CN110600398A - Processing equipment for semiconductor or photovoltaic material - Google Patents

Processing equipment for semiconductor or photovoltaic material Download PDF

Info

Publication number
CN110600398A
CN110600398A CN201910692062.6A CN201910692062A CN110600398A CN 110600398 A CN110600398 A CN 110600398A CN 201910692062 A CN201910692062 A CN 201910692062A CN 110600398 A CN110600398 A CN 110600398A
Authority
CN
China
Prior art keywords
furnace door
supporting block
furnace
electrode
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910692062.6A
Other languages
Chinese (zh)
Other versions
CN110600398B (en
Inventor
刘群
徐栋
林佳继
朱太荣
林依婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laplace New Energy Technology Co.,Ltd.
Original Assignee
Shenzhen Laplasse Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Laplasse Energy Technology Co Ltd filed Critical Shenzhen Laplasse Energy Technology Co Ltd
Priority to CN201910692062.6A priority Critical patent/CN110600398B/en
Publication of CN110600398A publication Critical patent/CN110600398A/en
Application granted granted Critical
Publication of CN110600398B publication Critical patent/CN110600398B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/383Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention discloses processing equipment for semiconductor or photovoltaic materials, which comprises a furnace body and a furnace door, wherein an electrode structure is arranged on the furnace door, an adjusting device is arranged on the furnace door, the adjusting device comprises an arc-shaped contact surface and a supporting block, the arc-shaped contact surface is arranged between the supporting block and the furnace door, and a structure matched with the arc-shaped contact surface is arranged at the corresponding position of the supporting block or the furnace door; the invention provides the processing equipment for the semiconductor or photovoltaic material, which has the advantages of simple structure, reasonable electrode mechanism design, capability of realizing the longitudinal arrangement of the graphite boat piece by perfectly combining the furnace door and capability of quickly adjusting the furnace door to achieve a good sealing effect.

Description

Processing equipment for semiconductor or photovoltaic material
Technical Field
The invention relates to the field of semiconductor or photovoltaic material processing, in particular to processing equipment for a semiconductor or photovoltaic material.
Background
Semiconductor or photovoltaic material is widely applied to industries such as electronics, new energy and the like, the semiconductor and photovoltaic material can be applied to products generally through chemical treatment, the CVD technology is one of the treatment modes, CVD is chemical vapor deposition, the CVD technology is widely applied to semiconductor or photovoltaic material processing at present, common processing equipment comprises PECVD, LPCVD, APCVD and the like, diffusion processes such as phosphorus diffusion, boron diffusion and the like can be adopted to process raw materials except CVD, a plurality of related equipment exist in the industry at present, corresponding equipment can be selected to process according to specific processing requirements, the semiconductor or photovoltaic material processing is generally realized by feeding a sheet material into a furnace to react under the conditions of certain temperature and pressure, in the process of processing the semiconductor or photovoltaic material, devices are commonly used to load or move materials to be processed, in-process, or after-process, and such loaded or moved devices are commonly referred to in the industry as boats, graphite boats, or flower baskets.
The following problems exist in the current devices: the graphite boat is usually large in size, the transverse arrangement is adopted, the size can reach about 2 meters generally, the electric field is transmitted from the tail part to the front part of the whole graphite boat to generate great difference, and the uniform electric field is difficult to obtain. Wherein, the graphite boat piece is also vertically arranged, and the flaky material is vertically arranged between the graphite boat pieces and is jointed with the graphite boat pieces. Because the flaky material needs to be vertically placed, the situation that the surface of the flaky material is not tightly attached to the surface of the graphite boat piece can occur, so that the flaky material is poor in electric conduction, the flaky material after the process is plated in a winding manner, black edges can be generated around the flaky material, and the risk of chipping exists, so that the defective product rate is increased.
And the furnace gate of corresponding existing equipment is sealed by the mode that closing plate and furnace frame contacted, and the closing plate is the buckle formula, the closing plate passes through the buckle promptly and fixes on the furnace gate, when the furnace gate is sealed not tight, operating personnel makes the closing plate go forward through the mode of beating the buckle and seal, however, through long-time the use, the position wearing and tearing that closing plate and furnace frame contacted are serious, when rethread sealing plate seals furnace gate and furnace frame, the sealed not tight condition will appear, thereby lead to the furnace gate to smoke, influence sanitation, still can cause serious influence to enterprise economic benefits and social simultaneously.
Disclosure of Invention
The invention overcomes the defects of the prior art, and provides the processing equipment for the semiconductor or photovoltaic material, which has the advantages of simple structure, reasonable electrode mechanism design, capability of realizing the longitudinal arrangement of the graphite boat piece by perfectly combining the furnace door and capability of quickly adjusting the furnace door to achieve good sealing effect.
The technical scheme of the invention is as follows:
the processing equipment of the semiconductor or photovoltaic material comprises a furnace body and a furnace door, wherein an electrode structure is arranged on the furnace door, the electrode structure comprises an electrode column, an electrode main body and an insulating material, the electrode column is connected with the electrode main body, and the insulating material covers the side surface of the electrode column; one end of the electrode column is connected with the electrode main body; the other end of the electrode column is exposed, so that the contact area is enlarged;
the electrode column comprises a connecting part, a jointing part and a fixing part; the connecting part is covered with an insulating and reinforcing material, the connecting part is covered with an insulating and stretchable material, and the fixing part is covered with an insulating material; a conductive connecting piece is arranged between the electrode column and the electrode main body; one end of the conductive connecting piece is provided with a placing hole for placing the electrode column, and the other end of the conductive connecting piece is provided with a connecting hole for connecting the electrode main body; the diameters of the connecting part and the jointing part of the electrode column are the same, and the diameter of the jointing part is larger than that of the fixing part;
the furnace body is cylindrical or cuboid, the furnace body is made of metal, and one exposed end of the electrode column is in the shape of an arc spherical surface;
the furnace door is provided with an adjusting device, the adjusting device comprises an arc-shaped contact surface and a supporting block, the arc-shaped contact surface is arranged between the supporting block and the furnace door, and a structure matched with the arc-shaped contact surface is arranged at the corresponding position of the supporting block or the furnace door; the arc contact surface adopts a protruding arc surface or a sunken arc surface; the arc contact surface is arranged at the middle position of one side of the supporting block close to the oven door or at the middle position of one side of the oven door close to the supporting block; the structure matched with the arc contact surface adopts an arc surface or is integrally cylindrical, and one end of the cylinder, which is close to the arc contact surface, is provided with a corresponding arc surface;
the adjusting device also comprises an adjusting piece, and the adjusting piece is connected with the supporting block and the furnace door; the adjusting pieces are uniformly distributed on the supporting blocks, and the distance between the point of the supporting blocks where the adjusting pieces are arranged and the furnace door is adjusted; the supporting block is polygonal, and the adjusting piece is arranged on the edge or the corner of the supporting block; the supporting block is fixedly connected with the furnace door through points, and the supporting block and the furnace door are reinforced by the adjusting piece.
Furthermore, an auxiliary fixing device is arranged on the side face of the joint part of the electrode column; the auxiliary fixing device is fixed on one side of the furnace door, which is far away from the furnace body; the auxiliary fixing device comprises a fixing column, an air cylinder, a telescopic rod and a clamping device; one end of the fixing column is fixed with the furnace door, and the other end of the fixing column is fixed with the air cylinder; one end of the cylinder, which is close to the electrode column, is provided with a telescopic rod which is controlled by the cylinder; the other end of the telescopic rod is fixed with the clamping device.
Furthermore, the connecting part is covered by a ceramic insulating sleeve, the connecting part is covered by a corrugated pipe, and the fixing part is covered by a Teflon sleeve; and a conductive connecting piece is arranged between the electrode column and the electrode main body and adopts a flange.
Furthermore, reinforcing ribs are arranged on the outer side of the furnace body.
Furthermore, the furnace body is made of high-temperature-resistant and pressure-resistant materials.
Furthermore, the adjusting piece adopts a telescopic structure, and two ends of the adjusting piece are respectively connected and fixed with the furnace door and the supporting block.
Furthermore, the adjusting piece adopts a bolt structure, threads are arranged on the supporting block, one end of the adjusting piece is connected with the furnace door, and movable threads are arranged at the corresponding position of the furnace door; or the supporting block is provided with movable threads, the corresponding position of the furnace door is provided with threads, and the furnace door and the supporting block are connected through the adjusting piece.
Furthermore, a thermocouple is arranged on the furnace door; the other side of the supporting block is connected with a lifting module, and the lifting module comprises a slide rail, a cylinder and a fixing piece; the supporting shoe is connected to the mounting, and the mounting is connected to the cylinder, and the mounting setting is on the slide rail.
The invention has the advantages that:
this scheme simple structure, reasonable in design, adopt high temperature resistant, resistance to compression material with reaction equipment's furnace body to metal material selects as the preferred, improves the resistance to compression attribute and the life of itself. The selection of the metal conductive material is to cover an insulating material in the electrode structure to avoid the electric leakage in order to avoid the electrification of the furnace body. When the furnace body adopts a non-circular design or other materials, the pressure resistance is poor, so that the corresponding reinforcing rib design is added to improve the overall pressure resistance.
Electrode structure specifically adopts multiple insulating material, has insulating, reinforced ceramic insulation sleeve material, has insulating, tensile bellows material, cup joints the teflon sleeve material that has high temperature resistant and insulating properties easily, realizes being in different positions on the furnace body and adopts different insulating materials in the electrode post, reaches perfect insulating and furnace body's vacuum seal effect as far as possible.
The flange of connecting piece is selected, better connection electrode post and electrode main part, with the furnace gate because of setting up the part that electrode structure department takes place the electric leakage easily, strengthen the guarantee and can reach the requirement of vacuum state. The auxiliary fixing device arranged on the electrode column can flexibly adjust and control the electrode column.
