirei Magnet Kk 多極帯状のゴム磁石並びにその製造方法
JPH0631694Y2 (ja) * 1985-06-20 1994-08-22 電子磁気工業株式会社 連続パルス着磁器
EP0535901A3 (en) * 1991-09-30 1993-11-03 Kawasaki Steel Co Lateral orientation anisotropic magnet
JP3012077B2 (ja) * 1992-02-25 2000-02-21 川崎製鉄株式会社 異方性長尺磁石
JP2004250781A (ja) 2002-10-08 2004-09-09 Neomax Co Ltd 焼結型永久磁石およびその製造方法
JP2004297843A (ja) 2003-03-25 2004-10-21 Hitachi Metals Ltd リニアモータ
US9312057B2 (en) 2013-01-30 2016-04-12 Arnold Magnetic Technologies Ag Contoured-field magnets
TWI674594B (zh) * 2015-03-24 2019-10-11 日商日東電工股份有限公司 稀土類磁石形成用燒結體及稀土類燒結磁石

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418410U (zh) * 1990-06-04 1992-02-17
JPH0613223A (ja) * 1991-09-30 1994-01-21 Kawasaki Steel Corp 内面閉磁路型異方性磁石
JPH0661036A (ja) * 1991-09-30 1994-03-04 Kawasaki Steel Corp 側面配向型異方性磁石
JPH08148315A (ja) * 1994-11-24 1996-06-07 Shin Etsu Chem Co Ltd 希土類磁石の製造方法
EP1063659A2 (en) * 1999-06-22 2000-12-27 Toda Kogyo Corporation Anisotropic permanent magnet
CN101889318A (zh) * 2007-12-06 2010-11-17 丰田自动车株式会社 永磁体及其制造方法以及转子和内置永磁体电机
CN103081038A (zh) * 2011-06-24 2013-05-01 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091944A (zh) * 2019-12-31 2020-05-01 浙江大学 一种富镧铈钇多主相细晶稀土永磁材料及其制备方法
CN111091944B (zh) * 2019-12-31 2021-06-04 浙江大学 一种富镧铈钇多主相细晶稀土永磁材料及其制备方法

Also Published As

Publication number Publication date
CN110612580B (zh) 2023-02-28
EP3624144A1 (en) 2020-03-18
KR20200003813A (ko) 2020-01-10
JP7274826B2 (ja) 2023-05-17
EP3624144A4 (en) 2021-01-06
JP2018190982A (ja) 2018-11-29
US20200161032A1 (en) 2020-05-21
WO2018207777A1 (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
CN107430921B (zh) 稀土类磁体形成用烧结体及稀土类烧结磁体
CN107430935B (zh) 具有非平行的易磁化轴取向的稀土类永磁体形成用烧结体的制造方法
CN109791836B (zh) 稀土类烧结磁体形成用烧结体及其制造方法
KR102421822B1 (ko) 희토류 영구자석 및 희토류 영구자석을 갖는 회전기
CN108141075B (zh) 永磁体单元及其制造方法、具有该永磁体单元的旋转机械
CN107408877B (zh) 稀土类磁体和使用了该稀土类磁体的线性马达
CN110612580B (zh) 稀土类烧结磁体和稀土类烧结磁体用烧结体、及可用于制造它们的磁场施加装置
KR20140131904A (ko) 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
US20180221951A1 (en) Sintered body for forming a rare-earth magnet and rare-earth sintered magnet
TWI676998B (zh) 稀土類磁鐵形成用燒結體及稀土類燒結磁鐵

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant