CN110574328A - 用于在无线通信系统中处理参考信号的方法和装置 - Google Patents

用于在无线通信系统中处理参考信号的方法和装置 Download PDF

Info

Publication number
CN110574328A
CN110574328A CN201880028384.4A CN201880028384A CN110574328A CN 110574328 A CN110574328 A CN 110574328A CN 201880028384 A CN201880028384 A CN 201880028384A CN 110574328 A CN110574328 A CN 110574328A
Authority
CN
China
Prior art keywords
csi
resources
sets
resource
configuration parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880028384.4A
Other languages
English (en)
Other versions
CN110574328B (zh
Inventor
南映瀚
陈浩
B.L.吴
V.钱德拉塞卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN110574328A publication Critical patent/CN110574328A/zh
Application granted granted Critical
Publication of CN110574328B publication Critical patent/CN110574328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Abstract

本公开涉及被提供用于支持超过第4代(4G)通信系统(诸如长期演进(LTE))的更高数据速率的准第5代(5G)或5G通信系统。提供了一种用户设备的方法。该方法包括:从基站(BS)接收指示CSI‑RS配置参数的多个第一集合中的一个或多个的配置信息;确定在包含多个小区的无线通信系统中每个频率上的信道状态信息参考信号(CSI‑RS)资源;以及分别确定各小区的CSI‑RS配置参数的多个第一集合,所述CSI‑RS配置参数的多个第一集合的每一个包含相应小区的物理小区标识符。

Description

用于在无线通信系统中处理参考信号的方法和装置
技术领域
本公开一般地涉及无线通信系统。更具体地说,本发明涉及用于在无线通信系统中处理参考信号的方法和装置。
背景技术
为满足对自部署第四代(4G)通信系统以来日益增长的无线数据业务的需求,已致力于开发改进的第五代(5G)或准5G通信系统。因此,5G或准5G的通信系统也被称为“超4G网络”或“后LTE系统”。
考虑在更高频率(毫米波)频段(例如60GHz频带)中实现5G通信系统以便实现更高的数据速率。为了减少无线电波的传播损耗并增加传输距离,在5G通信系统中讨论了波束成形、大规模多输入多输出(MIMO)、全维MIMO(FD-MIMO)、阵列天线、模拟波束成形和大规模天线技术。
另外,在5G通信系统中,正在基于高级小小区、云无线接入网(RAN)、超密集网络、设备对设备(D2D)通信、无线回程、移动网络、协作通信、协作多点(CoMP)、接收端干扰消除等进行对系统网络改进的开发。
在5G系统中,已经开发了作为高级编码调制(ACM)的混合FSK和QAM调制(FQAM)以及和滑动窗口叠加编码(SWSC)、和作为高级接入技术的滤波器组多载波(FBMC)、非正交多址接入(NOMA)和稀疏码多址接入(SCMA)。
随着有关来自工业界和学术界的各种候选技术的所有在世界范围内的技术活动,5G移动通信(其初步商业化预计在2020年左右)的势头近期正在不断增强。5G移动通信的候选促成因素包括大规模天线技术(从传统蜂窝频带到高频的、提供波束成型增益并支持增加的容量)、用于灵活地适应具有不同要求的各种服务/应用的新波形(例如,新的无线电接入技术(RAT))、用于支持大规模连接的新的多接入方案等。国际电信联盟(ITU)将2020年及以后的国际移动通信(IMT)的使用场景分为3种主要的分组,诸如增强型移动宽带、大规模机器类型通信(MTC)、以及超可靠低延迟通信。此外,ITU已规定目标要求,诸如每秒20千兆位(GB/s)的峰值数据速率、每秒100兆位(MB/s)的用户体验数据速率、3倍的频谱效率提高、支持高达每小时500公里(km/h)的移动性、1毫秒(ms)的延迟、106个设备/km2的连接密度、100倍的网络能效提高及10MB/s/m2的区域流量能力。虽然不需要同时满足所有这些需求,但5G网络的设计可以提供灵活性以支持基于用例而满足上述需求的一部分的各种应用。
发明内容
技术问题
本公开的方面提供高级通信系统中的多种服务。
技术方案
本公开涉及将提供用于支持超过第4代(4G)通信系统(诸如长期演进(LTE))的更高数据速率的准第5代(5G)或5G通信系统。本公开的实施例在高级通信系统中提供多种服务。
在实施例中,提供用户设备(UE)。所述UE包括:收发器,被配置为从基站(BS)接收指示CSI-RS配置参数的多个第一集合中的一个或多个的配置信息。所述UE还包括可操作地连接到收发器的至少一个处理器,并且所述处理器被配置为:确定在包含多个小区的无线通信系统中每个频率上的信道状态信息参考信号(CSI-RS)资源,以及分别确定各小区的CSI-RS配置参数的多个第一集合,所述CSI-RS配置参数的多个第一集合的每一个包含相应小区的物理小区标识符。
在另一实施例中,提供一种BS。所述BS包括:处理器,被配置为:配置在包含多个小区的无线通信系统中每个频率上的CSI-RS资源,以及分别配置各小区的CSI-RS配置参数的多个第一集合。所述BS还包括可操作地连接到所述至少一个处理器的收发器,并且收发器被配置为向UE发送指示CSI-RS配置参数的多个第一集合中的一个或多个的配置信息。
在又另一实施例中,提供一种UE的方法。所述方法包括:从BS接收指示CSI-RS配置参数的多个第一集合中的一个或多个的配置信息;确定在包含多个小区的无线通信系统中每个频率上的CSI-RS资源;以及分别确定各小区的CSI-RS配置参数的多个第一集合,所述CSI-RS配置参数的多个第一集合的每一个包含相应小区的物理小区标识符。
从以下的附图、说明和权利要求,其它技术特征对于本领域的技术人员可以是清楚的。
在进行以下的详细描述之前,提供对贯穿本专利文件使用的某些词语和短语的定义可能是有利的。术语“耦接”及其派生词是指两个或多个元件之间的任何直接或间接通信,无论这些元件是否相互存在物理接触。术语“发送”、“接收”和“通信”及其派生词涵盖直接和间接通信两者。术语“包括”和“包括”及其衍生词意思是包括但不限于。术语“或”是包容性的,意思是和/或。短语“与…关联”及其派生词意思是包含、包含在其中、与之互连、包括、包括在其中、连接到或与…连接、耦接到或与…耦接、可与…通信、与…合作、交织、并置、接近于、绑定至或与…绑定、具有、具有…的属性、具有与…的关系或与…有关系等。术语“控制器”意思是控制至少一个操作的任何设备、系统或其部分。这种控制器可以以硬件实现,或者以硬件和软件和/或固件的组合实现。与任何特定控制器关联的功能可以是集中式的或分布式的,不管是本地的还是远程的。当与项目列表一起使用时,短语“…中的至少一个”意思是可以使用所列出项目中的一个或多个的不同组合,并且可仅需要列表中的一个项目。例如,“A、B和C中的至少一个”包括以下组合中的任一个:A、B、C、A和B、A和C、B和C以及A和B和C。
此外,以下描述的各种功能可以由一个或多个计算机程序实现或支持,每个程序由计算机可读程序代码形成并包含在计算机可读介质中。术语“应用”和“程序”是指一个或多个计算机程序、软件组件、指令集、过程、函数、对象、类、实例、相关数据或其一部分,其适于在适当的计算机可读程序代码中实现。短语“计算机可读程序代码”包括任何类型的计算机代码,包括源代码、目标代码和可执行代码。短语“计算机可读介质”包括能够被计算机访问的任何类型的介质,诸如只读存储器(ROM)、随机存取存储器(RAM)、硬盘驱动器、压缩盘(CD)、数字视频盘(DVD)或任何其它类型的存储器。“非暂时性”计算机可读介质不包括传送暂时性电信号或其它信号的有线、无线、光学或其它通信链路。非暂时性计算机可读介质包括其中可以永久性地存储数据的介质、以及其中可以存储数据并以后覆盖的介质(诸如可重写光盘或可擦除存储器件)。
贯穿本专利文件提供了对其它某些词和短语的定义。本领域普通技术人员应当理解,在许多情况下(如果不是大多数情况下),这些定义适用于这样定义的词和短语的先前和以后的使用。
有益技术效果
根据本公开的各种实施例,可以提高通信系统的性能。
附图说明
为了更全面理解本公开及其优点,现在参考下面结合附图进行的描述,其中相同的参考标号表示相同的部分:
图1示出了根据本公开的实施例的示例无线网络;
图2示出了根据本公开的实施例的示例eNB;
图3示出了根据本公开的实施例的示例UE;
图4A示出了根据本公开的实施例的正交频分多址发送路径的示例高层图;
图4B示出了根据本公开的实施例的正交频分多址接收路径的示例高层图;
图5示出了根据本公开的实施例的示例网络切片;
图6示出了根据本公开的实施例的数字链的示例数目;
图7示出了根据本公开的实施例的示例LTE小区搜索操作;
图8示出了根据本公开的实施例的FDD配置中PSS/SSS/PBCH传输的示例帧结构;
图9示出了根据本公开的实施例的示例IFDMA和子载波间隔缩放;
图10示出了根据本公开的实施例的示例CSI-RS和SS块;
图11示出了根据本公开的实施例的示例CSI-RS配置;
图12示出了根据本公开的实施例的时隙的示例子集;
图13示出了根据本公开的实施例的时隙中的示例OFDM符号;
图14示出了根据本公开的实施例的帧中的示例时隙和SS块映射;
图15示出了根据本公开的实施例的帧中的另一个时隙和SS块映射;
图16A示出了根据本公开的实施例的示例CSI-RS映射;
图16B示出了根据本公开的实施例的不同帧结构的示例;
图17示出了根据本公开的实施例的SS块和CSI-RS资源之间的示例QCL关联;
图18示出了根据本公开的实施例的CSI-RS资源的示例关联和开启的SS块;
图19示出了根据本公开的实施例的CSI-RS资源的另一个示例关联和开启的SS块;
图20示出了根据本公开的实施例的局部和分布式映射;
图21示出了根据本公开的实施例的示例定时偏移值配置;
图22示出了根据本公开的实施例的CMTC和CSI-RS测量定时之间的示例关系;
图23示出了根据本公开的实施例的示例CSI-RS定时;
图24示出了根据本公开的实施例的RMTC的示例配置;
图25示出了根据本公开的实施例的示例测量小区特定和波束特定的RSSI值;
图26示出了根据本公开的实施例的示例CSI-RS映射和RMR配置;
图27示出了根据本公开的实施例的不同类型的RS之间的示例空间QCL关系;
图28A示出了根据本公开的实施例的UE的示例QCL假定;
图28B示出了根据本公开的实施例的UE的另一个示例QCL假定;
图29示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的示例对;
图30示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对;
图31示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对;
图32A示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对;
图32B示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对;
图33示出了根据本公开的实施例的示例定时提前;
图34示出了根据本公开的实施例的同时与TRP1和TRP2的示例UE通信;
图35示出了根据本公开的实施例的示例传播延迟;
图36示出了根据本公开的实施例的示例符号间干扰;
图37示出了根据本公开的实施例的示例符号间干扰和CP;
图38示出了根据本公开的实施例的UE中的若干示例面板;
图39示出了根据本公开的实施例的示例多TA进程;
图40示出了根据本公开的实施例的另一示例多TA进程;
图41示出了根据本公开的实施例的经由RAR消息的示例TA配置;
图42示出了根据本公开的实施例的又另一示例多TA进程;
图43示出了根据本公开的实施例的又另一示例多TA进程;
图44示出了根据本公开的实施例的又另一示例多TA进程;以及
图45示出了根据本公开的实施例的示例多TA分组维护。
具体实施方式
在本专利文件中,以下讨论的图1至图45以及用于描述本公开原理的各种实施例仅通过说明的方式,不应以任何方式解释为限制本公开的范围。本领域技术人员将理解,本公开原理可以在任何适当布置的系统或设备中实施。
以下文件在此通过引用并入本公开中,如同在本文中充分阐述的一样:3GPP TS36.211 v13.0.0,“E-UTRA,物理信道和调制”;3GPP TS 36.212 v13.0.0,“E-UTRA,复用和信道编码”;3GPP TS 36.213 v13.0.0,“E-UTRA,物理层规程”;3GPP TS 36.321 v13.0.0,“E-UTRA,介质访问控制(MAC)协议规范”;和3GPP TS 36.331 v13.0.0,“E-UTRA,无线资源控制(RRC)协议规范”,3GPP TR 38.802 v1.1.0,“对新无线接入技术物理层方面的研究”,以及3GPP TR 38.900 v14.0.0,“对6GHz以上的频谱的信道模型的研究”。
为满足自部署4G通信系统以来已增加的无线数据业务的需求,已致力于开发改进的5G或准5G通信系统。因此,5G或准5G通信系统也被称为“超4G网络”或“后LTE系统”。
考虑在更高频率(毫米波)频带(例如60GHz波段)中实现5G通信系统以便实现更高的数据速率。为了减少无线电波的传播损耗并增加传输覆盖范围,在5G通信系统中讨论了波束成形、大规模多输入多输出(MIMO)、全维MIMO(FD-MIMO)、阵列天线、模拟波束成形、大规模天线技术等。
此外,在5G通信系统中,基于先进小小区、云无线接入网(RAN)、超密集网络、设备对设备(D2D)通信、无线回程通信、移动网络、协作通信、协调多点(CoMP)发送和接收、干扰减轻和消除等,正在进行对系统网络改进的开发。
在5G系统中,已开发了作为自适应调制和编码(AMC)技术的混合频移键控和正交幅度调制(FQAM)和滑动窗叠加编码(SWSC)、以及作为高级接入技术的滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址接入(SCMA)。
以下的图1-4B描述了在无线通信系统中通过使用正交频分复用(OFDM)或正交频分多址(OFDMA)通信技术来实现的各种实施例。图1-3的描述并不意味着暗含对其中可以实现不同实施例的方式的物理或结构限制。可以在任何适当布置的通信系统中实施本公开的不同实施例。
图1示出了根据本公开实施例的示例无线网络。图1中示出的无线网络的实施例仅用于说明。在不脱离本公开的范围的情况下可以使用无线网络100的其它实施例。
如图1中所示,无线网络包括eNB 101、eNB 102和eNB 103。eNB 101与eNB 102和eNB 103通信。eNB 101还与至少一个网络130(诸如互联网、专用互联网协议(IP)网络或其它数据网络)通信。
eNB 102为在eNB 102的覆盖区域120内的第一多个用户设备(UE)提供到网络130的无线宽带接入。第一多个UE包括:可以位于小型企业(SB)内的UE 111;可以位于企业(E)内的UE 112;可以位于WiFi热点(HS)内的UE 113;可以位于第一居住地(R)内的UE 114;可以位于第二居住地(R)内的UE 115;以及UE 116,其可以是移动设备(M),诸如手机、无线笔记本电脑、无线PDA等。eNB 103为在eNB 103的覆盖区域125内的第二多个UE提供到网络130的无线宽带接入。第二多个UE包括UE 115和UE 116。在一些实施例中,一个或多个eNB 101-103可以使用5G、LTE、LTE-A、WiMax、WiFi或其它无线通信技术彼此通信以及与UE 111-116通信。
取决于网络类型,术语“基站”或“BS”可以指被配置为提供对网络的无线接入的任何组件(或组件集合),诸如发送点(TP)、发送-接收点(TRP)、增强型基站(eNodeB或eNB)、5G基站(gNB)、宏小区、毫微微小区、WiFi接入点(AP)或其它具有无线功能的设备。基站可以根据一个或多个无线通信协议(例如5G3GPP新无线接口/接入(NR)、长期演进(LTE)、高级LTE(LTE-A)、高速分组接入(HSPA)、Wi-Fi 802.11a/b/g/n/ac等)提供无线接入。为方便起见,术语“BS”和“TRP”在本专利文件中可以可互换地使用,指代对远程终端提供无线接入的网络基础设施组件。此外,取决于网络类型,术语“用户设备”或“UE”可以指代诸如“移动站”、“订户站”、“远程终端”、“无线终端”、“接收点”或“用户设备”之类的任何组件。为方便起见,术语“用户设备”和“UE”在本专利文件中用于指代无线接入BS的远程无线设备,无论UE是移动设备(诸如移动电话或智能手机)还是通常被视为固定设备(诸如台式机或自动售货机)。
虚线示出了覆盖区域120和125的大致范围(其被示出为大致圆形),仅出于说明和解释的目的。应当清楚地理解,与eNB相关的覆盖区域(诸如覆盖区域120和125)可以具有包括不规则形状的其它形状,这取决于eNB的配置以及与自然和人造障碍相关联的无线环境中的变化。
如以下更详细地描述的,一个或多个UE 111-116包括电路、程序或其组合以用于在高级无线通信系统中的有效CSI报告。在某些实施例中,一个或多个eNB 101-103包括电路、程序或其组合,以用于在高级无线通信系统中的有效CSI报告。
尽管图1示出了无线网络的一个示例,但可以对图1进行各种改变。例如,无线网络可包括任何适当布置的任何数量的eNB和任何数量的UE。此外,eNB 101可直接与任何数量的UE通信并为这些UE提供到网络130的无线宽带接入。类似地,eNB 102-103中的每一个可与网络130直接通信并为UE提供对网络130的直接无线宽带接入。此外,eNB 101、102和/或103可提供到其它或另外的外部网络(诸如外部电话网络或其它类型的数据网络)的接入。
图2示出了根据本公开实施例的示例eNB 102。图2中示出的eNB 102的实施例仅用于说明,并且图1中的eNB 101和103可以具有相同或类似的配置。然而,eNB存在各种配置,并且图2不将本公开的范围限制为eNB的任何特定实现。
如图2中所示,eNB 102包括多个天线205a-205n、多个RF收发器210a-210n、发送(TX)处理电路215和接收(RX)处理电路220。eNB 102还包括控制器/处理器225、存储器230和回程或网络接口235。
RF收发器210a-210n从天线205a-205n接收传入的RF信号(诸如由网络100中的UE发送的信号)。RF收发器210a-210n将传入的RF信号下变频以生成IF或基带信号。IF或基带信号被发送到RX处理电路220,其通过对基带或IF信号进行滤波、解码和/或数字化来生成处理后的基带信号。RX处理电路220将处理后的基带信号发送至控制器/处理器225以用于进一步处理。
TX处理电路215从控制器/处理器225接收模拟或数字数据(诸如语音数据、网络数据、电子邮件或交互式视频游戏数据)。TX处理电路215对输出的基带数据进行编码、复用和/或数字化来生成处理后的基带或IF信号。RF收发器210a-210n从TX处理电路215接收输出的处理后的基带或IF信号,并将基带或IF信号上变频为经由天线205a-205n发送的RF信号。
控制器/处理器225可包括控制eNB 102的整体操作的一个或多个处理器或其它处理设备。例如,控制器/处理器225可根据公知原理,通过RF收发器210a-210n、RX处理电路220和TX处理电路215来控制接收正向信道信号和发送反向信道信号。控制器/处理器225还可支持另外功能,诸如更高级的无线通信功能。例如,控制器/处理器225可支持波束成形或定向路由操作,其中来自多个天线205a-205n的输出信号被不同地加权以将输出信号有效地转向期望方向。控制器/处理器225可在eNB 102中支持各种其它功能中的任一种。
控制器/处理器225还能够执行在存储器230中驻留的程序和其它进程,诸如OS。控制器/处理器225可按照执行进程所需将数据移入或移出存储器230。
控制器/处理器225还耦接到回程或网络接口235。回程或网络接口235允许eNB102通过回程连接或通过网络与其它设备或系统进行通信。接口235可以支持通过任何合适的有线或无线连接的通信。例如,当eNB 102被实现为蜂窝通信系统(诸如支持5G、LTE或LTE-A的蜂窝通信系统)的一部分时,接口235可以允许eNB 102通过有线或无线回程连接与其它eNB通信。当eNB102被实现为接入点时,接口235可以允许eNB 102通过有线或无线局域网或通过有线或无线连接与更大的网络(诸如互联网)进行通信。接口235包括支持通过有线或无线连接(诸如以太网或RF收发器)的通信的任何适当结构。
存储器230耦接到控制器/处理器225。存储器230的一部分可以包括RAM,并且存储器230的另一部分可以包括闪存或其它ROM。
尽管图2示出了eNB 102的一个示例,但是可以对图2进行各种改变。例如,eNB 102可以包括任何数量的图2中所示的各组件。作为特定的示例,接入点可以包括多个接口235,控制器/处理器225可以支持用于在不同的网络地址之间路由数据的路由功能。作为另一特定的示例,虽然被显示为包括Tx处理电路215的单个实例和Rx处理电路220的单个实例,但eNB 102可以包括每一者的多个实例(诸如每个RF收发器一个)。此外,图2中的各种组件可以被组合、进一步被细分或省略,并且可根据特定需求增加另外的组件。
图3示出了根据本公开的实施例的示例UE 116。图3中所示的UE 116的实施例仅用于说明,图1的UE 111-115可以具有相同或类似的配置。然而,UE存在各种配置,并且图3不将本公开范围限制为UE的任何特定实现方式。
如图3所示,UE 116包括天线305、射频(RF)收发器310、TX处理电路315、麦克风320和接收(RX)处理电路325。UE 116还包括扬声器330、处理器340、输入/输出(I/O)接口(IF)345、触摸屏350、显示器355和存储器360。存储器360包括操作系统(OS)361和一个或多个应用362。
RF收发器310从天线305接收由网络100的eNB发送的传入RF信号。RF收发器310将RF信号下变频以生成中频(IF)或基带信号。IF或基带信号被发送到RX处理电路325,其通过对基带或IF信号进行滤波、解码和/或数字化来生成处理后的基带信号。RX处理电路325将处理后的基带信号发送到扬声器330(诸如用于语音数据)或处理器320以用于进一步处理(诸如用于网络浏览数据)。
TX处理电路315接收来自麦克风320的模拟或数字语音数据或者来自处理器340的其它输出的基带数据(诸如网络数据、电子邮件、或交互式视频游戏数据)。TX处理电路315对输出的基带数据进行编码、复用和/或数字化以生成处理后的基带或IF信号。RF收发器310从TX处理电路315接收输出的处理后的基带或IF信号,并将基带或IF信号上变频为经由天线305发送的RF信号。
处理器340可以包括一个或多个处理器或其它处理设备,并执行在存储器360中存储的OS 361以控制UE 116的总体操作。例如,处理器340可以根据公知原理,通过RF收发器310、RX处理电路325、和TX处理电路315来控制接收正向信道信号和发送反向信道信号。在一些实施例中,处理器340包括至少一个微处理器或微控制器。
处理器340还能够执行驻留在存储器360中的其它进程和程序,诸如用于波束管理的进程。处理器340可以如执行进程所需的将数据移入或移出存储器360。在一些实施例中,处理器340被配置为基于OS 361或响应于从eNB或运营商接收到的信号来执行应用362。处理器340还耦接到I/O接口345,该接口向UE 116提供连接到其它设备(诸如笔记本电脑和手持计算机)的能力。I/O接口345是这些配件与处理器340之间的通信路径。
处理器340还耦合到触摸屏350和显示器355。UE 116的操作者可以使用触摸屏350将数据输入UE 116。显示器355可以是液晶显示器、发光二极管显示器或能够呈现文本和/或至少受限图形(诸如来自网站)的其它显示器。
存储器360耦接到处理器340。存储器360的一部分可以包括随机存取存储器(RAM),并且存储器360的另一部分可以包括闪存或其它只读存储器(ROM)。
尽管图3示出了UE 116的一个示例,但是可以对图3进行各种改变。例如,图3中的各个组件可以被组合、进一步被细分或省略,并且可以根据特定需求增加另外的组件。作为特定的示例,处理器340可以被划分为多个处理器,诸如一个或多个中央处理器(CPU)和一个或多个图形处理单元(GPU)。此外,尽管图3示出了被配置为移动电话或智能手机的UE116,但可以将UE配置为作为其它类型的移动或固定设备操作。
图4A是发送路径电路的高层图。例如,发送路径电路可以用于正交频分多址(OFDMA)通信。图4B是接收路径电路的高层图。例如,接收路径电路可以用于正交频分多址(OFDMA)通信。在图4A和4B中,对于下行链路通信,发送路径电路可以在基站(eNB)102或中继站中实现,而接收路径电路可以在用户设备(例如图1的用户设备116)中实现。在其它示例中,对于上行链路通信,接收路径电路450可以在基站(例如图1的eNB 102)或中继站中实现,而发送路径电路可以在用户设备(例如图1的用户设备116)中实现。
发送路径电路包括信道编码和调制块405、串行到并行(S-to-P)块410、尺寸为N的快速傅立叶逆变换(IFFT)块415、并行到串行(P-to-S)块420、添加循环前缀块425以及上变频器(UC)430。接收路径电路450包括下变频器(DC)455、去除循环前缀块460、串行到并行(S-to-P)块465、尺寸为N的快速傅立叶变换(FFT)块470、并行到串行(P-to-S)块475及信道解码和解调块480。
图4A 400和图4B 450中的至少一些组件可以以软件实现,同时其它组件可以通过可配置硬件或软件和可配置硬件的混合实现。特别地,注意到本公开文件中描述的FFT块和IFFT块可以被实现为可配置的软件算法,其中尺寸N的值可以根据实现方式被修改。
此外,尽管本公开是针对实现快速傅立叶变换和快速傅立叶逆变换的实施例,但这只是通过说明的方式,不可以被解释为限制本公开的范围。可以理解,在本公开的替代实施例中,快速傅立叶变换函数和快速傅立叶逆变换函数可以容易地分别被离散傅立叶变换(DFT)函数和离散傅立叶逆变换(IDFT)函数替换。可以理解,对于DFT和IDFT函数,变量N的值可以是任意整数(即1、2、3、4等),同时对于FFT和IFFT函数,变量N的值可以是作为2的幂次的任意整数(即1、2、4、8、16等)。
在发送路径电路400中,信道编码和调制块405接收一组信息位,对输入位应用编码(例如,LDPC编码)并调制(例如,正交相移键控(QPSK)或正交幅度调制(QAM)),以产生频域调制符号的序列。串行到并行块410将串行调制符号转换(即去复用)为并行数据以产生N个并行符号流,其中N是在BS 102和UE 116中使用的IFFT/FFT尺寸。尺寸为N的IFFT块415然后对N个并行符号流执行IFFT操作以生成时域输出信号。并行到串行块420转换(即复用)来自尺寸为N的IFFT块415的并行时域输出符号以生成串行时域信号。添加循环前缀块425然后将循环前缀插入到时域信号中。最后,上变频器430将添加循环前缀块425的输出调制(即上变频)到RF频率以用于经由无线信道的传输。在转换为RF频率之前,信号也可以在基带上被滤波。
发送的RF信号在通过无线信道后到达UE 116,并执行与eNB 102处的操作反向的操作。下变频器455将接收到的信号下变频为基带频率,并且去除循环前缀块460去除循环前缀以产生串行时域基带信号。串行到并行块465将时域基带信号转换为并行时域信号。然后,尺寸为N的FFT块470执行FFT算法来产生N个并行的频域信号。并行到串行块475将并行的频域信号转换为调制数据符号序列。信道解码和解调块480对调制符号进行解调然后解码以恢复原始的输入数据流。
eNB 101-103中的每一个可以实现类似于在下行链路中向用户设备111-116发送的发送路径,并且可以实现类似于在上行链路从用户设备111-116接收的接收路径。类似地,用户设备111-116中的每一个都可以实现与用于在上行链路中向eNB 101-103发送的架构对应的发送路径,并且可以实现与用于在下行链路中从eNB 101-103接收的架构对应的接收路径。
已识别和描述了5G通信系统的用例。这些用例大致可以分为三个不同的组。在一个示例中,增强型移动宽带(eMBB)被确定为具有较高的位/秒要求,具有较不迫切的延迟和可靠性要求。在另一个示例中,超可靠低延迟(URLL)被确定为具有较不迫切的位/秒的要求。在另一个示例中,设备的数量可以是最多每平方千米100000到100万台,但可靠性/吞吐量/延迟的要求可以较不迫切,确定大规模机器类型通信(MMTC)。这种场景也可以涉及电力效率的要求,因为电池消耗应当尽可能地最小化。
图5示出了根据本公开的实施例的网络切片500。图5中所示的网络切片500的实施例仅用于说明。图5中所示的组件中的一个或多个可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图5所示,网络切片500包括运营商网络510、多个RAN 520、多个eNB 530A、530B、多个小小区基站535a、535b、URLL切片540a、智能手表545a、汽车545b、卡车545c、智能眼镜545d、电源555a、温度555b、mMTC切片550a、eMBB切片560a、智能手机(例如手机)565a、笔记本电脑565b、平板电脑565c(例如平板电脑PC)。
运营商网络510包括与网络设备(例如,eNB 530a和530b)关联的多个无线接入网络520–RAN、小小区基站(毫微微eNB/皮eNB或Wi-Fi接入点)535a和535b等。运营商网络510可以支持依赖于切片概念的各种服务。在一个示例中,网络支持4个切片:540a、550a、550b和560a。URLL切片540a服务于需要URLL服务的UE,例如汽车545b、卡车545c、智能手表545a、智能眼镜545d等。两个mMTC切片550a和550b服务于需要mMTC服务(诸如功率计和温度控制(如555b))的UE、以及需要eMBB服务的一个eMBB切片560a(诸如手机565a、笔记本电脑565b、平板电脑565c)。
简而言之,网络切片是一种在网络层处理各种不同服务质量(QoS)的方案。为了有效地支持这些各种QoS,也可能需要特定于切片的PHY优化。设备545a/b/c/d、555a/b是不同类型的用户设备(UE)的565a/b/c示例。图5中所示的不同类型的用户设备(UE)不一定与特定类型的切片关联。例如,蜂窝电话565a、笔记本电脑565b和平板电脑565c与eMBB切片560a关联,但这只是用于说明,这些设备可以与任何类型的切片关联。
在一些实施例中,一个设备被配置有多于一个切片。在实施例中,UE(例如,565a/b/c)与两个切片(URLL切片540a和eMBB切片560a)关联。这对于支持在线游戏应用可以是有用的,在线游戏应用中,图形信息通过eMBB切片560a发送,并且用户交互相关信息通过URLL切片540a交换。
在当前的LTE标准中,没有可用的切片级(slice-level)PHY,并且类切片地(slice-agnostic)利用大多数PHY功能。UE通常被配置有单组PHY参数(包括发送时间间隔(TTI)长度、OFDM符号长度、子载波间隔等),这可能阻止网络(1)快速适应动态改变的QoS;(2)同时支持各种QoS。
在一些实施例中,公开了用网络切片概念处理不同QoS的对应PHY设计。注意到“切片”仅是为了方便参考与常见特征(例如,参数集(numerology)、上层(包括媒体接入控制/无线资源控制(MAC/RRC))和共享的UL/DL时频资源)关联的逻辑实体而引入的术语。“切片”的替代名称包括虚拟小区(cell)、超小区、小区等。
图6示出了根据本公开的实施例的示例数量的数字链600。图6中所示的示例数量的数字链600的实施例仅用于说明。图6中所示的一个或多个组件可以在被配置为施行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
LTE规范支持最多32个信道状态信息参考信号(CSI-RS)的天线端口,其使eNB能够被配备大数量(诸如64或128个)的天线元件。在这种情况下,多个天线元件被映射到一个CSI-RS端口。对于诸如5G的下一代蜂窝系统,CSI-RS端口的最大数量可以保持不变或增加。
对于毫米波波段,如图6中所示,尽管天线元件的数量对于给定的形状系数可更大,但CSI-RS端口的数量(可以与数字预编码端口的数量对应)-由于硬件限制(诸如在毫米波频率按照大数量的ADC/DAC的可行性)而趋于受限。在这种情况下,一个CSI-RS端口被映射到可由一组模拟移相器601控制的大数量的天线元件。一个CSI-RS端口然后可对应于一个子阵列(其通过模拟波束成形605产生窄模拟波束)。这种模拟波束可被配置为通过变更跨符号或子帧的移相器组来扫过更宽范围的角度620。子阵列的数目(等于RF链的数目)与CSI-RS端口的数目NCSI-PORT相同。数字波束成形单元610执行跨NCSI-PORT个模拟波束的线性组合以进一步增加预编码增益。虽然模拟波束是宽带(因此不是频率选择性的),但可跨频率子带或资源块来变更数字预编码。
gNB可利用一个或多个发送波束来覆盖一个小区的整个区域。gNB可通过对天线阵列应用适当的增益和相位设置来形成发送波束。发送增益(即,对由发送波束提供的发送信号功率的放大)通常与由波束覆盖的宽度或区域成反比。在较低的载波频率下,对于gNB,更为良性的传播损耗可以是可行的,以利用单个发送波束提供覆盖,即,经由使用单个发送波束,确保覆盖区域内的UE位置处的足够的接收信号质量。换言之,在较低的发送信号载波频率下,由具有足够大的宽度以覆盖该区域的发送波束提供的发送功率放大可足以克服传播损耗,以确保覆盖区域内的UE位置处的足够的接收信号质量。
然而,在较高的信号载波频率下,与相同覆盖区域对应的发送波束功率放大可能不足以克服较高的传播损耗,这导致在覆盖区域内的UE位置处的接收信号质量降低。为了克服这种接收到的信号质量降低,gNB可以形成多个发送波束,每个发送波束在比总体的覆盖范围窄的范围上提供覆盖,但提供足以克服由于使用更高的发送信号载波频率而导致的更高的信号传播损耗的发送功率放大。
图7示出了根据本公开的实施例的LTE小区搜索操作700的示例。图7中所示的LTE小区搜索操作700的实施例仅用于说明。图7中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在UE可以接收数据或向eNB发送数据之前,UE首先需要执行小区搜索过程以获得与eNB的时间和频率同步。这4个主要的同步要求是:符号、子帧和帧定时;载波频率偏移(CFO)校正;采样时钟同步;物理小区ID(PCI)检测以及潜在的一些其它小区特定参数。
在同步期间采取以下步骤。在步骤1的一个示例中,在通电后,UE对UE的RF进行调谐,并尝试在一组支持的频带上逐个测量特定频率(如由更高层所命令的信道)下的宽带接收信号强度指示符(RSSI),并基于相应的RSSI值对相关小区进行排名。
在步骤2的一个示例中,UE使用下行链路同步信道,该下行链路同步信道是本地存储的与接收到的信号相关的主同步信号(PSS)和次同步信号(SSS)。例如对于FDD系统,UE首先在位于帧中的第一个子帧和第六个子帧的第一个时隙的最后一个符号中找到PSS。这使得UE可以在子帧级别与eNB同步。PSS检测有助于UE基于3个序列进行物理层小区身份(PCI)检测(0,1,2)和时隙定时检测。这3个序列用于PSS,以缓解所谓的单频网络(SFN)效应,在SFN中相关输出可以超过循环前缀(CP)长度。
在步骤3的一个示例中,对于FDD系统,SSS符号也位于与PSS相同的子帧中,但位于PSS之前的符号中。从SSS,UE能够获得PCI组号(0到167)。SSS使得能够进行另外参数的确定,诸如无线子帧定时确定、CP长度确定以及eNB是使用FDD还是使用TDD。该过程在图7中所示的LTE小区搜索过程中被描绘。
在步骤4的一示例中,一旦UE知道给定小区的PCI,UE还将知道用于信道估计、小区选择/重新选择和切换过程的小区特定参考信号(CRS)的位置。在使用CRS进行信道估计后,执行均衡以消除来自所接收符号的信道减损。
在步骤5的一个示例中,在初始同步的情况下,UE可以对主广播信道(PBCH)进行解码以获得承载关键系统信息(诸如DL带宽、CRS发送功率、eNB发送器天线的数量、系统帧号(SFN)和物理混合ARQ信道(PHICH)的配置)的主信息块(MIB)。
表1示出了针对基于TDD的系统和基于FDD的系统两者的相对于PSS位置的SSS位置。在FDD的情况下,PSS总是在时隙的最后一个符号中发送,以使UE能够获取与CP长度无关的时隙定时。由于UE事先不知道CP长度,因此,当UE正在搜索FDD小区或TDD小区时,需要检查总共4个可能的SSS位置。使用在子帧中的第一个和第二个SSS传输之间交替的两个SSS代码,这使得UE能够从对SSS的单次观测确定无线电定时,这有助于UE从另一个RAT切换到LTE。
表1.SSS位置
图8示出了根据本公开的实施例的FDD配置中的PSS/SSS/PBCH传输800的示例帧结构。图8中所示的PSS/SSS/PBCH传输800的帧结构的实施例仅用于说明。图8中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。其它在不脱离本公开的范围的情况下,使用其它实施例。
如图8中所示,PSS和SSS总是在中央的6个RB中传输,使得即使是最小带宽的UE也可以检测到信号。在多个发送天线的情况下,PSS和SSS总是在给定子帧中从相同天线端口发送,同时PSS和SSS可以在子帧之间切换以实现天线分集。PBCH仅利用14位来承载MIB,这14位携带了一些对初始接入小区必要的最频繁发送的参数,诸如DL系统带宽、PHICH尺寸和SFN编号。每40毫秒将其重复一次。
PSS和SSS总是在DL系统带宽的中央6个资源块(RB)中传输,使得在UE确定DL系统带宽之前,PSS和SSS可以由UE检测,假定最小的DL系统带宽是6个RB。PSS通过频域内长度为63的Zadoff-Chu(ZC)序列生成,在ZC序列中,中间元素被打孔以避免在DC子载波上传输。ZC序列满足恒幅零自相关(CAZAC)属性,其使得PSS在UE处(通过利用复共轭属性,例如,u1=29且u2=63-29=34,以及通过利用在时域和频域两者内的中心对称属性)能够具有低复杂度检测、良好的自相关/互相关简档、时间/频率平坦性(导致低PAPR/CM且在频域内无动态范围)等的特性。
然而,由于CAZAC属性在时域和频域上的双重性,所以频域中的ZC序列的偏移也在时域中转换,反之亦然。因此,在使用ZC序列的定时同步的情况下,频率/时间偏移相应地显示时间/频率偏移,且这两个维度中的偏移不能被区分。在可用根ZC序列索引矢量中的中心根索引具有较低的频移敏感度,为此,在LTE中选择根索引U=25、29和34以在小区ID组内提供三个小区ID。
根索引的选择也被认为与克服初始小区搜索中的大频率偏移部分相关。由于作为大频率偏移的结果的在时域中的相位旋转,需要考虑的部分相关不仅针对ZC序列,而且针对尤其是初始小区搜索中在大频率偏移操作下的其它序列,尽管每个部分相关的窗口尺寸可以取决于确切的设计而不同。
PSS序列x(n)由长度为NZC的根ui的ZC序列组成并且通过以下公式给出:
LTE的ZC序列被映射以获得中心对称属性(即,索引5与包括被编索引0到11的12个子载波的RB的DC子载波对应)。SSS序列基于M序列。168个序列通过对两个长度为31的BPSK调制的M-序列的频域交织来生成,其中两个长度为31的M-序列是从单个长度为31的M-序列的两个不同循环移位而得到的。在交叉相关和加扰期间SSS的指向侧叶的两个部分结构用于减小侧叶。对于SSS,当信道估计可经由PSS检测来得到时,可进行相干检测。
为了通过估计来自PSS的信道以获得SSS相干检测的更优性能,在PSS检测复杂度中通过折衷来使用多个PSS序列。不同的PSS序列可以通过放宽SFN效应来提高信道估计的精度,其中SFN效应由于具有来自所有小区的单个PSS序列而存在。因此,前述PSS/SSS设计可以支持相干SSS检测和非相干SSS检测两者。对于三个不同PSS序列,UE需要操作三个并行的相关器。
然而,根索引29和34是彼此的复共轭,这使能“一次”相关器--u=29和34的两个相关输出可以从与u=34或u=29的相关获得。对于任何采样速率,共轭属性在时域和频域上都保持,在频域中具有中心对称映射。因此,仅需要两个并行的相关器(一个用于u=25,另一个用于u=29(或u=34))。
至少出于以下原因,对于新通信系统(诸如5G),有必要提高现有的同步和小区搜索过程。在波束成形支持的一个示例中,为了满足高载波频带(诸如6GHz以上的频带)下的操作的链路预算要求,对于eNB(并且也可能是UE)进行的发送需要波束成形。因此,需要更新前述的同步和小区搜索过程以支持波束成形。
在大带宽支持的一个示例中,对于具有大系统带宽(诸如100MHz或以上)的操作,可以应用与在较小系统带宽下的操作的子载波间隔不同的子载波间隔,并且需要考虑这种设计用于同步和小区搜索过程设计。
在改进的覆盖率的一示例中,对于一些应用,诸如与可以由于在经历大的路径损耗的位置中放置UE而发生覆盖增加的要求相关联的应用,同步和小区搜索过程需要支持提高的覆盖和增加的同步信号重复。
在改进的性能的一示例中,由于通过将小区ID划分为1个PSS和2个SSS而致使的误警报,前述过程的同步性能受到限制,因此导致不能通过加扰来完全解决的PSS/SSS的无效组合。可以设计具有提高的误警报性能的新同步过程。
在支持变量TTI的一个示例中,在当前的LTE规范中,TTI持续时间是固定的。然而,对于5G系统,由于支持不同的子载波间隔、低延迟考虑等,期望TTI是可变的。在具有可变的TTI的这种场景下,需要指定帧内的小区搜索和同步序列的映射。
在本公开中,SS突发集以周期P周期性重现,其中P是整数,例如5、10、20、40、80、100等,以毫秒计。
在本公开中,SS突发是指一组连续的N2个SS块,其中N2是整数,例如1,2,3,4。
在本公开中,SS块包括同步信号、广播信号和参考信号的组合,这些信号以TDM、FDM、CDM或混合方式复用。
在本公开中,通过对包括SS突发集的SS块进行波束扫描的方式来提供小区覆盖。不同的Tx波束可以用于SS突发集内的不同SS块。
图9示出了根据本公开的实施例的示例IFDMA和子载波间隔缩放900。图9中所示的IFDMA和子载波间隔缩放900的实施例仅用于说明。图9中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图9中所示,当使用IFDMA时,各个子时间单元的长度近似为时间单元的1/Q1,其中整数Q1是指重复系数(每Q1个,子载波携带信号)。当使用子载波缩放时,单个子时间单元的长度是时间单元的1/Q1,其中Q1是指子载波缩放因子(子载波间隔比参考子载波缩放大Q1倍)。
在一些实施例中,以下总是开(always-on)信号用于在空闲(IDLE)模式下的L3移动性的RRM测量:NR同步信号;或者如果对于PBCH支持DM-RS,则NR同步信号、以及PBCH的附加DM-RS(注意:如何使用DM-RS进行RRM测量归结于UE实施);或者,如果对于PBCH支持DM-RS,则PBCH的DM-RS。注意,如果对于PBCH支持DM-RS,则可以需要向下选择。
在一些实施例中,对于L3移动性的连接模式RRM测量,如果需要,除了空闲(IDLE)模式RS外,还可以使用以下RS:CSI-RS;和/或与CSI-RS分开设计的RS。注意,不排除在SS块中复用宽带RS的可能性。
在本公开中,QCL资源可以指波束、天线端口(跨越所有配置的时间单元)、对应于RS资源的一组天线端口、CSI-RS资源、或RS资源的时间单元和天线端口的组合。
在本公开中,RS资源可以指CSI-RS资源、BRS(多波束移动性RS,可以是特定于小区配置的,可以与PSS、SSS、PBCH DMRS、DMRS、CSI-RS或新设计的RS对应)、一组DMRS端口等。
在本公开中,RS设置可以指RS资源的集合。
在本公开中,时间单元可以根据配置的参数集而对应于(连续的)一个或多个OFDM符号的块,在该块上,UE可以假定相同的QCL参数可应用于每个天线端口(和/或其中保持端口相干性)。
在本公开中,Tx波束(ID)可以指RS资源的QCL资源,其中RS资源可以是BRS或CSI-RS。RS资源或RS设置的Tx波束可以用称为Tx波束ID的唯一ID来编索引。例如,如果在RS资源或RS设置中有N个Tx波束可用,则可以向这N个单独的Tx波束分配N个唯一的ID。
在本公开中,Rx波束ID是指UE和gNB可以共同理解的用于UE的Rx波束成形操作的索引。用户可以被配备有单个或多个数字Rx链。当UE被配备有单个Rx链时,第一Rx波束ID与转向第一角度的第一Rx波束对应;第二Rx波束ID与转向第二角度的第二Rx波束对应;依此类推。
当UE被配备有N个数字Rx链时,第一Rx波束ID与转向第一组N个角度的第一组N个Rx波束对应;第二Rx波束ID与转向第二组N个角度的第二组N个Rx波束对应;依此类推。这里,N是正整数。由于Rx波束ID可以与多个Rx波束相关(尤其在多个数字链的情况下),所以Rx波束ID可以替代地被称为Rx模式。
在本公开中,Rx波束、Rx模式、Rx波束集和Rx波束相关的QCL参数可互换地使用,并参考平均AOA、ASD或天线相关性。当第一QCL资源的Rx波束可以通过第二QCL资源的Rx波束来推断时,第一和第二QCL资源称为在Rx波束/Rx模式下的QCL(QCL’ed)。
在本公开中,QCL参数集是指Rx波束相关参数(平均到达角、到达角扩展、Rx天线相关性等)、延迟和定时相关参数(RX定时、延迟扩展、平均延迟)、多普勒相关参数(平均多普勒、多普勒扩展)等的组合。
在本公开的一些实施例中,“子帧”或“时隙”是用于指“时间间隔X”的另一名称,反之亦然。
在用于连接模式移动性的附加RS的一些实施例中,尽管NR-SSS可以满足RSRP测量精度要求,但这并不意味着它对于连接模式移动性可以是充分的。对于传统的LTE RRM测量,为空闲和连接(模式)分开定义各种其它要求(例如延迟要求),并对连接模式定义了更严格的要求。在NR中,预计可以发生类似的延迟需求,并且NR-SSS是否也可以满足对于连接模式的这些延迟要求似乎是开放性问题。
前述实施例确实与SS突发集的周期有关。如果SS突发集被配置有相对短的周期(例如,5、10毫秒),则延迟问题可能不严重,并且对于L3移动性可以不需要额外的RRM测量信号。对于低于6GHz的单波束操作,可能是此情况。然而,至少对于超过6GHz的操作的多个波束,波束水平(beam level)测量结果可以对切换性能起到关键作用,并且不清楚NR-SSS能否为切换过程的波束对准提供足够信息。如果在切换过程期间在网络侧没有可用的波束水平信息,则网络和UE可能需要经受耗时的波束管理过程,在这种情况下,UE在切换后可能会经历吞吐量突然下降,直到波束被最终对齐。一种可能的解决方案是允许用户报告SS块的RSRP。
然而,该解决方案只能在有限的情况下起作用,例如,如果网络实现使得NR-SSS在不具有SFN的窄波束上发送,则如果小区具有单个TXRU,则该网络实现可发生。当小区具有多个TXRU时,该小区可以在多个TXRU上发送具有SFN的NR-SSS以减少SS块的数量(这可以构成静态的系统开销),其中TXRU使用不同的波束。在这种情况下,可以用NR-SSS获取的波束信息可能会受到限制,并且SS块的RSRP对于切换过程期间的波束对准可能不够。
有了这些观察结果,似乎存在需要额外的RS的情况,但考虑到关闭额外的RS的可能性(例如,用于维持单波束操作的低开销)似乎也很重要。
UE是否被允许从附加RS以及空闲模式的RS中进行小区级的RSRP测量是一个开放性问题。如果决定允许使用附加RS和SSS两者来得到小区级的RSRP,则需要设计用于将从附加RS得到的波束级RSRP和从SSS得到的波束级RSRP组合以得到小区级RSRP的方法。为了使从两个不同的测量信号得到的RSRP值至少相似(例如,在dB余量的某个部分内),网络必须以某种方式执行波束成形。
引入附加RS的主要动机是为了波束相关操作,自然的候选者是被引入用于波束管理的CSI-RS;但可以与CSI-RS不同地设计附加RS。
是否在SS块中复用附加RS是另一开放性问题。为进一步澄清,这里的SS块意味着SS块持续时间和初始接入BW两者。当每个SS块可包括PSS/SSS/PBCH/TRS时,在SS块内复用附加RS似乎是一项挑战性任务。将附加RS插入到SS块中,其它信号的覆盖可能降低,因此建议在SS块中不复用附加RS。但是,能够在SS块持续时间的初始接入BW之外映射附加RS仍然是有益的,例如,用于有效地利用波束扫描资源;并且应当允许此选项。
当在SS块中附加RS不与其它信号复用时,可以大大降低多波束的附加RS的设计约束。如果CSI-RS可以支持相当灵活的设计,则它可以用作附加RS。虽然CSI-RS传统上仅被配置为UE特定的,但是对于移动性用例,不清楚是否期望UE特定的配置。
考虑到附加RS的主要用例用于针对用于切换的对所选择相邻小区的“初始”波束级测量的连接模式移动性,附加RS的配置应当简单,使得网络就不需要在x2接口上交换太多信息。“灵活的”CSI-RS配置可以暗含许多配置参数是可用的;这种高级的灵活性对于该用例可能既不有用也不可取。因此,如果对于附加RS允许有限的配置可能性,并且在初始接入的早期阶段(例如,在MIB/RMSI中)发送信息,则更可取。如果附加RS被特定于小区配置,则它也可以用于小区范围的初始TRP Tx波束选择和TRP-Tx切换(P1/P2)所需的测量;以及也用于时频跟踪。
每个资源的天线端口数量可以与对于服务小区可以同时开启多少个TXRU以及单个天线端口的RS密度有关。关于TXRU的数量,越多越好;对于RS密度,越小越好。每个资源的天线端口候选数量为1、2、4、8。
最后,附加RS的同步源可以是PSS/SSS,不需要其它设计。对于该决定,传统LTE发现RS可以是好的参考。传统发现RS包括PSS/SSS/CRS或PSS/SSS/CRS/CSI-RS,发现信号的最小周期是40毫秒。PSS/SSS足以进行粗略的时间/频率同步;并且UE可以用MIB/RMSI中的有限信令找到另外的RS,物理小区ID仅用于相邻小区测量。
在一些实施例中,可以设计RS。RS的主要功能包括以下中的一些:连接模式的附加移动性RS;初始波束管理过程和/或时频跟踪。
在本公开中,RS也可以称为CSI-RS,但术语“CSI-RS”是为了便于描述,在不脱离本公开原理的情况下,其它术语也可用于指代RS。
在RS配置和映射的一些实施例中,注意到SS块的波束可能具有要用于初始小区选择的有限解析度,这是因为:SS突发集中的SS块的数量可能较小,例如,对于总是开启的SS维持资源开销较小;并且SSS的天线端口数量是1或2,以维持小区ID检测的UE复杂度较小。
提供SS突发集的波束数量的一种方法可以根据在每个TXRU上可以扫描的模拟波束的最大数量。当一个小区具有多个TXRU(和TRP)时,网络可以配置所有TXRU,并且可以在每个SS块上以SFN方式发送TXRU自身的波束,例如,以减少与波束扫描相关的系统开销。特别地,当一个小区具有较大数量的TXRU时,由于SFN发送,网络可以从每个SS块中的SSS获取的波束信息可能受限,并且网络可能需要附加过程来为每个UE获取TXRU/TRP特定的波束信息。该附加过程可以称为“初始波束选择”。为了有效促进初始波束选择,网络可以提供CSI-RS。
在实施例中,CSI-RS被特定于小区配置并且在小区范围内发送。该CSI-RS也可以用于由于小区内部的UE移动而进行的波束切换。此外,CSI-RS还可用于L3移动性的小区间波束测量。当网络考虑某个相邻小区用于UE的切换时,网络可以配置UE报告该相邻小区的波束测量结果,使得当切换该UE时网络能够确保与目标小区的波束对准;否则,波束管理延迟可能致使UE体验服务中断。
此外,如果CSI-RS模式可以专门为该目的设计,则小区范围的CSI-RS也可以用于时频跟踪。为了允许所有这些操作,优选经由广播信令(例如,在PBCH上的基于MIB的信令,或在另一广播信道或PDSCH上的RMSI(剩余最小系统信息或SIB)信令)来专门配置小区范围的CSI-RS小区。
支持小区范围的波束管理的CSI-RS映射至少可以具有以下特征。在一个示例中,在资源设置(其对应于CSI-RS集)中,配置了K个CSI-RS资源,可以在K个(子)时间单元上扫过波束。在这个示例中,K个CSI-RS资源中的每一个都对应于一个(子)时间单元。在这个示例中,CSI-RS资源的CSI-RS端口被映射到一个(子)时间单元上的子载波上。
在一个示例中,将相同数量(NP)的端口用于每个资源;并且端口的最大数量小于或等于NPmax。在一个示例中,CSI-RS根据无线帧的第一时隙周期性地被配置有周期P和偏移O。在一个示例中,可以配置子时间单元的尺寸;一个时间单元对应于Q个子时间单元,其中Q=1、2、4。在一个示例中,这些实施例中的CSI-RS资源可以替代地被称为包括NP个CSI-RS资源的CSI-RS资源集,每个资源包括一个或两个天线端口。
在实施例中,在资源集中(其对应于通过配置的参数集定义的时隙),K个OFDM符号被配置为携带CSI-RS。在实施例中,为每个OFDM符号映射相同数量NP的资源。那么,资源集中的资源总数变为K·NP。在实施例中,CSI-RS周期性地被配置有周期P和偏移O,例如,根据无线帧的第一时隙。
这些参数的第一子集经由PBCH(例如,在MIB中)指示;这些参数的第二子集经由第二PBCH或SIB表示;这些参数的第三子集是预配置的;这些参数的第四子集是特定于UE而RRC配置的,其中4个子集的联合包括所有这些参数;这4个子集互相排斥;以及这4个子集中的一些可以为空。
为了使网络更有效地配置该信息,应当对可配置性进行一些限制。
在一些实施例中,CSI-RS和SS块可映射到相同的OFDM符号上。为了节省信令开销,在一种方法中,K被预先配置为与发送的SS块的实际数量相同;并且还预先配置了无线帧中的K个资源的时域位置。在这种情况下,映射每个时隙中的SS块的那些OFDM符号也可用于映射该K个CSI-RS资源。
可以允许UE获得具有在第k个CSI-RS资源上的天线端口的平均功率的RSRP,其称为资源k的CSI-RSRP。UE还可以获得在SS突发集中的第k个SS块上的SS块RSRP。在这种情况下,利用资源k的CSI-RSRP和第k个SS块上的SS块RSRP的加权和,可以得到第k个波束的RSRP。m个最强波束的RSRP的加权和(或平均值)可以用作小区特定的RSRP,其用作L3移动性的RRM测量值,其中m是整数。