According to the scheme, the furnace door is sealed by arranging the adjusting device, the supporting block is basically kept still, the control of the inclination angle of the furnace door is realized by arranging the arc-shaped contact surface, and a good sealing effect of combining the furnace door and the furnace body is achieved. The fine adjustment is realized by the bolts and the rubber ring which are connected and arranged on the arc-shaped contact surface between the furnace door and the supporting block, namely the furnace door is screwed and fixed by the bolts after the fine adjustment. The contact surface of the furnace door and the supporting block is an arc surface or is integrally cylindrical, and one end of the cylinder, which is close to the arc contact surface, is provided with a corresponding arc surface. The arc surface may be a half sphere, or a cylinder, or one end of the cylinder may be provided with an arc surface, and the end is in contact with the arc contact surface. Through the design of arc contact surface, the back is finely tuned to the furnace gate, installs various fixed mode additional on the arc contact surface, and is common if adopt bolt, activity buckle etc. all can.
This scheme is through setting up the control that adjusts and fixed furnace gate slope that corresponding regulating part comes more fast convenient, outside guaranteeing the perfect combination between furnace gate and the furnace body, can also be easier reach the effect requirement of vacuum seal. The main mode is to adopt a telescopic structure and a bolt structure, the two ends of an adjusting piece of the telescopic structure are respectively connected and fixed with the oven door and the supporting block, and when needed, the inclination angle of the oven door is finely adjusted by adjusting the different telescopic lengths of the adjusting piece. The adjusting piece adopts a bolt structure, a thread is arranged on the supporting block, one end of the adjusting piece is connected with the furnace door, and a movable thread is arranged at the corresponding position of the furnace door, so that the adjusting piece adopting the bolt rotates to adjust the distance between the supporting block and the furnace door at the point of the adjusting piece.
Drawings
FIG. 1 is a schematic view of the present invention with a graphite boat installed;
FIG. 2 is a schematic view of a conventional cylindrical reactor with an electrode structure according to the present invention;
FIG. 3 is an exploded view of an electrode structure of the present invention;
FIG. 4 is a cross-sectional view of FIG. 3 of the present invention;
FIG. 5 is an exploded view of another electrode configuration of the present invention;
FIG. 6 is a cross-sectional view of FIG. 5 in accordance with the present invention;
fig. 7 is a schematic structural diagram of an adjusting device of the present invention.
The labels in the figure are: the furnace body comprises a furnace body 1, a furnace door 2, supporting blocks 2-2, adjusting pieces 2-3, an auxiliary fixing device 3-1, a flange 3-2, a sealed cavity 3-21, a Teflon sleeve 3-3, a corrugated pipe 3-4, an electrode main body 3-5, a ceramic insulating sleeve 3-6, an electrode column 3-7, a gas input port 4 and a vacuum interface 5.
Detailed Description
The invention is further described with reference to the following figures and detailed description. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Example (b):
as shown in fig. 1 to 6, the processing equipment for semiconductor or photovoltaic materials comprises a furnace body 1 and a furnace door 2, wherein an electrode structure is arranged on the furnace door 2, and the electrode structure comprises electrode columns 3-7, electrode main bodies 3-5 and insulating materials. The electrode column 3-7 is connected with the electrode main body 3-5, and the insulating material covers the side surface of the electrode column 3-7. The electrode columns 3-7 are only exposed out of two ends through the insulation wrapping and covering of the electrode columns, so that the connection of the furnace door 2 and the electrode structure in the graphite boat is more convenient, an even electric field is more easily formed, and the plasma enhanced chemical vapor deposition is realized. As shown in fig. 1, graphite boats are disposed in parallel in the furnace body 1, and silicon wafers on the graphite boats are also disposed in parallel. The productivity that this placed the structure than the vertical graphite boat of placing of tradition is higher, and controls the height of graphite boat more easily, and the electric field difference that the graphite boat afterbody transmitted to anterior will be minimum. Each layer of graphite boat plate which is arranged in the graphite boat in parallel in the furnace body is easier to be arranged tightly, and the reject ratio of products can not be improved.
The furnace body 1 is in a regular shape such as a cylinder or a cuboid, or in an irregular shape such as a polygon or an internal angle shape, and the like, and can be matched with the overall shape of the graphite boat. When the furnace body 1 is designed to be non-cylindrical, the furnace body can be easily extruded and deformed in a vacuum state during the process treatment. In order to prevent the deformation of the furnace body 1 and prolong the service life, reinforcing ribs can be arranged outside the furnace body 1 so as to improve the pressure resistance of the whole furnace body in the using process. The furnace body 1 is made of high temperature resistant and pressure resistant materials, the furnace body 1 is preferably made of metal materials, such as SUS310S stainless steel structure, and the furnace body 1 can also be made of traditional quartz materials.
Specifically, as shown in fig. 3 to 6, the covered electrode column 3-7 includes a connecting portion, a joining portion, and a fixing portion; the connecting part is covered with an insulating and reinforcing material, the connecting part is covered with an insulating and stretchable material, and the fixing part is covered with an insulating material. The concrete connecting part is covered by a ceramic insulating sleeve 3-6, the connecting part is covered by a corrugated pipe 3-4, and the fixing part is covered by a Teflon sleeve 3-3. Naturally, other insulating materials that fulfill this function may be substituted as will occur to those skilled in the art. Taking the best material as an example, the corrugated pipes 3-4 realize dynamic sealing when the electrode structure is lifted. The ceramic insulating sleeve 3-6 further protects the electrode column 3-7 from being corroded by the process treatment gas in the furnace body 1. The Teflon sleeves 3-3 achieve the vacuum sealing and insulating effects when the furnace door 2 is combined with the furnace body 1. Thereby avoiding the electrification when the metal furnace body 1 is adopted, ensuring the safety of the equipment and providing a good environment for processing the graphite boat.
And a conductive connecting piece is arranged between the electrode column 3-7 and the electrode main body 3-5, and the conductive connecting piece adopts a flange 3-2. The connection of the flange 3-2 is facilitated, and the diameters of the connecting part and the connecting part of the electrode column 3-7 are the same, and naturally can be different. The diameter of the connecting part is larger than that of the fixing part, so that the electrode columns 3-7 can be fixed conveniently. Namely, the flange 3-2 is connected with the electrode column 3-7 and the electrode main body 3-5, one end of the flange 3-2 is provided with a placing hole for placing the electrode column 3-7, and the other end of the flange 3-2 is provided with a connecting hole for connecting the electrode main body 3-5. To ensure a perfect connection of the electrode shaft 3-7 to the electrode body 3-5. The specific flange 3-2 comprises an upper part and a lower part, and a sealing cavity 3-21 is arranged between the upper part and the lower part, so that the problem that the treatment effect of the graphite boat is influenced due to the non-sealing condition of the joint of the electrode column 3-7 and the electrode main body 3-5 is avoided.
The exposed ends of the electrode columns 3-7 are arc spherical surfaces to increase the conduction area, and other shapes such as rectangle, rhombus and the like can be adopted naturally, so long as the conduction area is increased, a better foundation for connecting the graphite boat is provided, and the conduction probability is improved.
An auxiliary fixing device 3-1 is arranged on the side surface of the joint part of the electrode column 3-7; the auxiliary fixing device 3-1 is fixed on one side of the furnace door 2 far away from the furnace body; the auxiliary fixing device 3-1 comprises a fixing column, an air cylinder, a telescopic rod and a clamping device; one end of the fixing column is fixed with the furnace door 2, and the other end of the fixing column is fixed with the air cylinder; one end of the cylinder, which is close to the electrode columns 3-7, is provided with a telescopic rod which is controlled by the cylinder; the other end of the telescopic rod is fixed with the clamping device, so that the movement of the electrode structure is controlled, and the adaptive graphite boat specification is enlarged. Or the connecting part of the electrode column 3-7 can be separated from the connecting part, and the conduction on-off of the electrode column 3-7 can be controlled by the auxiliary fixing device 3-1.
Wherein, still set up vacuum interface 5 on the furnace gate 2 and to the inside evacuation of furnace body 1, through setting up gas input port 4 to the inside input process gas of furnace body 1, this vacuum interface, gas input port 4 are guaranteeing the vacuum seal state in the furnace body 1, can set up according to actual need, also can set up on furnace gate 2 like figure 2 gas input port 4, and vacuum interface sets up on furnace body 1.
As shown in fig. 7, the oven door 2 is further provided with an adjusting device (specifically, for example, for matching with the oven body shown in fig. 1), which includes an arc contact surface and a supporting block 2-2, the arc contact surface is arranged between the supporting block 2-2 and the oven door 2, and a structure matched with the arc contact surface is arranged at a corresponding position of the supporting block 2-2 or the oven door 2. The included angle formed between the supporting block 2-2 and the furnace door 2 is adjusted through the arc contact surface and the matched structure, because the supporting block 2-2 is basically kept still, the inclination angle of the furnace door 2 is adjusted through the arc contact surface, when the arc contact surface is adjusted, the other side can not adopt the arc surface, but the friction force can be greatly increased, and the adjustment difficulty is increased.