当SS块的子载波间隔是给定载波频率的默认子载波间隔的整数(Q)倍时,子时间单元的长度等于用默认子载波间隔构建的OFDM符号长度的1/Q,使得可以根据相同的参数集而在频域内复用SS块中的其它信号和CSI-RS。
图10示出了根据本公开的实施例的示例CSI-RS和SS块1000。图10中示出的CSI-RS和SS模块1000的实施例仅用于说明。图10中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图10中示出了前述实施例。SS块包括4个短的OFDM符号,对应于默认参数集中的一个OFDM符号;并且包括要映射到这4个短的OFDM符号上的4个信号A、B、C、D。SS块也是被限制在SS BW(其是系统BW的子集)内的频带。CSI-RS被映射在其中SS块被映射的那些OFDM符号上,但CSI-RS被映射在其中缺少SS块的系统BW的边界上。在包括OFDM符号的4个短的OFDM符号上使用相同的TX波束,因此包括每个CSI-RS资源的天线端口被映射到这4个短的OFDM符号。UE可以在这4个短的OFDM符号上应用不同的Rx波束以用于Rx波束扫描。
在实施例中,CSI-RS周期和偏移与SS块的周期和偏移量相同。在这种情况下,对于CSI-RS配置,仅以下信息可以被另外配置:每个CSI-RS资源的端口数量;以及每个SS突发中实际发送的SS块的位置。对于CSI-RS时域位置,UE可以假设以下情况:CSI-RS周期和偏移与SS块的CSI-RS周期和偏移相同;CSI-RS被映射在其中SS块被映射的那些OFDM符号上以及在其上缺少SS块的系统BW的边界上;和/或用于CSI-RS映射的子载波间隔与用于SS块的子载波间隔相同。
在一些实施例中,CSI-RS周期可以被配置为不同于SS块的周期;但CSI-RS时间偏移与SS块的时间偏移相同。
在实施例中,与SS块的周期不同配置CSI-RS周期。特别地,SS块的周期是CSI-RS周期的整数(Z)倍。在这种情况下,CSI-RS可以在一些时间场合下用SS块进行FDM,并且CSI-RS可以在一些其它时间场合下被映射在整个系统BW或配置的CSI-RS BW上。
在CSI-RS配置的前述实施例中,仅以下信息可以被另外配置:每个CSI-RS资源的端口数量;每个SS突发中实际发送的SS块的位置;以及CSI-RS的周期(例如,在整数方面,Z∈{1,2,4})。
对于CSI-RS时域位置,UE可以假设以下情况。在一个示例中,CSI-RS时间偏移与SS块的时间偏移相同。在SS块被映射的帧上,CSI-RS被映射。如果配置的周期缩放值(Z)大于1,则CSI-RS可以被映射在附加的帧中。
在另一示例中,CSI-RS被映射在与其中SS块被映射的OFDM符号相同的子集上。在该示例中,CSI-RS可以被映射在具有或不具有SS块的时隙中,并且映射CSI-RS的OFDM符号编号与用于映射SS块的OFDM符号编号相同。在该示例中,CSI-RS可以被映射在具有或不具有SS块的帧中,并且映射CSI-RS的时隙编号与用于映射SS块的时隙编号相同。
在又另一示例中,CSI-RS的频域映射是:如果时隙被配置用于不具有SS块的CSI-RS映射,则CSI-RS被映射在完整/配置的BW上;和/或如果时隙被配置用于CSI-RS和SS块映射,则CSI-RS用SS块进行FDM。
在又另一示例中,用于CSI-RS映射的子载波间隔与用于SS块的子载波间隔相同。
假设SS块(或SS突发集)的默认周期是ND,CSI-RS的周期是NP个帧,其中ND=Z·NP。在帧0、ND…中的时隙的子集中,SS块和CSI-RS两者都被映射;在帧NP、2NP(不同于ND的整数倍)…中的时隙的相同子集中,CSI-RS被映射,而不受SS块的约束。注意到描述周期的时间单元可以改变为不同的时间单元(例如时隙),而不脱离该实施例的原理。
图11示出了根据本公开的实施例的示例CSI-RS配置1100。图11中所示的CSI-RS配置1100的实施例仅用于说明。图11中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图12示出了根据本公开的实施例的时隙1200的示例子集。图12中示出的时隙1200的子集的实施例仅用于说明。图12中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图12示出了其上CSI-RS和/或SS块被映射的时隙的子集。该表述中时隙的子集是时隙0、1、…、X。
图13示出了根据本公开的实施例的时隙1300中的示例OFDM符号。图13中所示的时隙1300中的OFDM符号的实施例仅用于说明。图13中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图13示出了在属于时隙子集的时隙中的OFDM符号。在可以具有SS块和/或CSI-RS的每个帧的时隙0中,OFDM符号的子集用于映射这些信号。在图中,时隙的OFDM符号n到末尾的OFDM符号用于映射。
在某个实施例中,CSI-RS时隙偏移与SS块的不同。在一个示例中,CSI-RS时隙偏移与SS块不同地被配置。在一个示例中,CSI-RS时隙偏移被预先配置为Os。在这种情况下,CSI-RS可以在对于其SS块也被映射的时隙中与SS块进行FDM,并且CSI-RS被映射在整个系统BW上或者在对于其没有映射SS块的那些时隙中的配置的CSI-RS BW上。
在该示例中,对于CSI-RS配置,仅以下信息可以被另外配置:每个CSI-RS资源的端口数量;以及每个SS突发中实际发送的SS块的位置。可以配置或预先配置CSI-RS的周期(例如,在整数方面,Z∈{1,2,4})。对于CSI-RS时域位置,UE可以假设以下情况。在一个实例中,CSI-RS时隙偏移是Os。在一个实例中,CSI-RS帧偏移与SS块的帧偏移相同。在其中SS块被映射的帧上,CSI-RS被映射。如果配置的周期缩放值(Z)大于1,则CSI-RS可以映射在其它帧中。
在一个实例中,CSI-RS被映射在与其中SS块被映射的OFDM符号相同的子集上。在这样的实例中,CSI-RS可被映射在具有或不具有SS块的时隙中,映射CSI-RS的OFDM符号编号与用于映射SS块的OFDM符号编号相同。
在一个实例中,CSI-RS的频域映射是:如果时隙被配置用于不具有SS块的CSI-RS映射,则CSI-RS被映射在整个/被配置的BW上;和/或如果时隙被配置用于CSI-RS和SS块映射,则CSI-RS与SS块进行FDM。为了确保在所有时间的CSI-RS的完全BW映射,可以配置时隙偏移,使得映射CSI-RS和SS块的时隙是正交的。
图14示出了根据本公开的实施例的帧中的示例时隙和SS块映射1400。
图14示出的时隙和SS块映射1400的实施例仅供说明。图14中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在一些实施例中,可以用于SS块映射的时隙是连续的。在帧中可以用于SS块映射的时隙是连续的情况下,从帧中的其余时隙中选择映射CSI-RS的时隙。在图14中示出了一些示例。在帧中,时隙0到(x-1)可以具有SS块。在一个选项(选项1)中,CSI-RS可以被映射到时隙X到(X+Y-1)上,在这种情况下,CSI-RS时隙偏移等于X。在另一选项(选项2)中,CSI-RS可以被映射在时隙(NS-Y)到(NS-1)上。
在一些实施例中,可以用于SS块映射的时隙是分散的。在帧中可以用于SS块映射的时隙是分散的情况下,从帧中的其余时隙中选择映射CSI-RS的时隙。在图15中示出了一个示例。在帧中,时隙0、2、…(2X-2)可以具有SS块。那么,将CSI-RS的时隙偏移配置为1个时隙,并在时隙1、3、…(2Y-1)中映射CSI-RS。注意这个示例只是用于说明。SS块可以在时隙编号0、S、2S、…(SX-S)中映射,其中S是一个整数;在这种情况下,可以将CSI-RS时隙偏移配置/预配置为1、2、…、S-1中的一个。
图15示出了根据本公开的实施例的帧中的另一个时隙和SS块映射1500。图15示出的时隙和SS块映射1500的实施例仅供说明。图15中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在映射CSI-RS的多个时隙的一些实施例中,用于CSI-RS映射的时隙数量(Y)可以与用于SS块的时隙数量(X)不同。这与CSI-RS的子时间单元的长度有关。对于时间单元的子时间单元划分,可使用IFDMA或子载波缩放。假定CSI-RS子时间单元的长度约为默认OFDM符号长度的1/Q1,其中Q1是整数。然后,在一种方法中,用于CSI-RS映射(y)的时隙数量被确定为:Y=X/Q1
在该实施例中,每个子时间单元包括CSI-RS资源,并且在CSI-RS突发集内的不同子时间单元上应用不同的Tx波束。UE可以假设相同的Tx波束被应用于以CSI-RS周期重现的相同CSI-RS资源。
在考虑时频跟踪的CSI-RS映射的一些实施例中,对于时频跟踪,CSI-RS可以被映射在多个时间上分离的OFDM符号上。
图16A示出了根据本公开的实施例的示例CSI-RS映射1600。图16A示出的CSI-RS映射1600的实施例仅用于说明。图16A中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在图16A中示出了一种可能的映射模式。在图16A中,一个OFDM符号对应于CSI-RS映射的4个子时间单元,一个CSI-RS资源包括两个在时间上分离的子时间单元;第一子时间单元处于OFDM符号x(默认的参数集中的)中;并且第二个子时间单元处于(默认的参数集中的)OFDM符号y中。在一个示例中,OFDM符号x和y对应于n和n+7,其中n可以从0、1、2、3、4、5、6中选择。在这四个资源中,gNB可以应用Tx波束扫描。在这种情况下,用于CSI-RS映射的时隙数量(Y)是用于SS块的时隙数量的四分之一,因为每个时隙在CSI-RS的情况下传递4个资源,而每个时隙在SS块的情况下传递1个资源。
图16A仅用于说明,不管在每个时隙中映射的RS资源的数量如何,CSI-RS映射的原理都适用。在时隙中要映射的RS资源的数量可以是Q1=1、2、4,子时间单元的长度约为时间单元的1/Q1。在特殊情况下,时间单元的长度是一个OFDM符号。
每个时隙的RS资源数量(Q1)也可以在RRC、PBCH、RMSI或SIB中配置或者预先配置。子时间单元的长度(或RS资源的持续时间)也可以对应地被确定为时间单元的约1/Q1
在一些实施例中,考虑当将不同的参数集应用于SS块和数据时的时隙结构。在图16A和前述实施例中,假设默认参数集的子载波间隔比CSI-RS数字的子载波间隔窄。在本实施例中,考虑了另一种情况:默认SS块参数集的子载波间隔比数据的参数集的子载波间隔宽。
图16B示出了根据本公开的实施例的示例的不同帧结构1650。图16B示出的不同帧结构1650的实施例仅用于说明。图16B中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图16B示出了两种不同的帧结构:默认的SS块参数集的帧结构,其子载波间隔是2skHz;以数据参数集的帧结构,其子载波间隔是s kHz。得到的OFDM符号长度和时隙长度可以比帧结构长两倍,因此帧结构中复用的时隙数量N1比帧结构中复用的时隙数量N2大两倍。该图用于说明,也可以使用N1和N2之间的任何其它关系。
当在配置数据参数集之前配置CSI-RS时,周期和时隙偏移基于帧结构进行配置。
当在配置数据参数集之后配置CSI-RS时,可以基于帧结构或帧结构来配置周期和时隙偏移。
如图16A中所示,当CSI-RS资源用于时频跟踪时,CSI-RS资源可以包括两个OFDM符号。由于OFDM符号的持续时间不同,两个OFDM符号之间的绝对时间间隙可以对应于在不同参数集中的不同数量的OFDM符号。例如,时间间隙可以对应于帧结构的n1个OFDM符号;但是时间间隙可以对应于帧结构的n2个OFDM符号。在根据图16B的特定示例中,n1和n2的关系为:n1=2n2。因此,对于某些参数集,OFDM符号间隙可以长于一个时隙,在这种情况下,CSI-RS资源映射模式可以持续两个连续的时隙。为了处理CSI-RS映射的参数集和帧结构的差异,提出了取决于CSI-RS映射的参数集和帧结构的子载波间隔来对参数进行不同预配置。
在一个示例中,CSI-RS配置的参数集和帧结构与SS块映射的参数集和帧结构相同(即SS块默认参数集)。在这种情况下,例如根据表2通过子载波间隔确定CSI-RS配置和映射参数(即时隙偏移、映射与CSI-RS资源对应的两个OFDM符号的OFDM)。
表2.CSI-RS配置参数
在SS块和CSI-RS之间的QCL的一些实施例中,CSI-RS用于在从SS块获取粗略的时频之后的精细的时频跟踪。因此,有必要例如利用QCL关系将CSI-RS资源和SS块联系起来。在第一组QCL参数中,UE可被配置为假定CSI-RS资源(在时间单元上,或在1或2个子时间单元上)中的天线端口与SS块QCL。第一组QCL参数包括Rx波束相关的空间参数、增益、延迟和多普勒中的一个或多个。在一示例中,第一组QCL参数都是这四种类型的参数,使得采用SS块中估计的参数作为起点,可以执行进一步的时频精细化。
可以预配置在第一组QCL参数中与CSI-RS资源QCL的SS块。
图17示出了根据本公开的实施例的SS块和CSI-RS资源1700之间的示例QCL关联。图17中示出的SS块和CSI-RS资源1700之间的QCL关联的实施例仅用于说明。图17中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图17示出了SS块和CSI-RS资源之间的QCL关联的三个示例。在一个示例中,预先配置了SS块和CSI-RS资源之间的一对一映射。CSI-RS资源可以被一对一地映射到波束管理CSI-RS的(子)时间单元。CSI-RS资源x与SS块x之间QCL,其中x=0,1,…,Xmax-1。在另一示例中,预先配置一对多(k)映射。k个CSI-RS资源与一个SS块之间QCL;CSI-RS资源kx,kx+1,…,kx+k-1与SS块x之间QCL,其中k=1,2,…。这里,可以在广播信令(例如,RMSI或PBCH或SIB)或被配置的RRC中通过信号发送k。
在另一示例中,预先配置或者通过信号向UE发送多(j)对一映射。CSI-RS资源与j个SS块之间QCL;CSI-RS资源与SS块jy、jy+1、…、jy+j-1之间QCL,其中j=1、2、…、y=0、1、…。这里,可以在广播信令(例如,RMSI或PBCH或SIB)或被配置的RRC中通过信号发送j和y。
在实施例中,为每个CSI-RS资源配置SS块索引,使得UE可以假设SS块中的SSS天线端口与第一组QCL参数中的CSI-RS资源之间QCL。
在实施例中,为每个资源设置或每个资源集(对于CSI-RS)配置SS块索引,使得UE可以假设SS块中的SSS天线端口与以第一组QCL参数中的设定/设置的CSI-RS资源之间QCL。
在实施例中,该实施例中的SS块和CSI-RS资源可以被替换为第一组CSI-RS资源和第二组CSI-RS资源。
在实施例中,该实施例中的CSI-RS资源被替换为(CSI-RS资源,天线端口)。
在RRC中用于RRM测量的CSI-RS配置的一些实施例中,CSI-RS可以被配置用于RRM测量,其映射模式可以与本公开的其它实施例中的配置类似地配置。
在传统的LTE规范中,以下参数被配置用于基于CSI-RS的RRM测量。以下,DMTC指的是“DRS测量定时配置”。这些参数的配置是开发CSI-RS的NR规范以用于L3移动性的良好起点。
在NR中,上述配置参数可能不够充分,这是因为需要支持多个波束,这可以通过在一个小区中发送多个SS块来完成。例如,如果每个SS块配置多个CSI-RS资源(CSI-RS资源)的集合或设置,则每个小区配置的CSI-RS数量可以与SS块的最大数量或实际发送的SS块的数量一样多。因此,为了减少RRC和X2两者中的信令开销,似乎期望进行配置信令使得与小区对应的多个CSI-RS资源在一批中配置。
在实施例中,使用与小区的SS块对应的各自的多个CSI-RS资源(或CSI-RS资源)的集合/设置来配置UE。这里,关联暗含同步定时或QCL(如其它实施例中)或两者。为此目的,UE被配置有SS块ID以及小区ID、和对应的资源配置、时隙定时。可以根据到SS块时隙场合/位置的时隙偏移配置时隙定时。可以与传统的LTE规范中的DMTC类似地获得CMTC(CSI-RS测量定时配置)的周期和时隙偏移。
根据以下框中的方法构建配置信息元素(表示为MeasCSI-RS-Config)。该方法是传统的LTE的简单扩展,但似乎需要UE的许多配置(IE)以报告RRM测量。此外,可能需要额外的机制来协助UE从与各个的CSI-RS配置对应的这些各自的量来测量小区级别的量。一种可能性是,UE被配置为使用由其配置的小区ID是X的多个MeasCSI-RS-Config IE配置的CSI-RS,得到具有小区ID X的小区的小区级RSRP/RSRQ。
因此,更好的方法是在一批中配置与小区对应的多个CSI-RS资源/集的集合/设置。为了设计该批配置,该多个CSI-RS资源/集可以被配置有一组配置参数。一种可能性是,相对于SS块的时隙定时来配置多个CSI-RS资源/集的时隙定时。为此目的,小区或虚拟小区的CSI-RS配置可以包括以下参数中的至少一个。这里,在CSI-RS配置中未配置的一些参数可以被预先配置,或者以其它方式配置,例如动态信令或广播信令。
在一些实施例中,“CSI-RS”可以指CSI-RS资源、资源集、设置中的任何一个。IEMeasCSI-RS-Config的对应结构在以下的框中示出,这些参数的细节也在下面框中进行说明。
在这些实施例中,虚拟小区ID是用于CSI-RS序列生成的加扰ID(初始化)。在这些实施例中,小区级(CSI-RS资源组级)的SS块配置是表示小区的SS块的参数,以供UE估计用于为小区进行测量的CSI-RS资源/集的数量;以及关于每个所识别的SS块的CSI-RS定时。在一个实例中,参数与SS块ID的列表对应。当配置有该参数时,UE被配置为仅使用与小区的所指示的SS块(其由小区ID和SS块ID标识)相关联的那些CSI-RS测量,以便得到和报告小区的小区级RSRP/RSRQ。在另一实例中,参数对应于SS块的数量(例如NS)。在这种情况下,UE被配置为仅使用与小区的SS块0,…,NS-1(其由小区ID和SS块ID标识)相关联的那些CSI-RS测量,以便得到和报告小区的小区级RSRP/RSRQ。