Specifically, a concave arc contact surface is arranged on the furnace door 2, a corresponding convex arc surface is arranged on the supporting block 2-2, and the furnace door 2 finely adjusts the inclination angle of the furnace door along the convex arc surface on the supporting block 2-2. Correspondingly, a concave arc-shaped contact surface can be arranged on the supporting block 2-2, and a corresponding convex arc-shaped surface is arranged on the furnace door 2. The fine adjustment between the oven door 2 and the supporting blocks 2-2 can be realized in various forms, for example, the fine adjustment is realized by arranging bolts and rubber rings connected on the arc-shaped contact surface between the oven door 2 and the supporting blocks 2-2, namely, the oven door 2 is screwed and fixed by the bolts after the fine adjustment.
Preferably, the structure matched with the arc contact surface adopts an arc surface or is cylindrical as a whole, and the cylindrical end close to the arc contact surface is provided with a corresponding arc surface. The furnace door can be a half-spherical arc surface, or a regular column or an irregular column such as a cylinder, a cuboid and the like, and as long as the arc surface is arranged at the connecting position of the furnace door 2 and the supporting block 2-2, the end can be contacted with the arc contact surface, so that good adjustment is realized. Through the design of arc contact surface, furnace door 2 finely tunes the back, installs various fixed modes additional on the arc contact surface, and is common if adopt bolt, activity buckle etc..
The adjusting device also comprises an adjusting piece 2-3, and the adjusting piece 2-3 is connected with the supporting block 2-2 and the furnace door 2. If the supporting block 2-2 and the furnace door 2 are not connected and fixed through a connecting piece arranged on the arc-shaped contact surface, the supporting block and the furnace door can be connected and fixed through an adjusting piece 2-3. The adjusting pieces 2-3 are uniformly distributed on the supporting blocks 2-2, and the distance between the point of the supporting blocks 2-2 where the adjusting pieces 2-3 are arranged and the furnace door 2 is adjusted, so that the fine adjustment of the furnace door 2 is realized. Four adjusting elements 2-3 are typically provided on the sides of the support block 2-2.
Specifically, the adjusting piece 2-3 can adopt a telescopic structure, two ends of the adjusting piece are respectively connected and fixed with the furnace door 2 and the supporting block 2-2, and the furnace door 2 is finely adjusted by adjusting different telescopic lengths of the adjusting piece 2-3 when needed. The adjusting piece 2-3 can also adopt a bolt structure, for example, a thread is arranged on the supporting block 2-2, one end of the adjusting piece 2-3 is connected with the oven door 2, namely, a movable thread is arranged at the corresponding position of the oven door 2, so that the distance between the supporting block 2-2 and the oven door 2 at the point can be adjusted by rotating the adjusting piece 2-3 by adopting the bolt. The same can also be reversely arranged, for example, a movable thread is arranged on the supporting block 2-2, a thread is arranged on the corresponding position of the furnace door 2, and the distance between the furnace door 2 and the supporting block 2-2 is adjusted by rotating the adjusting piece 2-3 by adopting a bolt, so that the furnace door 2 is finely adjusted.
The furnace door 2 can be also provided with a thermocouple, and the other side of the supporting block 2-2 is connected with the lifting module to realize the lifting control of the furnace door 21. The lifting module comprises a slide rail, a cylinder and a fixing piece. The fixing piece is connected with the supporting block 2-2, the cylinder is connected with the fixing piece, and the fixing piece is arranged on the sliding rail.
In summary, the furnace body 1 and the furnace door 2 are both made of SUS310S stainless steel structure to enhance the pressure resistance. Wherein the oven door 2 can realize the automatic opening and closing of the oven door 2 by connecting a lifting module on the oven door 2. The electrode columns 3-7 arranged on the furnace door 2 do not avoid conducting the whole furnace body 1, and the insulating material is arranged to ensure that the two ends of the electrode columns 3-7 are connected with a power supply, so that the electric field is effectively controlled to be introduced from the electrodes at the two sides of the graphite boat at the same time, the electric field generated in the graphite boat is uniform, the film thickness uniformity of the silicon wafer is good, and the stable control on the product quality is realized. The auxiliary fixing device 3-1 is arranged on the furnace door 2 to realize the control of an electrode structure on the furnace door 2, and the electrode structure is connected with a power supply to form an electric field so as to realize the stable control of the product quality on the graphite boat. The furnace door 2 is provided with an adjusting device, so that the supporting blocks 2-2 are basically kept still, the control of the inclination angle of the furnace door 2 is realized by arranging the arc contact surface, the adjusting piece 2-3 is used for adjusting and fixing the distance between the supporting blocks 2-2 and the furnace door 2 at the point of the adjusting piece 2-3, and the good sealing effect of the combination of the furnace door 2 and the furnace body is achieved.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, several modifications and decorations can be made without departing from the spirit of the present invention, and these modifications and decorations should also be regarded as being within the scope of the present invention.