在这些实施例中,每个SS块关联的CSI-RS的数量是与SS块关联的CSI-RS资源(或资源集或资源设置)的数量。这个数字表示为CS。如果通过MeasCSI-RS-Config配置的CSI-RS的总数为C,并且通过小区级SS块配置来配置的SS块的数量为S,则CS等于C/S;换言之,C=CS·S。
在这些实施例中,批RE映射源配置是关于与每个SS块关联的CS CSI-RS的RE映射的信息。这可以对应于资源元素索引(k,l),表示映射CSI-RS的第一OFDM符号和第一子载波。在一个实例中,该参数对应于CS个资源配置参数的列表,每个参数对应于与SS块相关联的CS个CSI-RS中的一个的RE映射配置。每个SS块与CS CSI-RS关联,并且RE映射配置的公共设置适用于所有被指示的SS块的CS个CSI-RS。在另一实例中,该参数对应于与SS块相关联的第一CSI-RS的资源配置参数。其余CSI-RS的RE映射(k,l)由第一CSI-RS资源的(k,l)的(多个)函数得到。
在该实施例中,批时隙偏移配置是关于针对与每个SS块对应的时隙编号的CS个时隙偏移值的信息。在一个实例中,该参数对应于CS个时隙偏移值的列表,每个时隙偏移值对应于与SS块关联的CS个CSI-RS中的一个的时隙偏移。每个SS块与CS个CSI-RS关联,并且RE映射配置的公共集合适用于所有被指示的SS块的CS个CSI-RS。在另一实例中,该参数对应于与SS块相关联的第一CSI-RS的时隙偏移参数。在一个示例中,与SS块关联的其余CSI-RS的时隙偏移与第一CSI-RS的时隙偏移相同。
在一个示例中,每个SS块配置单个CSI-RS(例如,预配置CS=1),第i个CSI-RS资源/集的时隙定时被确定为小区的第i个SS块的函数。在一个这样的情况下,UE配置有整数,比如o,表示每个CSI-RS相对于每个SS块的时隙偏移。当第i个SS块在时隙N中发送时,那么基于该配置,UE被配置为在时隙n+o中接收第i个CSI-RS。
在另一示例中,每个SS块配置了CS(≥1)个CSI-RS(当SS块在单频网络中发送时,该实现可以是有用的)。当小区发送S个SS块时,被配置的CSI-RS的总数变为C=CS·S,其可被分成S个组的CS个CSI-RS。在这种情况下,CSI-RS的组配置似乎是有效的。属于第s组的CS个CSI-RS的时隙定时被确定为小区第s个SS块的函数。在一个这样的示例中,UE被配置有整数,比如o,表示属于CSI-RS组的所有CSI-RS相对于每个SS块的公共时隙偏移。当第s个SS块在时隙n中发送时,则基于该配置,UE被配置为在时隙n+o中接收属于第s个CSI-RS组的CSI-RS。
前述示例允许网络批量配置多个CSI-RS资源/集的CSI-RS时隙,但网络仍然需要配置每个选定时隙中的一个或多个CSI-RS资源/集的时频资源。
假设用于映射CSI-RS的时频资源跨多个OFDM符号,例如N个OFDM符号,N=1、2、4,…。该整数N可以预先配置或与其它参数一起配置。进一步假设时隙被配置为包括M个CSI-RS(例如,根据偏移参数o)。如果公共偏移参数o适用于与SS块关联的所有CS个CSI-RS,则M可以与CS和在每个时隙中映射的SS块的数量的乘积相对应,其中CS=1、2、…。
当第二个替代方案用于RE映射资源配置时,其中其余CSI-RS的RE映射被确定为第一CSI-RS的函数,可以进一步设计两种可能性。一种可能性是在时域中连续映射该M个CSI-RS资源/集,在这种情况下,除了M个CSI-RS资源/集的第一M CSI-RS资源/集之外,没有其它参数被配置用于在每个时隙中的M个CSI-RS资源/集的时域映射配置。对于第一CSI-RS资源/集,提供资源配置参数,使得UE至少能够针对CSI-RS映射识别起始OFDM符号L(也可以通过资源配置参数提供起始子载波编号K)。
例如,假设UE在每个时隙中配置有M=2个CSI-RS资源/集;并且N=4和l=2。在这种情况下,第一个CSI-RS资源/集跨OFDM符号2(=l),…,5(=l+N-1);第二个CSI-RS资源/集跨OFDM符号6(=l+N),…,9(l+2N-1)。另一种可能性是在每个时隙中要映射的多个CSI-RS资源/集之间使用OFDM符号偏移参数,例如p。参数p可以预先配置或与其它参数一起配置。例如,假设UE在每个时隙中配置有M=3个CSI-RS资源/集;并且N=2,p=3,l=2。在这种情况下,第一个CSI-RS资源/集跨OFDM符号2(=l),3(=l+N-1);第二个CSI-RS资源/集跨OFDM符号5(=l+p),6(l+p+N-1);第三个CSI-RS资源/集跨OFDM符号8(=l+2p),9(=l+2p+N-1)。在这些示例中,当配置了子载波数量参数k时,该参数通常适用于小区的所有CSI-RS资源/集。
在单波束相对于多波束操作的一些实施例中,单波束操作更多地趋向于低于6GHz的载波频率,且多波束操作更多地趋向于高于6GHz的载波频率。本公开中的一些实施例仅假定多波束操作,因此,可能需要某个进一步的配置,使这些实施例也与单波束操作相关。
在实施例中,每个时隙中映射的CSI-RS资源的数量和子时间单元的长度通过载波频率确定。如果载波频率是第一范围,则每个时隙中仅映射单个(Q1=1)CSI-RS资源;如果是第二范围,则映射两个(Q1=2)CSI-RS资源;如果是第三范围,则映射4个(Q1=4)CSI-RS资源。子时间单元的长度通过CSI-RS资源的数量确定,其大约是时间单元的1/Q1
在子时间单元划分的一些实施例中,在第一CSI-RS资源类型中,CSI-RS资源包括时间单元,其包括用IFDMA构建的Q1个子时间单元。在第二CSI-RS资源类型中,CSI-RS资源包括子时间单元,其与通过将Q1倍的子载波缩放应用于默认子载波间隔来构建的短OFDM符号对应。CSI-RS配置可以包括CSI-RS资源类型,使UE区分第一和第二CSI-RS资源类型。
在另外的SS突发集的配置的一些实施例中,一种降低网络功耗的潜在方法是为初始小区选择指定一个长的默认周期,例如80毫秒。一个问题是,当需要功率积累时,它可能导致UE在初始检测小区并对PBCH进行解码时的长延迟。另一个问题与空闲模式操作有关。如果周期更新是特定于小区的,则UE需要在从空闲模式DRx睡眠唤醒(例如,接收寻呼)之后对于小区测量采用长默认周期。这要求UE以比在LTE中当前允许的持续时间(通常为6毫秒)长得多的时间来侦听空闲模式的SS;并且可能更快地消耗用户的电力,而这是可以避免的。还有其它的问题涉及UE Rx波束扫描。
当UE采用Rx波束扫描时,UE可能需要在多个SS突发集中尝试多个Rx波束,以找出RACH过程的最优Tx/Rx波束对。如果默认周期长,则RACH波束选择也可能需要较长的时间。此外,在空闲模式下,用户需要唤醒很长时间才能选择合适的用于接收寻呼信息的Rx波束。这将在UE侧发生严重的功耗。如果该时间段太长,则可以在该段时间内改变UE Rx波束,并可能对寻呼接收的性能产生影响。
当处于空闲或连接的UE被网络通知较短的SS突发集周期时,可以在一定程度上缓解延迟问题。在服务小区的MIB或SIB或RRC信令中,可以向UE通知服务小区的更新后周期,但也需要网络来通知UE关于相邻小区的更新后周期,以便有效地执行相邻小区的PCID检测、SI解码和连接模式RRM测量。该相邻小区的信息可以经由服务小区的SIB或RRC信令或相邻小区的MIB传送给UE。
在这些选项当中,相邻小区的MIB信令的选项可能不是有效的解决方案,因为在对相邻小区的MIB进行解码之前,UE需要知道相邻小区的更新后周期。如果允许UE简单假设更新后周期适用于所有小区,则来自服务小区的SIB信令(优选地,维持关于第二广播信道或关于PDSCH的最小系统信息而不是其它SI,以便还有助于空闲的UE的解码延迟)可以是可行的和所期望的。在一个示例中,服务小区的SS突发集的更新后周期经由服务小区的MIB来配置。在另一示例中,经由第二广播频道上的RMSI、PDSCH上的SIB或特定于UE的RRC信令来配置相邻小区的SS突发集的更新后周期。相邻小区的标识也可以一起指示。
在RRC连接模式下的小区范围CSI-RS的更新配置的一些实施例中,当一个UE处于连接模式时,可以向该UE提供关于小区范围CSI-RS或PHY中的DCI的进一步信息。为了初始波束对准和波束切换的目的,小区范围的CSI-RS可用于波束管理。附加信息包括以下中的一个或多个。在更新的CSI-RS周期的一个示例中,UE更准确地测量(如果更新的周期比特定于小区的周期更短),或者用更低的UE功耗测量(如果更新的周期比特定于小区的周期更长)。这可以通过RRC信令传送。在另一示例中,当特定于小区的CSI-RS资源的整个集合很大时,关于UE用于测量的CSI-RS资源的子集的信息减少了UE测量的负担。该子集从一组K个CSI-RS资源中选择。子集信令可以在位图中完成,其中位置p处b=1的每一位状态指示CSI-RS资源p被配置为用于UE测量;b=0指示UE被配置为不测量CSI-RS资源p。UE需要在CSI-RS资源的子集上测量波束RSRP,并且报告在波束RSRP当中的所选择的RSRP的子集。这可以在MAC信令中传送。
在又另一示例中,用于UE测量的关于CSI-RS端口子集上的信息的目的与关于CSI-RS资源子集的信息类似。当配置有CSI-RS端口的子集时,UE仅需要跨所有K个资源在配置的天线端口上测量波束RSRP,并报告波束RSRP中所选择的RSRP的子集。这可以在MAC信令中传送。
在RRC连接模式下波束细化CSI-RS的更新配置的一些实施例中,假设UE被配置有第一组CSI-RS资源和第二组CSI-RS资源。第一组CSI-RS资源被配置为用于UE在整个小区中测量特定于波束的RSRP,因此要测量的波束数量相对较大,并且使用粗略的波束或宽波束用于这些波束。第二组CSI-RS资源被配置为用于UE测量特定于波束的RSRP,使得可以执行波束细化。第一组和第二组CSI-RS资源可以特定于UE配置。或者,第一组CSI-RS资源特定于小区配置(即广播信令,例如MIB/RMSI/SIB),第二组CSI-RS资源特定于UE配置。对于第一组CSI-RS资源,允许UE跨多个时隙进行测量以得到特定于波束的RSRP;对于第二组CSI-RS资源,允许UE对每个时隙进行测量以得到特定于波束的RSRP。
QCL参数组中的第二组的每个CSI-RS资源的QCL资源可以是CSI-RS资源或第一组的(CSI-RS资源、天线端口)的组合。对于第二组的初始配置,RRC配置可以包括第二组的每个CSI-RS资源的QCL资源的信息。当UE移动时,基于关于第一组的测量报告结果,网络可以决定更新第二组的每个CSI-RS资源的QCL资源。更新后的QCL资源可以经由DCI或MAC CE信令指示,以便减少信令开销和延迟。QCL参数组包括Rx波束相关的空间参数、增益、延迟和多普勒中的一个或多个。在一个示例中,假设UE配置有两组CSI-RS:第一组:资源0-99;第二组:资源0-2。
当第二组通过RRC配置时,用第一组的CSI-RS资源ID进一步指示UE,使得UE可以假定第二组中的每个CSI-RS在参数集中和与第一组中的CSI-RS资源ID对应的CSI-RS QCL。在一个示例中,第二组的RRC配置根据资源0配置,例如,与第一组中的资源x进行QCL和/或根据例如RE映射模式、天线端口数量、周期、偏移、功率控制、子时间单元组成等被配置。在另一示例中,第二组的RRC配置根据资源1配置以用于与第一组中的资源y进行QCL,或根据例如RE映射模式、天线端口数量、周期、偏移、功率控制、子时间单元组成等被配置。在一个示例中,第二组的RRC配置根据资源2配置以用于与第一组中的资源z进行QCL,或根据例如RE映射模式、天线端口数量、周期、偏移、功率控制、子时间单元组成等被配置。
在另一示例中,第二组的RRC配置根据以下条件被配置:资源0:与第一组中的资源x的QCL;资源1:与第一组中的资源y的QCL;资源2:与第一组中的资源z的QCL;和/或RE映射模式、天线端口数量、周期、偏移、功率控制、子时间单元组成等。
资源0的RE映射模式可以根据被配置的RE映射参数确定。可以通过对资源0的RE映射模式应用时间或频率偏移来确定资源1和2的RE映射模式。例如,对于资源1,对资源0的RE映射模式应用一个时间单元偏移;对于资源2,对资源0的RE映射模式应用两个时间单元偏移。其它参数,即天线端口数量、周期、偏移、功率控制、子时间单元组成等,通常可以被配置用于所有的三种资源。子时间单元组成可以与包括时间单元的子时间单元的数量对应。
前述示例示出了为第二组配置三个资源的情况。通常,可以被配置到第二组的资源数量可以是整数,例如1、2、3……;本实施例中的方法适用于这种资源的任何整数。
当UE在小区中移动时(可能移动到不同TRP的附近或到不同的TRP波束),可能需要更新第二组中的CSI-RS资源的配置参数子集,例如QCL关系。更新参数子集的一种方法是RRC重新配置整个第二组,但这涉及大的延迟和信令开销。因此,更优的替代方案是利用MACCE或PHY信令来更新第二组中的参数。更新信令比初始RRC信令轻便,因为它仅更新参数的子集;其它配置不更新并保持不变。
更新命令可以包括单独激活和去激活第二组中的CSI-RS资源。更新命令可以包括以下信息:要更新的第二组中的(多个)资源索引;和/或用于建立QCL关系的第一组中的(多个)对应资源索引。例如,从更新命令,指示UE将组1中的资源1的QCL资源从第一组中的资源x更新为第一组中的资源w。
或者,更新命令可以包括第二组中的所有激活资源的更新参数信息。在这种情况下,仅通过信号发送更新后的资源索引。例如,从更新命令,指示UE更新QCL资源。第二组的更新配置被配置为:与第一组中的资源a进行QCL的资源0;与第一组中的资源b进行QCL的资源1;与第一组中的资源c进行QCL的资源2。更新命令包括用于指示第一组的资源索引的三个数字{a,b,c}。
在替代实施例中,QCL资源与(CSI-RS资源、天线端口)的组合对应,而不是第一资源中的CSI-RS资源。在这种情况下,第一组中的资源索引也将被替换为SS块ID。
在替代实施例中,第二组中的资源与(CSI-RS资源、天线端口)的组合对应,而不是CSI-RS资源。
在替代实施例中,QCL资源与SS块中的(多个)SSS天线端口对应,而不是第一资源中的CSI-RS资源。在这种情况下,第一组中的资源索引也将被替换为SS块ID。
在一些实施例中,对于覆盖扩展的SS块重复,对于覆盖扩展,网络可以决定在SS突发集中的不同SS块中发送相同的信号集。假设SS突发集中的SS块总数是N。SS块被划分为N1个组的N2个SS块,其中N=N1N2。在一个示例中,N=16,N1=8,N2=2;构成组的多个SS块具有连续的SS块索引。
在初始小区选择中,该信息不能传送给UE,并且UE可以默认假设没有对SS块进行组划分。但是,当UE处于连接或空闲模式时,UE可以被另外配置SS块的组划分信息,使得UE能够以更可靠和高效的方式来检测SS块相关参数。参数包括发送的SS块的实际数量、组成组的SS块数量。在一个示例中,UE在接收到这些参数时计算出SS块分组,构建分部,在分部中从第一个SS块(即具有最小的SS块索引的SS块)的连续的N2个SS块包括组。这些参数可以以广播信令(MIB、RMSI、SIB等)、或RRC或MAC信令或DCI信令传送。
在L3 CSI-RS配置的一些实施例中,L3 CSI-RS不总是开启(non-always-on),UE被专门配置并需要单独的同步信号;L3 CSI-RS与LTE发现信号共享通用性,并且适用类似的要求/配置属性。可以注意到,LTE发现信号被设计为主要支持单波束多TRP场景;因此LTE发现信号框架可能无法在支持多波束多TRP场景的NR中被简单地重用。因此,建议以LTE发现信号配置框架为基线,必要时扩展LTE发现信号配置框架。表3总结了LTE发现信号的特性及其限制,以及新无线电系统中L3 CSI-RS设计的可能改进。
表3.LTE发现信号配置和L3 CSI-RS的进一步的设计考虑
在将SS块关联到CSI-RS资源的一些实施例中,与其中小区被配置为发送单个PSS/SSS/PBCH(即单个SS块)的LTE相比,NR小区可以被配置为通过应用潜在的不同波束用于SS块来发送多个SS块。在LTE DRS配置中,被配置的物理小区ID和DMTC周期/偏移配置向UE通知要检测的单个PSS/SSS的OFDM符号级定时;从检测到的单个PSS/SSS获得CSI-RS同步定时。另一方面,在NR多波束场景中,被配置的物理小区ID与潜在地具有不同的同步定时的多个时间位置(SS块)对应。因此,向UE通知小区的SS块以获取CSI-RS资源或CSI-RS资源集的同步定时是有益的。
在其中UE Rx波束成形可以用于对抗高路径损耗的超过6GHz的系统中,SS块也可与包括空间QCL参数的一组QCL参数中的CSI-RS资源相关联。当UE配置有被在空间上进行QCL的CSI-RS资源的SS块时,有效地允许UE使用相同或空间上相关的(多个)Rx波束来接收CSI-RS资源和SS块两者,这最小化/减少了用于测量CSI-RS资源上的RSRP/RSRQ的UE延迟和功耗。
在前述实施例中,假定“CSI-RS资源”包括多个端口;“CSI-RS资源”可以替换为包括多个CSI-RS资源的“CSI-RS资源集”,每个资源包括一个或两个端口。因此,建议指示将SS块与被配置的CSI-RS资源相关联以供同步定时参考;以及在空间参数中的QCL参考。
在实施例中,与CSI-RS资源相关联的SS块用于单独指示每个CSI-RS资源的SS块。然而,在该实施例中,当每个小区的CSI-RS波束数量很多时,就信号开销而言变得低效。要了解这一点,考虑以下情况:每个小区配置64个SS块,每个SS块使用包括四(4)个波束的复合波束,并且4个单元CSI-RS资源被配置用于4个波束。然后,对于每个小区,CSI-RS资源的总数是256。在这种情况下,对于仅用于3个相邻小区和一个服务小区的CSI-RS测量配置,针对CSI-RS资源需要指示最多1024个SS块标识。
一个更优的替代方案是在每个CSI-RS资源组批处理指示SS块标识,该组CSI-RS资源由其定时同步参考通过物理小区ID来标识且其加扰序列相同的一组CSI-RS资源形成。为了配置对于其网络事先不了解的小区的测量,网络可以能够配置与所有(实际发送的)SS块相关联的所有波束(或CSI-RS资源)。另一方面,为了配置对于其网络事先了解的(例如,基于在先的报告)小区的测量,网络还可以能够配置与(实际发送的)SS块的子集相关联的波束(或CSI-RS资源)的子集。