Claims (8)

1. Processing equipment of semiconductor or photovoltaic material, its characterized in that: the furnace comprises a furnace body and a furnace door, wherein an electrode structure is arranged on the furnace door, the electrode structure comprises an electrode column, an electrode main body and an insulating material, the electrode column is connected with the electrode main body, and the insulating material covers the side surface of the electrode column; one end of the electrode column is connected with the electrode main body; the other end of the electrode column is exposed, so that the contact area is enlarged;
the electrode column comprises a connecting part, a jointing part and a fixing part; the connecting part is covered with an insulating and reinforcing material, the connecting part is covered with an insulating and stretchable material, and the fixing part is covered with an insulating material; a conductive connecting piece is arranged between the electrode column and the electrode main body; one end of the conductive connecting piece is provided with a placing hole for placing the electrode column, and the other end of the conductive connecting piece is provided with a connecting hole for connecting the electrode main body; the diameters of the connecting part and the jointing part of the electrode column are the same, and the diameter of the jointing part is larger than that of the fixing part;
the furnace body is cylindrical or cuboid, the furnace body is made of metal, and one exposed end of the electrode column is in the shape of an arc spherical surface;
the furnace door is provided with an adjusting device, the adjusting device comprises an arc-shaped contact surface and a supporting block, the arc-shaped contact surface is arranged between the supporting block and the furnace door, and a structure matched with the arc-shaped contact surface is arranged at the corresponding position of the supporting block or the furnace door; the arc contact surface adopts a protruding arc surface or a sunken arc surface; the arc contact surface is arranged at the middle position of one side of the supporting block close to the oven door or at the middle position of one side of the oven door close to the supporting block; the structure matched with the arc contact surface adopts an arc surface or is integrally cylindrical, and one end of the cylinder, which is close to the arc contact surface, is provided with a corresponding arc surface;
the adjusting device also comprises an adjusting piece, and the adjusting piece is connected with the supporting block and the furnace door; the adjusting pieces are uniformly distributed on the supporting blocks, and the distance between the point of the supporting blocks where the adjusting pieces are arranged and the furnace door is adjusted; the supporting block is polygonal, and the adjusting piece is arranged on the edge or the corner of the supporting block; the supporting block is fixedly connected with the furnace door through points, and the supporting block and the furnace door are reinforced by the adjusting piece.
2. The apparatus for processing semiconductor or photovoltaic material as claimed in claim 1, wherein: an auxiliary fixing device is arranged on the side face of the joint part of the electrode column; the auxiliary fixing device is fixed on one side of the furnace door, which is far away from the furnace body; the auxiliary fixing device comprises a fixing column, an air cylinder, a telescopic rod and a clamping device; one end of the fixing column is fixed with the furnace door, and the other end of the fixing column is fixed with the air cylinder; one end of the cylinder, which is close to the electrode column, is provided with a telescopic rod which is controlled by the cylinder; the other end of the telescopic rod is fixed with the clamping device.
3. The apparatus for processing semiconductor or photovoltaic material as claimed in claim 1, wherein: the connecting part is covered by a ceramic insulating sleeve, the connecting part is covered by a corrugated pipe, and the fixing part is covered by a Teflon sleeve; and a conductive connecting piece is arranged between the electrode column and the electrode main body and adopts a flange.
4. The apparatus for processing semiconductor or photovoltaic material as claimed in claim 1, wherein: the outside of the furnace body is provided with a reinforcing rib.
5. The apparatus for processing semiconductor or photovoltaic material as claimed in claim 1, wherein: the furnace body is made of high-temperature resistant and pressure resistant materials.
6. The apparatus for processing semiconductor or photovoltaic material as claimed in claim 1, wherein: the adjusting piece adopts a telescopic structure, and two ends of the adjusting piece are respectively connected and fixed with the furnace door and the supporting block.
7. The apparatus for processing semiconductor or photovoltaic material as claimed in claim 1, wherein: the adjusting piece adopts a bolt structure, threads are arranged on the supporting block, one end of the adjusting piece is connected with the furnace door, and movable threads are arranged at the corresponding position of the furnace door; or the supporting block is provided with movable threads, the corresponding position of the furnace door is provided with threads, and the furnace door and the supporting block are connected through the adjusting piece.
8. The apparatus for processing semiconductor or photovoltaic material as claimed in claim 1, wherein: a thermocouple is arranged on the furnace door; the other side of the supporting block is connected with a lifting module, and the lifting module comprises a slide rail, a cylinder and a fixing piece; the supporting shoe is connected to the mounting, and the mounting is connected to the cylinder, and the mounting setting is on the slide rail.
CN201910692062.6A 2019-07-30 2019-07-30 Semiconductor processing equipment Active CN110600398B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910692062.6A CN110600398B (en) 2019-07-30 2019-07-30 Semiconductor processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910692062.6A CN110600398B (en) 2019-07-30 2019-07-30 Semiconductor processing equipment