对于与物理小区ID和加扰序列生成相关联的CSI-RS配置,可以通过指示SS块的列表和被指示的SS块和被配置的CSI-RS资源之间的关联信息来获得这两种网络配置。关联信息可以是每个SS块关联的多个CSI-RS资源。在一个示例中,CSI-RS资源组对应于NP数量的CSI-RS资源(端口);并且在CSI-RS资源和被指示的SS块之间假定一对一映射。在这种情况下,每个SS块关联的CSI-RS资源数量也是NP;被指示的SS块数量和被配置的CSI-RS资源数量相同。
表4.到CSI-RS的SS块关联的配置
表4示出了到具有公共物理小区ID和公共加扰信息的CSI-RS资源组的SS块关联的三种不同指示方法。假设每个CSI-RS资源指示SS块关联,则每个组可以配置最多256个波束(或者可以是每个资源的端口数量和资源数量的乘积;或者每个资源集的资源数量和资源集数量的乘积的测量单位)。如果任意的SS块可以与每个单元单位资源相关联,则SS块关联配置所需的总位数可以高达2048位/组,这带来显著的信令开销。相反,如果批量提供SS块关联信息,则对于被配置的CSI-RS资源,可以大为降低信令开销。
在一个替代方案(批配置替代方案1)中,最多64位映射用于指示要与被配置的CSI-RS资源相关联的SS块的开/关,log2(NP)位参数指示每个资源的单位资源数量。在这种情况下,CSI-RS资源i与由位图指示的第i个“开启的”SS块相关联。CSI-RS资源的数量和“开启的”SS块的数量(即位图中的“1”的数量)相同。
图18示出了根据本公开的实施例的CSI-RS资源和开启的SS块1800的示例关联。图18中示出的CSI-RS资源和开启的SS块1800的关联的实施例仅用于说明。图18示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图18示出了CSI-RS资源和“开启的”SS块的关联。UE被提供有以[1001101…]开始的位图,其指示SS块1、4、5和7已被开启。属于CSI-RS资源组的被配置的CSI-RS资源1、2、3和4分别与以SS块ID的升序排列的“开启的”SS块1、4、5和7关联。
在另一替代方案(批配置替代方案2)中,最多64个状态信息用于指示实际发送的SS块数量NSS,并且log2(NP)位参数指示每个资源的单位资源数量;那么,UE被配置为假定前面的NSS个SS块被发送,其它的被静音。
图19示出了根据本公开的实施例的CSI-RS资源和开启的SS块1900的另一示例关联。图19中示出的CSI-RS资源和开启的SS块1900的关联的实施例仅用于说明。图19示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能指令的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图19示出了CSI-RS资源和“开启的”SS块的关联。UE被提供有实际发送的SS块的数量是5,其指示SS块1至5已被开启。属于CSI-RS资源组的被配置的CSI-RS资源1至5分别与以SS块ID的升序的“开启的”的SS块1至5关联。
在前述两种替代方案中,各自包括NP个单位资源(端口)的NSS个被配置的CSI-RS资源通过一对一映射与NSS个SS块关联。替代方案3的表述性示例:假设SSB QCL配置指示L=64位位图为[111100…00];RE映射的第一位图(对于时域)指示14位位图[1011010…0]。根据第一位图,CSI-RS被映射在OFDM符号0、2、3、5上;根据QCL的L位位图,QCL的SSB是SSB 0、1、2、3。那么,用户可以将OFDM符号和SSB一对一地关联以找到一对一的QCL关系:OFDM符号0、2、3和5分别与SSB 0、1、2和3进行QCL。
在被配置的CSI-RS资源的参数集的一些实施例中,NR支持可配置的参数集,针对同步、数据和CSI-RS的参数集设置不必然相同。因此,L3移动性CSI-RS配置需要考虑参数集方面。参数集设置包括子载波间隔、OFDM符号持续时间、时隙组成等,这也可能影响定时指示(即,特别是定时偏移)的信令设计。
在传统的LTE CSI-RS RE映射中,是每个PRB设计的,因此自然也可以在NR中考虑每个PRB CSI-RS映射。然而,被假定用于CSI-RS的参数集需要与被假定用于数据的参数集一同考虑。在一种替代方案中,“数据参数集设置”用作CSI-RS的参考参数集,即,CSI-RS RE映射模式在用数据参数集定义的PRB网格上定义。然而,这种方法确实似乎引入了用于处理所选择的数据参数集的各种组合,并且作为CSI-RS参数集的所选择的CSI-RS参数集可以不同于数据参数集(即,被限定用于波束管理CSI-RS的子时间单元)而选择。例如,具有参数集A的CSI-RS在由数据参数集B定义的PRB网格上被映射,其中A和B从每个频带上的可配置参数集设置的集合中选择。
因此,更简单的替代方案可以是在由CSI-RS参数集定义的PRB网格上定义CSI-RSRE映射,而不考虑数据和CSI-RS参数集设置之间的交互。只要信令设计对于CSI-RS足够灵活,则可以通过网络信令实现来避免CSI-RS与控制/数据的可能冲突。
主要存在L3移动性CSI-RS参数集设置的两种替代方案:可配置参数集;以及SS块参数集。可配置参数集的优点包括灵活性和前向兼容性。此外,要注意的是,SS块参数集设置仅仅是可配置参数集设置的集合的特殊情况,因此建议采用L3移动性CSI-RS的可配置参数集。被配置的参数集设置用于构建PRB网格、以及时隙/帧结构(每个时隙有14个OFDM符号)。
因此,建议至少对于L3移动性CSI-RS,在由CSI-RS参数集设置定义的PRB网格上构建CSI-RS RE映射模式,而不考虑被配置的数据参数集。此外,CSI-RS参数集设置可以被显式地配置用于批配置的CSI-RS;CSI-RS参数集设置定义每个时隙具有14个OFDM符号的PRB网格和时隙/帧结构。
在一些CSI-RS定时和RE映射配置的实施例中,对于传统发现信号的周期性发送/接收,DMTC被定义为指示CSI-RS和PSS/SSS两者的周期和偏移,并且相对于PSS/SSS定时,对于CSI-RS定时额外定义较小的偏移值。允许较小的偏移值最大达到5毫秒,使得考虑同步采集和CSI-RS测量两者的测量持续时间较短,并且这一短的持续时间有助于UE节省电力。
可以为NR考虑/定义类似的操作/配置。可以保留在时间上靠近SS块映射L3移动性CSI-RS的原理以及L3移动性CSI-RS和SS块的相同周期,以节省电力。注意到仍然可能将相同的物理CSI-RS用于L3移动性和BM,但网络针对L3移动性和BM提供了两种不同的配置,使得与L3移动性CSI-RS相比,更频繁地测量BM CSI-RS(即配置的周期较短)。因此,建议定义CSI-RS测量定时配置(CMTC),包括可以用于确定L3移动性CSI-RS和SS突发集两者的定时的偏移和周期。针对每个CSI-RS资源组配置CMTC。
关于各个CSI-RS资源的时间参考,可以考虑两种替代方案。在第一替代方案中,定时参考是帧边界;在第二替代方案中,定时参考是SS块定时。涉及L3移动性CSI-RS的测量持续时间和复杂度需要被最小化,特别是当L3移动性CSI-RS被提供用于相邻小区测量时。如果在不进行PBCH解码的情况下获得帧边界,则可以使用帧边界作为CSI-RS资源的定时参考;然而,如果需要PBCH解码来获得帧边界,则使用SS块定时可以是节省UE电力的更好的替代方案。
因此,建议可以用该两个定时参考中的哪一个来指示UE用于CSI-RS资源标识。可以在配置L3 CSI-RS资源的RRC消息中显式地配置该指示。或者,可以隐式地配置该指示。在一个示例中,如果在CSI-RS资源配置中指示的SS块的数量小于某个数字,例如8或16,则UE被配置为使用帧边界作为定时参考;否则,UE被配置为使用单个SS块定时作为定时参考。
图20示出了根据本公开的实施例的局部和分布式映射2000的示例。图20示出的局部和分布式映射2000的实施例仅用于说明。图20中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
为了批量配置CSI-RS资源的CSI-RS RE映射模式,定时参考的两种替代方案还给出了不同的风格。如果定时参考是帧边界,则在与用于SS块映射的OFDM符号正交的连续OFDM符号(即局部映射)中配置CSI-RS资源似乎更容易。另一方面,如果定时参考是单个SS块定时,则为一批中的多个CSI-RS资源配置连续OFDM符号的信令设计似乎更具挑战性。在这种情况下,分布式映射可以是优选的。局部映射和分布式映射的示例在图20中示出。
因此,还建议如果指示UE使用帧边界作为定时参考,则指示UE采用CSI-RS的局部映射;如果指示UE使用SS块定时作为定时参考,则指示UE采用CSI-RS的分布式映射。简而言之,为了节省涉及移动性测量的UE电力,优选地UE不需要对PBCH进行解码以用于测量。如果可在不进行PBCH解码的情况下获得帧边界信息,则用批量资源配置,相对于帧边界的局部CSI-RS映射配置是可行的。如果仅在PBCH解码之后能够获得帧边界信息,则分布式CSI-RS映射配置(其中关于对应的SS块来限定每个CSI-RS资源定时)可以是更优的选择。
如图20中所示,定义CSI-RS资源定时偏移的不同选项可以被认为是不同定时参考选择的更简单选项。当帧边界是定时参考时,可以根据时隙数量(noffset)通过信号发送定时偏移,并且可根据从由定时偏移(即,帧中的时隙noffset)指示的时隙边界开始的OFDM符号偏移来配置单个CSI-RS资源定时。当SS块定时是定时参考时,可以根据相对于相关的SS块的起始OFDM符号编号的OFDM符号的数量(loffset)配置单个CSI-RS资源的定时偏移。在这种情况下,CSI-RS资源位于距起始符号编号loffset个OFDM符号的OFDM符号处。
可以为每个CSI-RS资源组的所有CSI-RS资源单独地配置CSI-RS资源定时偏移;然而,在配置大量波束的情况下,这种方法可能导致大的开销。在这种情况下,将为偏移值对(即,时隙偏移noffset和OFDM符号偏移loffset)指示列表,其中每个对适用于每个CSI-RS资源。在时隙noffset中的OFDM符号loffset中映射CSI-RS资源。
图21示出了根据本公开的实施例的示例定时偏移值配置2100。图21中示出的定时偏移值配置2100的实施例仅用于说明。图21中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
更优的替代方案是针对与CSI-RS资源组对应的CSI-RS资源批量配置定时偏移值。在其中使用帧边界作为参考定时的局部映射的情况下,至少可以考虑以下两种方法。在第一方法中,为所有资源配置一个共同的noffset,并且在时域中的连续OFDM符号中顺序映射NSS个CSI-RS资源(或资源集)。在该方法的变形中,另外配置到时隙边界的OFDM符号偏移;在这种情况下,映射CSI-RS的起始OFDM符号编号是时隙noffset中的loffset
该方法在图21(a)中示出。在第二方法中,共同的noffset被配置用于所有资源,并且OFDM符号偏移loffset的列表被配置用于NSS个CSI-RS资源(或资源集)。该方法在图21(b)中示出。在分布式映射的情况下,可以配置共同适用于所有CSI-RS资源(或资源集)的单个loffset值。
在将CSI-RS端口映射到同一OFDM符号的配置的一些实施例中,为了降低UE的复杂度,基于单端口的测量和报告可以是优选的,除非存在很强的必要性允许基于多端口的测量和报告。通过配置包括多个单端口资源的资源集或配置包括多个端口的资源,可以完成针对OFDM符号配置(多个)L3移动性CSI-RS资源。在这两种情况下,如果各个端口或资源被映射到相同的OFDM符号,则似乎不需要配置各个端口或资源。
与传统LTE的多端口CSI-RS资源配置类似,优选能够配置多个资源/端口的简单配置。对于被配置用于BM的CSI-RS,可以将整个CSI-RS BW中的OFDM符号上的所有RE配置为仅用于CSI-RS映射。在这些情况下,不需要单独的RE映射配置;如果两种方法都被采用用于BM,则每个端口的CSI-RS RE可以通过被指示的单位资源数量(即,包括资源的端口数量或包括资源集的资源数量)和CSI-RS频域映射方法(即,IFDMA端口循环与完全RE端口循环)来识别。
在总体的L3移动性CSI-RS配置的一些实施例中,根据这些实施例,建议指示以下用于每个L3移动性CSI-RS资源组(或资源设置)的配置参数中的至少一些。在一个示例中,物理小区ID通常适用于所有资源。在一个示例中,加扰ID通常适用于所有资源。在一个示例中,CSI-RS参数集定义了每个时隙具有14个OFDM符号的PRB网格和时隙/帧结构。在一个示例中,CMTC的周期和偏移根据CSI-RS参数集来定义。在一个示例中,关于SS块与CSI-RS资源相关联的信息被考虑用于同步定时和QCL。在替代方案1的这种示例中,考虑了SS块的数量。在替代方案2的这种示例中,考虑了SS块ID的列表。在替代方案3的这种示例中,考虑指示用于关联CSI-RS资源的“开启的”的SS块的位图。
在一个示例中,考虑每个资源的天线端口数量(或者替换地每个资源集的单/双端口资源的数量)。在一个示例中,CSI-RS定时参考可以示出SS块定时或帧边界。在一个示例中,CSI-RS定时配置包括每个CSI-RS资源(在CSI-RS测量窗口内定义)的时隙偏移和/或OFDM符号偏移。在该示例中,如果定时参考是SS块,则OFDM符号偏移可以是充分的。在第i个SS块的第一OFDM富豪之后的第loffset个OFDM符号中发送CSI-RS资源i。配置选项包括:loffset值的列表,每个CSI-RS资源一个;以及对所有被配置的CSI-RS资源的共同适用的loffset值。
在该示例中,如果定时参考是帧边界,则至少需要时隙偏移。如果没有显式配置OFDM符号偏移,则映射所有CSI-RS资源的起始OFDM符号是由时隙偏移标识的时隙的第一个OFDM符号。CSI-RS资源i在从时隙noffset(i)的OFDM符号0开始计数的第loffset(i)个OFDM中发送。配置选项包括:对(时隙偏移、OFDM符号偏移)的列表,每个CSI-RS资源一个;对所有CSI-RS资源适用的共同时隙偏移;以及OFDM符号偏移值的列表,每个CSI-RS资源一个。
配置选项还包括对所有CSI-RS资源适用的共同时隙偏移;以及单个OFDM符号偏移值。在这种情况下,UE可以假定,从由单个OFDM符号偏移值和共同时隙偏移而标识的OFDM符号开始,被配置的CSI-RS资源在时域中按顺序且连续地映射。在这些配置选项中,假定NSS个CSI-RS资源被划分为N1个分区,每个分区N2个资源。然后,对于每个分区,配置共同适用于该分区内的所有CSI-RS资源的时隙偏移;OFDM符号偏移值的列表被配置用于属于每个分区的N2个CSI-RS资源。或者,每个分区配置时隙偏移;并且第一OFDM符号偏移值被配置用于属于每个分区的第一CSI-RS资源。在这种情况下,分区内的其余CSI-RS资源在时域中被连续映射,并且从由第一OFDM符号偏移所指示的OFDM符号计数的N2个CSI-RS资源占用N2个连续的OFDM符号。
图22示出了根据本公开的实施例的CMTC和CSI-RS测量定时之间的示例关系2200。图22中示出的关系2200的实施例仅用于说明。图22中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图22中所示,CMTC按照周期和偏移来配置CSI-RS测量窗口定时。CMTC的周期和偏移可能按照帧数或毫秒数进行配置。在每个CMTC周期中,存在一个CSI-RS测量窗口,其包括1、5、10毫秒的短持续时间。在CSI-RS测量窗口中,SS突发集和CSI-RS两者被映射。
图22示出了当帧边界被配置为定时参考时局部CSI-RS映射的一个示例图解。如在本公开的一些实施例中,时隙偏移noffset被配置为指示局域CSI-RS映射在时域中的起始位置。在实施例中,每个小区被配置的参数可以包括:PCID(10位);参数集(2位({15、30、60}或{60、120、240});测量/传输BW(X位);资源集配置的列表(每个资源集对应于时隙(偏移));以及周期。
在实施例中,每个资源集配置的参数可以包括:时隙偏移(最多9位(当SCS=240kHz时);序列生成(加扰ID)(10位);包括用于被进行QCL的SSB的位图的QCL信息(位图中“1”的数目对应于OFDM符号的数量)(64位);RE映射(时间/频率位图14+(最多12)位);密度([2]位);和REourceRep(重复开/关)(1位)。
在实施例中,每个资源被配置的参数可以不包括任何内容。
在实施例中,在资源级配置了以上列出的一些参数,例如,在资源级提供了QCL信息和RE映射中的一个或多个。
在资源集级RE映射配置的一些实施例中,RE映射配置的替代方案包括如下:(替代方案B1)资源集级参数指示单个时隙中CSI-RS资源的RE映射;(替代方案B2)资源集级参数指示OFDM符号中CSI-RS资源的RE映射;(替代方案B3)资源集级参数指示CSI-RS资源的OFDM符号位置;资源级参数指示CSI-RS资源的频率位置;以及每个CSI-RS资源的(替代方案B4)RE映射由资源级参数指示。在这种情况下,指示RE映射的位数根据所支持的密度值的数目进行保守估计而得到:D=1:12x14个可能的时频位置;D=3:4x14个可能的时频位置;以及状态总数=224->[8]位。
在实施例替代方案B1中,在时隙中映射的资源的RE映射由两个位图指示,一个用于时域,且另一个用于频域。时域位图的位宽度根据可以携带CSI-RS([14]位)的OFDM符号的总数而定,并且频域位图的位宽度根据频域RE密度而定(如果密度为D,则位宽度为12/d)。最后的时隙级CSI-RS RE可以通过取这两个位图的外积(或Kronecker积)来得到,时隙中配置的CSI-RS资源的总数与外积位图中的1的数量相同。
表5示出了当d=3时,用时域位图10010001000011和频域位图111构建的外积(outer-product)位图的示例。根据该位图,在OFDM符号0、3、7、12、13上配置CSI-RS资源,并且在每个OFDM符号上配置用子载波偏移0、1、2构建的3个资源。根据该位图配置的资源总数是15,资源可以先对频率编索引(或先对时间编索引)。
表5.外积位图
11 00 00 11 00 00 00 11 00 00 00 00 11 11
11 00 00 11 00 00 00 11 00 00 00 00 11 11
11 00 00 11 00 00 00 11 00 00 00 00 11 11
考虑到配置开销和灵活性之间的权衡,建议采用替代方案1的前述实施例。
在一些实施例中,对每个资源集提供RE映射配置,该资源集可以在与小区对应的时隙内配置多个CSI-RS资源(以被配置的周期循环)。在一些实施例中,按照两个位图提供RE映射配置,其中第一位图指示OFDM符号(14位),第二位图指示子载波偏移(12/D位)。在一些实施例中,两个位图的外积指示时隙中被配置的CSI-RS资源。“1”的位置对应于被配置的CSI-RS资源。
在波束RSRP报告的一些实施例中,可以指示UE是否跨每个被配置的CSI-RS资源中的所有端口采用QCL,其指示参数可以在RRC或DCI中传送。
如果指示UE CSI-RS资源中的CSI-RS端口在包括空间参数的一组参数中未被QCL,则隐式指示UE测量和报告被配置的CSI-RS资源的每个端口的RSRP。另一方面,如果指示UECSI-RS资源中的所有CSI-RS端口在包括空间参数在内的一组参数中被QCL,则隐式指示UE针对被配置的CSI-RS资源的第一端口来测量和报告RSRP。
在替代信令的一些实施例中,CSI-RS配置参数由以下提供。在一个示例中,每个小区配置的参数可以包括:物理小区ID(10位);参数集(即SCS)(2位);测量和传输BW([4]位);RE映射密度(每个RB每个端口的RE)(2位);周期(配置{5、10、20、40}的2位);RE映射密度(([2]位);以及资源设置的列表。
在一个示例中,每个资源设置被配置的参数(用于虚拟小区)可以包括:序列生成(加扰ID)(10位);用于指示CSI-RS映射的起始边界的第一定时偏移(最多11位);用于从起始边界开始指示具有CSI-RS的时隙的第二定时偏移(最多80位)的位图;以及资源集的列表。
在一个示例中,每个资源集被配置的参数(用于时隙)可以包括:RE映射(时间/频率位图(14+12/D)位)和被进行QCL的SSB信息(用于具有CSI-RS的所有OFDM符号的SSB列表)。在一个示例中,每个资源被配置的参数可以不包括任何内容。
首先,建议首先识别每个小区可以被配置的那些参数。在实施例中,配置NR移动性RS参数的最高级是小区。在一个示例中,每个小区至少配置以下L3移动性CSI-RS参数:物理小区ID(10位);参数集(即SCS)(2位);测量和传输BW([4]位);以及RE映射密度(每个RB每个端口的RE)(2位)。尽管存在一些网络实现灵活性的损失,但该实施例使得大为节省资源配置的开销。
基于建议,用于配置与4个小区对应的1024个资源的1024*(10+2+4+2)=18432位有效载荷变为4*(10+2+4+2)=72位。然而,即使有了这个建议,总的有效载荷仍然大约是37000位。因此需要另外的信号压缩。
在加扰ID的实施例中,类似于传统的LTE,可以通过将不同的加扰ID应用到不同的区域来实现小区内的CSI-RS频率重用。同样,每个资源的加扰ID配置成本太高,且额外的灵活性增益也不高。因此,建议比小区低一级(即资源设置级)来配置加扰ID。换言之,资源设置可以对应于“虚拟小区”,每个资源设置需要配置特定于虚拟小区的参数。
在CMTC(CSI-RS测量定时配置)的实施例中,如果需要在没有任何限制的情况下支持完全灵活的CSI-RS资源配置和映射,则可以对每个资源进行CSI-RS定时配置。然而,预计这可能产生巨大的开销。进行简单的分析以了解完全配置定时配置的影响。存在达成非4个周期值,5、10、20和40毫秒。如果通过信号发送基于时隙的偏移,则能够用240kHz SCS指示在5、10、20和40毫秒的持续时间内的时隙的最差情况信令开销是,对于每个资源,(640+320+160+80)=1200个状态(11位)。要配置1024个资源,完全灵活的CSI-RS定时配置可能需要11,264位。
为了使移动性CSI-RS能够在无法使用小区的时间/频率同步的情况下用于相邻小区测量,UE需要首先从相邻小区的PSS/SSS获取同步。在这种情况下,CSI-RS和SSS之间的时间差可能不长,这可能会促使缩减移动性CSI-RS资源映射窗口的尺寸。缩减资源映射窗口的尺寸也可以有助于降低配置开销。
例如,如果CSI-RS映射窗口尺寸被限制在5毫秒内,则时隙偏移可以由两个数配置:相对于每个小区配置的帧/半帧边界的第一偏移;相对于第一偏移的第二偏移,这可以是被配置的比小区级更低的级别。对于第一偏移,可以需要完全灵活的偏移配置,在该情况下,每个小区可以使用11位。第二偏移仅需要能够指示最多80个状态(与240kHz SCS的5毫秒内的时隙数对应)。也可以每个小区配置周期。
因此,如果以这种方式构建信令,为配置4个小区的定时和每个小区256个资源,有效载荷现在变成4*(11+2)+7*1024=7220位,这比基准节省了约4000位。
为了进一步降低CSI-RS定时的配置开销,可以替代地考虑指示CSI-RS测量窗口内的时隙的位图。位图的尺寸可以高达80位,具有“1”的位位置可以对应于具有CSI-RS的时隙。基于此建议,配置有效载荷变为每个小区仅4*(11+2+80)=372位。
为了允许在使用虚拟小区的小区内的频率重用,以上“小区特定”的偏移参数可以被替换为“虚拟小区”的特定参数。因此,建议在本公开中每个资源设置配置这些偏移参数。总之,以下建议中的下述CSI-RS定时配置可以显著地节省配置开销,将CSI-RS测量窗口限制在5毫秒内。
在一个示例中,CSI-RS定时根据下述方法配置:每个小区配置周期(配置{5、10、20、40}的2位);每个资源设置配置第一偏移(最多11位(对于240kHz的情况),能够指示时隙偏移值的完整集合);每个资源设置配置表示从第一偏移到CSI-RS时隙的定时偏移的位图,位图的尺寸是80、40、20、10和5,分别用于240、120、60、30和15KHz的SCS。
图23示出了根据本公开实施例的示例CSI-RS定时2300。图23中示出的CSI-RS定时2300的实施例仅用于说明。图23中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在传统的LTE中,相对于帧定时提供CSI-RS时隙偏移。在NR中,帧定时可能不是时隙偏移的良好参考,特别是当半帧边界仅可以在PBCH解码后才能获得时。从3到6GHz,虽然经由PBCH DMRS可获得完整的SSB索引,但是当检测到PBCH DMRS序列时,UE仅能获取半帧定时。因此,为了使得不需要UE解码PBCH来获取CSI-RS定时以用于移动性测量,建议将CSI-RS定时偏移参考作为检测相关的SSB的半帧的起始边界。此外,为了解决当周期大于5毫秒时,不知道发送CSI-RS的相邻小区的SFN的问题,进一步建议如果CSI-RS周期>5毫秒,则UE可以假定小区是半帧级别对齐的。
在一个实施例中,CSI-RS定时偏移参考可以是检测相关的SSB的半帧起始边界。在一个示例中,如果CSI-RS的周期是10、20和40毫秒,则UE可以假定小区在半帧级上对齐。
在相关的SSB索引的实施例中,与其中小区被配置为发送单个PSS/SSS/PBCH(即单个SS块)的LTE相比,NR小区可以配置为将潜在的不同波束应用于SS块来发送多个SS块。在LTE DRS配置中,被配置的物理小区ID和DMTC周期/偏移配置向UE通知要检测的单个PSS/SSS的OFDM符号级定时;从检测到的单个PSS/SSS获得CSI-RS同步定时。
另一方面,在NR多波束情形中,被配置的物理小区ID对应于多个时间位置(SS块),由于不同的波束辐射模式,这些时间位置潜在地具有不同的同步定时。因此,向UE通知小区的SS块以获取CSI-RS资源的同步定时是有益的。在其中UE Rx波束成形可以用于对抗高路径损耗的超过6GHz的系统中,在空间QCL参数中,SS块也可以与CSI-RS资源相关联。当UE配置有空间上被进行QCL的CSI-RS资源的SS块时,允许UE使用相同的Rx波束或空间相关的Rx波束以用于接收CSI-RS资源和SS块,这最小化/减小了UE延迟和用于测量CSI-RS资源上的RSRP/RSRQ的功耗。
在实施例中,可以允许UE使用与被配置的CSI-RS资源相关联的SS块作为同步定时参考;以及空间参数中的QCL参考。如果每个资源提供了QCL参考,则当每个资源需要指示L=64个SSB中的一个时,最坏情况的最大配置开销变成6x1024=6144。
如果限制资源集中的相同OFDM符号中配置的多个CSI-RS资源用单个SSB来进行QCL,则QCL指示所需的位数可以减少到基准的1/2或1/4,这取决于每个OFDM符号配置的CSI-RS资源的数量。因此,建议每个资源集配置相关的SSB索引,每个OFDM符号指示一个SSB索引。
在实施例中,根据一对一映射,针对具有由资源集的RE映射而被配置的CSI-RS的N个OFDM符号的N个被进行QCL的SSB,由被配置用于相同资源集的N个SSB索引指示。
在LTE规范中,关于RSRQ描述了以下内容:
在传统LTE中引入RSRQ的主要动机是促进网络对频率间切换的决策。在传统LTE中,为使UE执行频率间测量,网络配置测量间隙,该测量间隙以固定的6毫秒持续时间周期发生。在测量间隙期间,UE在服务载波频率中停止接收服务小区的信号,UE可以移动到另一个载波频率进行RSRQ测量。
当网络接收到多个载波频率上的RSRQ测量结果时,网络可以决定选择具有较大的RSRQ的载波频率,这是因为RSRQ是如果负担较轻则趋于具有较大值的度量。换言之,如果负担小,RSSI值可能小;如果负担大,则RSSI值可能高。因为RSRQ是RSRP和RSSI之间的比值,所以当两个载波频率具有类似水平的RSRP值时,如果负担在第一载波频率中比第二载波频率小,则第一载波频率中的RSRQ值将更大。
在LTE部分中,关于RS-SINR描述了以下内容:
引入RS-SINR的主要动机是向网络提供对目标小区的吞吐量的估计。发现RSRP和RSRQ都不足以达到这一目的,并且引入了RS-SINR。
本公开提出了UE在新通信系统中测量和报告RSRQ和RS-SINR的方法,包括用于测量RSSI的RE(表示为RSSI测量资源,RMR)的配置,需要该配置以得到RSRQ值;以及用于测量SINR的RE(表示为IMR,即干扰测量资源)的配置,需要该配置以得到RS-SINR和假设的PDCCH性能以确定IS/OOS。
测量RSSI和干扰的传统机制使用关于具有CRS的OFDM符号上的RE的测量量。在被配置的OFDM符号中,通过对跨被配置的BW中的RE计算总功率来测量RSSI。通过从RSSI中减去服务小区的CRS功率来测量干扰。在NR中,CRS不可用,因此需要提供替代的资源用于RSSI和干扰测量。
此外,传统LTE系统支持宽的单波束覆盖,而NR系统从单小区的视角也可以支持窄的多波束覆盖。特别对于毫米波,在UE处使用Rx波束成形是有必要的,并且需要澄清哪个RX波束用于接收某些信号。在NR标准化讨论中,决定根据空间参数中的QCL资源来提供Rx波束成形信息。
如果两个RS“被在空间上进行QCL”,则UE可以使用基本类似的Rx波束进行测量。对于IMR和RMR,需要指出空间参数中的QCL参考资源,使得UE和网络对测量结果有相同的理解。建议SS块和/或CSI-RS作为IMR和RMR的QCL参考资源。
Rx波束成形关系(或多个RS之间的空间QCL关系)可以替代地称为“相同的Rx模式”、“相同的Rx端口”等。在不脱离本公开的原理的情况下,可以定义与“QCL”不同的术语。
可以考虑用于确定RSSI测量资源的一些要求。首先,RSSI资源可能能够表示载波频率的负担情况。其次,RSSI资源可以在时间上位于与RSRP测量资源接近的位置,使得UE可以在相同时间窗口(例如被配置的SMTC持续时间)中测量RSSI和RSRP两者。
此外,在UE应用Rx波束成形的毫米波系统中,还需要指定要用于RSSI测量的Rx波束。
在本公开中,SS块可以指SS/PBCH块。SS块可以指用于RSRP测量的SSS。SS块可以指用于RSRP测量的PBCH DMR和SSS的组合。在一些替代的实施例中,SS块可以被替换为CSI-RS资源。
在配置RSSI测量资源的一些实施例中,在SMTC持续时间内的所有OFDM符号中,RSSI测量资源可以被配置为SS块BW。虽然这是配置测量资源的简单方法,但是一个缺点是,SMTC持续时间的大部分包括作为始终开启的信号的SS块,并且在SS块RE上测量的功率不必然取决于载波频率的负担。
在一些实施例中,RSSI测量资源可以被配置为与SMTC持续时间内的所有OFDM符号(除了包括SS块的OFDM符号之外)对应的OFDM符号子集中的SS块BW。在这一替代方案中,基于SS块的测量可能不会对RSSI测量结果产生太大的偏差,因此产生的RSSI可以比以前的方案更好地表示载波频率的负担。
在一些实施例中,RSSI测量资源可以与SMTC分开配置,RSSI测量定时配置(包括周期、偏移和持续时间中的一个或多个)可以称为RMTC。在该替代方案中,网络可以基于网络的需求来灵活选择RSSI测量资源。
在这些实施例中,可以使用SMTC参数(SMTC周期、偏移和持续时间)来得到RMTC参数以及被配置用于RMTC的其它参数。在一种方法中,SMTC时间窗口和相对偏移值确定RMTC时间窗口。例如,当SMTC时间窗口是无线电帧中跨度从子帧0到5(0到5毫秒)的半帧,并且RMTC的相对偏移被配置/指示为3毫秒时,则RMTC时间窗口被确定为子帧3到5,即,RMTC时间窗口的跨度:从通过将配置的RMTC偏移应用于SMTC时间窗口的起始点而确定的时间点、到SMTC时间窗口的终点点。
图24示出了根据本公开的实施例的RMTC 2400的示例配置。图24中示出的RMTC2400的配置的实施例仅用于说明。图24中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
RMTC和SMTC共享相同的周期,但RMTC的定时偏移不同于SMTC的定时偏移,并且该偏移由网络指示。此外,RMTC持续时间跨度到SMTC持续时间的终点为止。
在另一实施例中,所有RMTC参数与SMTC参数分开配置。
在另一实施例中,配置了CSI-RS测量定时配置(CMTC),并且UE可以测量CMTC持续时间内所有OFDM符号中的RSSI,尽管UE可以测量映射CSI-RS的RE上的CSI-RSRP。CMTC可以包括或可以不包括SS块。替代地,将RSSI测量资源确定为SS块或具有PBCH的OFDM符号的PBCH BW。替代地,COREET被配置/指示为RSSI测量资源。
在用于测量小区特定和波束特定的RSSI值的一些实施例中,正如用不同的Rx波束来不同地测量RSRP值,所测量的RSSI值也可以取决于Rx波束而不同。因为RSRQ是RSRP和RSSI之间的比值,清楚地定义当取该比值时可以使用哪两个确切的值似乎是有必要的。为此,可以定义针对其UE应用相同的Rx波束来测量RSRP和RSSI两者的量的特定于波束的RSRQ。
通过这种方式,UE测量特定Rx波束的RSRQ,并且网络可使用该信息来确定与RX波束对应的被报告的Tx波束的频率间切换。在对于RSRP和RSSI测量两者使用相同的时间资源的情况下,UE似乎容易使用相同的Rx波束来进行测量。然而,在不同的时间资源用于RSRP和RSSI测量的情况下,网络似乎有必要通知UE可以使用相同的Rx波束来测量RSSI,当该Rx波束已用于RSRP测量时。换言之,对于波束,需要对用于RSRP和RSSI的资源进行配对,并且可以向UE指示/配置配对关系。配对信息可以预先配置,或由网络指示。
在实施例中,SS块被配置为用于RSRQ测量;并且每个SS块配置RSSI测量资源(即一对一映射)。UE还被配置为假定在SS块和RSSI测量资源之间空间QCL,同时UE可对跨不同SS块和不同RSSI测量资源的空间QCL不进行任何假定。由于两个相邻的SS块之间存在时间间隔,因此在替代方案中RSSI测量资源可能对应于时间间隔。例如,在SS块之前和与SS块相邻的两个连续OFDM符号被预先配置为与该SS块对应的对应RSSI测量资源(即,UE可假定这两个资源在空间参数中被进行QCL)。在替代示例中,在SS块之后和与SS块相邻的两个连续OFDM符号被预先配置为对应的RSSI测量资源。
图25示出了根据本公开的实施例测量小区特定的和波束特定的RSSI值2500的示例。图25中示出的测量小区特定的和波束特定的RSSI值2500的实施例仅用于说明。图25中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图25中所示,RMR意味着RSSI测量资源。在图中,SS块i和i+1被映射在OFDM符号{2,3,4,5}+O和{8,9,10,11}+O中,其中O是OFDM符号偏移,是14的倍数。在第一替代方案(替代方案1)中,对应的RMR在SS块之前被映射。RMR i位于OFDM符号{0,1}+O处;RMR i+1位于OFDM符号{6,7}+O处。在第二替代方案(替代方案2)中,对应的RMR在SS块之前被映射。RMR i位于OFDM符号{6,7}+O处;RMR i+1位于OFDM符号{12,13}+O处。
UE被配置为将相同的Rx波束集应用于具有相同索引的RMR和SS块;换言之,UE被配置为假定对于每个i,RMR i在空间参数上与SS块i进行QCL。在这种情况下,特定于波束的RSRQ,即(第i个RSRQ)可以被定义为分别用RMR i和SS块i测量的(第i个RSSI)与(第i个RSRP)的比值。
在实施例中,CSI-RS资源被配置为用于RSRQ测量;在OFDM符号的相同集合上映射的每个CSI-RS资源组(包括多个CSI-RS资源)配置RSSI测量资源。UE还被配置为假定在CSI-RS资源组和RSSI测量资源之间空间QCL,同时UE可以对跨不同CSI-RS资源组和不同RSSI测量资源的空间QCL不进行任何假定。
在一个示例中,UE被配置为将CSI-RS资源组的CSI-RS测量带宽中的所有RE用作对应的RSSI资源。
在另一示例中,UE被配置有单独的OFDM符号集作为RSSI测量资源,其中OFDM符号集被配置/指示为每个CSI-RS资源组的RSSI资源。在一个实例中,当CSI-RS资源组被映射到OFDM符号x上时,RSSI资源被映射到OFDM符号x+o上,其中o由网络指示。在另一实例中,RSSI资源由网络与CSI-RS资源分开指示。
图26示出了根据本公开的实施例的示例CSI-RS映射和RMR配置2600。图26中示出的CSI-RS映射和RMR配置2600的实施例仅用于说明。图26中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图26中所示,CSI-RS a、b、c和d通过应用不同的波束发送,CSI-RS a、b、c和d被映射到正交时频资源。CSI-RS a、b在OFDM符号x和x+P上映射,CSI-RS c、d在OFDM符号y和y+P上映射,CSI-RS以P个OFDM符号的周期周期性地循环。
根据第一替代方案,相同的OFDM符号被配置为RMR,在RMR上配置对应的NZP CSI-RS。例如,对于CSI-RS a和b,RMR被配置为OFDM符号x、x+P,…内的CSI-RS测量BW中的所有RE;对于CSI-RS c和d,RMR被配置为OFDM符号y、y+P,…内的CSI-RS测量BW中的所有RE。在这种情况下,UE被配置为通过使用每个NZP CSI-RS(即a、b、c、d)进行RSRP测量和使用对应的RMR(即分别使用OFDM符号x、x、y、y)进行RSSI测量来得到RSRQ。
根据第二替代方案,将单独的OFDM符号配置为在相同的OFDM符号中映射的多个CSI-RS的RMR。对于CSI-RS a和b,RMR被配置为OFDM符号z、z+P,…内的CSI-RS测量BW中的所有RE;对于CSI-RS c和d,RMR被配置为OFDM符号w、w+P,…内的CSI-RS测量BW中的所有RE。在这种情况下,UE被配置为通过使用每个NZP CSI-RS(即a、b、c、d)进行RSRP测量和使用对应的RMR(即分别使用OFDM符号z、z、w、w)进行RSSI测量来得到RSRQ。
小区特定的RSRQ可通过取与X个SS块索引或CSI-RS(资源)索引对应的X个波束特定的RSRQ值的平均值得到,所有这些值高于被配置的RSRQ阈值。在替代的实施例中,通过取与X个SS块索引或CSI-RS(资源)索引对应的X个波束特定的RSRQ值的平均值来得到小区特定的RSRQ,其对应的RSRP值高于被配置的RSRP阈值。
小区特定的RSRQ和波束特定的RSRQ中的至少一个可以被配置/指示为被报告。当报告波束特定的RSRQ时,相同数量的波束特定的RSRQ可以被报告为被报告数量的RSRP,使得共同的信令适用于RSRP和RSRQ两者。或者,可以将单独的指示分别用于要报告的多个RSRP和要报告的多个RSRQ。
替代地,单个RMR独立于SS块位置而被配置,且UE被配置为假定RMR在空间参数中与被配置的SS块进行QCL。被配置的SS块索引可以由网络显式指示。或者,所配置的SS块可以与可以报告RSRP的SS块对应。在这种情况下,UE被配置为用QCL假定测量RSSI,并采用与被配置的SS块对应的RSSI和RSRP的比值来得到RSRQ。在这种情况下,UE可以被配置为报告仅与被配置的SS块对应的单个RSRQ值。
对于频率间测量,QCL关系还需要在一个载波频率中用于测量RSRQ的SS块和RMR的对与另一载波频率中的对之间配置到UE。在一个替代方案中,UE被配置为假定在第一和第二载波频率中将相同的OFDM符号分配用于RMR i和SS块i,并且还假定在空间参数中,在第一载波频率中的RMR i和SS块i与在第二载波频率中的RMR i和SS块i进行QCL。
当将CSI-RS配置为用于频率间的RSRQ测量时,QCL假定可以使得在空间参数中,频率间小区中的相同索引的CSI-RS和对应RMR与服务小区中的CSI-RS以及对应的RMR进行QCL。对于频率间测量,通过RRC/SIB可以配置跨多个频率间小区使用的CSI-RS的单个集。CSI-RS的单个集包括以给定的周期和定时偏移重复出现的CSI-RS资源的集合。相同的索引的资源跨多个小区间映射到同一个OFDM符号上,UE可以假定针对在两个不同载波上的相同索引的CSI-RS资源保持空间QCL关系。
UE可以在第一载波中用第一CSI-RS资源设置配置,在第二载波中用第二CSI-RS资源设置配置,其中两种资源设置具有相同数量的CSI-RS资源。可以指示UE这两种CSI-RS资源设置在空间参数上进行QCL。在这种情况下,UE可以假定来自两种资源设置的相同索引的CSI-RS资源被进行QCL。
在SINR测量配置的一些实施例中,NZP CSI-RS或SS块可以被配置/指示用于信号部分测量,并且IMR(干扰测量)可以被配置用于干扰部分测量。
在实施例中,NZP CSI-RS被配置用于信号部分测量。在一个示例中,单独的ZPCSI-RS被配置为每个CSI-RS资源组的IMR,对于每个CSI-RS资源组使用相同的Rx波束来接收ZP CSI-RS和CSI-RS资源组两者。在一个示例中,ZP-CSI-RS和CSI-RS资源组通过单个资源配置被配置为对。在另一示例中,ZP-CSI-RS和CSI-RS资源组被分开配置。
在另一实施例中,与CSI-RS资源组对应的CSI-RS测量BW中的OFDM符号集的所有RE被配置为IMR,并且UE被配置为通过实施(例如,通过从在RSSI资源上测量出的总功率中减去信号部分)来得到干扰。以这种方式,每个CSI-RS资源得到波束特定的SINR,并且还可以通过对高于被配置/指示的阈值的波束特定的SINR取平均值来得到小区特定的SINR。
在又另一实施例中,与CORESET的PDCCH DMRS(或具有DMRS的OFDM符号)对应的RE被配置/指示为IMR。
在又另一实施例中,SS块被配置用于信号部分测量。
在一个示例中,单独的ZP CSI-RS被配置为每个SS块的IMR,对于每个SS块,相同的Rx波束用于接收ZP CSI-RS和SS数据块两者。在一个示例中,配置ZP-CSI-RS的时间位置使得与SS块相隔常数偏移,其中该常数偏移可以被指示。在另一示例中,RRC中提供了单独的配置,该配置指示M个ZP CSI-RS资源用于M个实际发送的SS块,其中ZP CSI-RS i用于得到SS块i的干扰部分。该M个ZP CSI-RS资源可以(例如,通过指示(连续)OFDM符号的数量和频域重复因子或密度)被批量配置。
可以将OFDM符号偏移配置到每个SS块以配置对应的ZP CSI-RS。例如,SS块的最后一个OFDM符号的编号是n,ZP CSI-RS的时域位置是n+o,其中o是OFDM符号偏移。偏移值o可以被预先配置(例如,o=1);或者由SIB/RRC指示。ZP CSI-RS的BW可以被预先配置为SS块BW。在一种替代方案中,ZP CSI-RS BW与PSS/SSS BW相同。在另一替代方案中,ZP CSI-RSBW与PBCH BW相同。在另一替代方案中,ZP CSI-RS BW在PSS/SSS BW和PBCH BW之间配置。
在前述示例中,UE可以假定ZP CSI-RS i与SS块i进行QCL。对于干扰平均,不允许UE跨不同ZP CSI-RS进行平均干扰,但允许UE对跨与同一ZP-CSI-RS对应的RE(可以是周期性重复出现的)的干扰进行平均。
ZP CSI-RS和RMR的参数集可以不必然与参考参数集或SS块参数集相同。因此,建议能够指示ZP CSI-RS的参数集。此外,建议能够指示RMR的参数集。这里,参数集包括子载波间隔、循环前缀、OFDM符号长度等中的一个或多个。
在实施例中,UE被配置为假定与SS块配对用于RSRQ或SINR测量(包括IS/OOS的RLM测量)的ZP CSI-RS和/或RMR的参数集与SS块的参数集相同。
在另一实施例中,UE被配置为假定与CSI-RS配对用于RSRQ或SINR测量(包括IS/OOS的RLM测量)的ZP CSI-RS和/或RMR的参数集与CSI-RS的参数集相同。
图27示出了根据本公开的实施例的不同类型的RS之间的示例空间QCL关系2700。图27中示出的空间QCL关系2700的实施例仅用于说明。图27中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图27中所示,UE可以被网络指示/配置,使得在RS对之间建立QCL关系。RS对可以是以下中的任何一个:ZP CSI-RS和NZP CSI-RS;RMR和NZP CSI-RS;ZP CSI-RS和SS块;RMR和SS块;ZP CSI-RS和RMR。QCL关系可以被显式指示,或者由UE隐式假定。
图28A示出了根据本公开的实施例的UE的示例QCL假定2800。图28A中示出的UE的QCL假定2800的实施例仅用于说明。图28A中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图28A示出了当UE被配置有CSI报告设置时的QCL假定,该设置分别与用于干扰和信号测量的ZP CSI-RS和NZP CSI-RS链接。在一些实施例中,ZP CSI-RS与具有ZP CSI-RS资源的资源设置对应;NZP CSI-RS与具有NZP CSI-RS资源的资源设置对应。
在实施例中,UE可以假定与报告设置链接的ZP CSI-RS和NZP CSI-RS在空间参数中被进行QCL。通常,当报告设置被配置用于CSI报告时,UE可以假定与报告设置链接的所有CSI-RS设置在空间参数中被进行QCL。
在另一实施例中,UE被指示与报告设置链接的ZP CSI-RS和NZP CSI-RS在空间参数中是否被进行QCL。
图28B示出了根据本公开的实施例的UE的另一示例QCL假定2850。图28B中示出的UE的QCL假定2850的实施例仅用于说明。图28B中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图28B示出了当通过测量设置用多个CSI报告设置配置UE时的UE的QCL假定,其中每个CSI报告设置与分别用于干扰和信号测量的ZP CSI-RS和NZP CSI-RS链接。在一些实施例中,ZP CSI-RS与具有ZP CSI-RS资源的资源设置对应;NZP CSI-RS与具有NZP CSI-RS资源的资源设置对应。
在实施例中,UE可以假定与相同报告设置链接的ZP CSI-RS和NZP CSI-RS在空间参数中被进行QCL。通常,当报告设置被配置用于CSI报告时,UE可以假定与相同报告设置链接的所有CSI-RS设置在空间参数中被进行QCL;UE可以不假定与不同报告设置链接的CSI-RS设置在空间参数中被进行QCL。
图29示出了根据本公开实施例的NZP资源和ZP CSI-RS资源的示例对2900。图29中示出的NZP资源和ZP CSI-RS资源2900的对的实施例仅用于说明。图29中示出的一个多个组件可在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
NZP CSI-RS可以包括在空间参数中没有被进行QCL的多个CSI-RS资源。在这种情况下,在一种方法中,网络配置与NZP CSI-RS资源的数量相同数量的NZP CSI-RS资源,使得UE可以基于NZP资源和ZP CSI-RS资源的对(即NZP和ZP CSI-RS资源之间的一对一映射)来测量报告的量。这在图29中示出,其中NZP和ZP资源设置具有相同数量的资源,并且相同编号的ZP和NZP资源可以在空间参数中被假定为被进行QCL。
图30示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对3000。图30中示出的NZP资源和ZP CSI-RS资源的对3000的实施例仅用于说明。图30中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开范围的情况下,使用其它实施例。
如图30中所示,ZP CSI-RS资源可以被假定为在空间参数中被与NZP CSI-RS集进行QCL。在这种情况下,包括资源集的CSI-RS资源可以被映射到OFDM符号的公共集上。
图31示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对3100。图31中示出的NZP资源和ZP CSI-RS资源的对3100的实施例仅用于说明。图31中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图31中所示,报告设置与ZP CSI-RS和NZP CSI-RS的多个对链接,对于每个链接,包括(QCL)组索引指示,以及信号/干扰测量指示。UE可以假定用相同(QCL)组索引指示的CSI-RS(设置)在一组QCL参数(例如空间参数)中被进行QCL。
图32A示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对3200。图32A中出示的NZP资源和ZP CSI-RS资源的对3200的实施例仅用于说明。图32A中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图32A中所示,报告设置与ZP CSI-RS和NZP CSI-RS的多个对链接。在该实施例中,(QCL)组索引替代地包括在资源设置中。UE可以假定用相同的(QCL)组索引指示的CSI-RS(设置)在一组QCL参数(例如空间参数)中被进行QCL。
图32B示出了根据本公开的实施例的NZP资源和ZP CSI-RS资源的另一示例对3250。图32B中所示的NZP资源和ZP CSI-RS资源的对3250的实施例仅用于说明。图32B中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图32B中所示,报告设置与ZP CSI-RS和NZP CSI-RS的对链接。在该实施例中,(QCL)组索引替代地包括在资源或资源集配置中。UE可以假定用相同的(QCL)组索引指示的CSI-RS资源和CSI-RS资源/集在一组QCL参数(例如空间参数)中被进行QCL。
图28A、28B、29、30、31、32A和32B中示出的前述实施例和示例也适用于图27中示出的所有测量资源对。换言之,NZP CSI-RS和ZP CSI-RS可以被替换为以下中的任一个:RMR和NZP CSI-RS;ZP CSI-RS和SS块;RMR和SS块;ZP CSI-RS和RMR。
在实施例中,上述实施例中的(QCL)组ID可以被替换为CSI-RS相关ID(资源设置ID、资源集ID或资源ID中的至少一个)。
在实施例中,涉及信道和干扰测量两者的测量量(例如,RSRQ、诸如PDCCH BLER、RS-SINR、CQI等的类似于SINR的度量)是使用图27中示出的任何资源对得到的,并且UE可以假定包括该对的资源在空间参数中被进行QCL。
在RS-SINR与RLM测量的一些实施例中,在RS-SINR和RLM两者的测量中,UE被配置为测量信号/信道和干扰。对于信道测量,可以配置SS块或CSI-RS。对于干扰测量,如之前的实施例中所建议的,ZP-CSI-RS、具有NZP CSI-RS的RE/OFDM符号或PDCCH DMRS。
RS-SINR是表示数据吞吐量的度量,而RLM是表示PDCCH解码性能的度量。因此,需要单独配置用于测量干扰的位置。RLM的IMR可包括在PDCCH CORESET区域中,而RS-SINR的IMR可以包括在PDSCH区域中。
RLM的IMR是用于映射CORESET中的PDCCH DMRS的RE(或OFDM符号),CORESET与被配置用于RLM测量的信道部分的SS块或CSI-RS进行QCL。在替代实施例中,ZP-CSI-RS在与CORESET对应的OFDM符号中配置。ZP-CSI-RS在单个OFDM符号中可以具有每RB X个RE的密度(即,ZP CSI-RS在频域中每12/X个RE重复一次),并且可以隐式或显式地配置起始子载波偏移,其中X可以是1、2、3、4……中的一个。在一个示例中,ZP CSI-RS的起始偏移被确定为物理小区ID的函数,例如PCID mod(12/x)。
RS-SINR的IMR需要与RLM的IMR分开配置。在一示例中,RS-SINR的IMR在PDSCH区域中配置,对于该PDSCH区域,PDSCH天线端口与用于信道测量的SS块或CSI-RS进行QCL。为得到与CSI-RS资源或SS块对应的每个RS-SINR值,允许UE测量PDSCH DMRS天线端口与CSI-RS或SS块进行QCL的持续时间(或时频资源)中的干扰。前述实施例也可适用于RLM干扰和RSSI测量。
为得到与CSI-RS资源或SS块对应的每个RLM度量,允许UE测量PDCCH DMRS天线端口与CSI-RS或SS块进行QCL的持续时间段(或时频资源)中的干扰。
为了得到与CSI-RS资源或SS块对应的每个(波束特定的)RSRQ,允许UE测量在DMRS被进行QCL的持续时间(或时频资源)中的RSSI。
在一些实施例中,在SS块的情况下,默认的RLM-RS资源用于信道测量。
默认的(多个)RLM-RS资源可以是SS块,因为CSI-RS可能不总是可用的。那么,余下的问题是哪些SS块可以被视为默认的(多个)RLM-RS资源。UE仅需监控实际发送的SS块(SSB)似乎是自然的。
在实施例中,在两个位置指示SSB集合组成:在RMSI中;在RRC中。在UE由RRC指示之前,监控RLM的默认SSB可以是由RMSI指示的所有SSB。一旦UE由RRC配置,用于监控RLM的默认SSB可以是由RRC指示的所有SSB。为了使RLF条件严格(即更少的服务中断),比RRC指示的SSB数量进一步减少RLM资源的数量似乎不可取。
只要与SS块进行QCL的CORESET中的一些可以具有可靠的SINR,UE就仍然可以从小区接收PDCCH,且UE仍然可以从小区获取服务。基于该讨论,提出以下建议:默认的RLM-RS可以是SS块。根据SSB集组合的RMSI指示(SSB发送的SIB1)来配置用于测量RLM度量的默认SSB集合,直到SSB集组合的RRC指示(SSB发送)可用为止。
一旦SSB集组合的RRC指示(SSB发送)可用,则根据SSB集组合的RRC指示(SSB发送)来配置用于测量RLM度量的默认SSB集。
在传统的无线和移动通信系统中,UE侧的定时提前(TA)是必要的,并且用于保证和维持上行链路信号在基站侧同步。TA被定义为在接收到的下行链路参考信号的起始与所发送上行链路信号之间的定时偏移。
图33示出了根据本公开实施例的示例定时提前3300。图33中示出的定时提前3300的实施例仅用于说明。图33中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图33示出了为何定时提前对于确保与TRP同步是必要的。从TRP到UE存在传播延迟Δ1。当下行链路无线帧在时刻t1开始发送时,UE可以在t1+Δ1处接收下行链路无线帧。如果UE在时刻t1开始上行链路无线帧,由于从UE到TRP的传播延迟Δ2,所以上行链路无线帧可能在时刻t1+Δ1+Δ2到达TRP。为了使上行链路和下行链路无线帧在TRP处相互时间对准,需要UE提前以Δ1+Δ2(定时提前)来开始上行链路发送。
图34示出了根据本公开实施例的同时与TRP1和TRP2的示例UE通信3400。图34示出的UE通信3400的实施例仅用于说明。图34中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在以后的无线和