Publications (2)

Publication Number Publication Date
CN110600398A true CN110600398A (en) 2019-12-20
CN110600398B CN110600398B (en) 2023-02-07

Family

ID=68853145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910692062.6A Active CN110600398B (en) 2019-07-30 2019-07-30 Semiconductor processing equipment

Country Status (1)

Country Link
CN (1) CN110600398B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254418A (en) * 2020-02-10 2020-06-09 深圳市拉普拉斯能源技术有限公司 PECVD coating machine
CN112563162A (en) * 2019-07-30 2021-03-26 深圳市拉普拉斯能源技术有限公司 Semiconductor processing equipment based on novel electrode structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534748B1 (en) * 1998-03-30 2003-03-18 Sizary Ltd. Semiconductor purification apparatus and method
JP2013214682A (en) * 2012-04-04 2013-10-17 Murata Mfg Co Ltd Treatment apparatus
CN104561930A (en) * 2015-01-08 2015-04-29 北京七星华创电子股份有限公司 Graphite boat pushing device for horizontal semiconductor equipment
CN105908261A (en) * 2016-06-01 2016-08-31 温州隆润科技有限公司 Efficient diffusion furnace for silicon wafers
CN106048731A (en) * 2016-08-12 2016-10-26 深圳市捷佳伟创新能源装备股份有限公司 Low-pressure diffusion furnace door sealing device
CN106206857A (en) * 2016-08-30 2016-12-07 温州巨亮光伏科技有限公司 A kind of prevent internal silicon chip impaired and the graphite boat loading-unloading plate machine of counting graphite boat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534748B1 (en) * 1998-03-30 2003-03-18 Sizary Ltd. Semiconductor purification apparatus and method
JP2013214682A (en) * 2012-04-04 2013-10-17 Murata Mfg Co Ltd Treatment apparatus
CN104561930A (en) * 2015-01-08 2015-04-29 北京七星华创电子股份有限公司 Graphite boat pushing device for horizontal semiconductor equipment
CN105908261A (en) * 2016-06-01 2016-08-31 温州隆润科技有限公司 Efficient diffusion furnace for silicon wafers
CN106048731A (en) * 2016-08-12 2016-10-26 深圳市捷佳伟创新能源装备股份有限公司 Low-pressure diffusion furnace door sealing device
CN106206857A (en) * 2016-08-30 2016-12-07 温州巨亮光伏科技有限公司 A kind of prevent internal silicon chip impaired and the graphite boat loading-unloading plate machine of counting graphite boat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563162A (en) * 2019-07-30 2021-03-26 深圳市拉普拉斯能源技术有限公司 Semiconductor processing equipment based on novel electrode structure
CN111254418A (en) * 2020-02-10 2020-06-09 深圳市拉普拉斯能源技术有限公司 PECVD coating machine

Also Published As

Publication number Publication date
CN110600398B (en) 2023-02-07

Similar Documents

Publication Publication Date Title
CN110600398B (en) Semiconductor processing equipment
US4771730A (en) Vacuum processing apparatus wherein temperature can be controlled
KR101019766B1 (en) Plasma enhanced chemical vapor deposition apparatus, plasma enhanced chemical vapor deposition chamber and gas distribution showerhead assembly
US7429410B2 (en) Diffuser gravity support
US5788777A (en) Susceptor for an epitaxial growth factor
CN210778634U (en) Processing equipment for semiconductor or photovoltaic material
TW200535940A (en) High productivity plasma processing chamber
US11282735B2 (en) Electrostatic chuck and semiconductor equipment
CN114411122B (en) Semiconductor processing equipment and process chamber thereof
CN110517974B (en) Semiconductor processing equipment
JP6615990B2 (en) Insulation sealing device for electrode holder in CVD reactor
TW202006172A (en) Process chamber and heat treatment furnace
US3747559A (en) Apparatus for production of a closed tube of semiconductor material
CN110931339B (en) Processing device for semiconductor or photovoltaic material
KR20120077375A (en) Vacuum chamber for apparatus manufacturing of fpd and method for manufacturing of that
US20030111015A1 (en) Reaction chamber with at least one HF feedthrough
CN111560588B (en) Magnetron sputtering target and magnetron sputtering device for ultrahigh vacuum environment
CN212658646U (en) Battery package acupuncture seals frock
US10550466B2 (en) Device for insulating and sealing electrode holders in CVD reactors
KR20110101365A (en) A heater chuck using aluminum and a film processing method thereof
US20030217696A1 (en) Device for the deposition of, in particular, crystalline layers on, in particular, crystalline substrates
CN210718658U (en) Adjusting device
EP0354127B1 (en) Bell-type furnaces, in particular for annealing metallic coils in a controlled atmosphere
KR20130121432A (en) Heater assembly and substrate processing apparatus having the same
WO2016127842A1 (en) High-temperature material conveying tank

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: No.1, Jikang Road, Kengzi street, Pingshan District, Shenzhen City, Guangdong Province

Patentee after: Laplace New Energy Technology Co.,Ltd.

Address before: No.1, Jikang Road, Kengzi street, Pingshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN LAPLACE ENERGY TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder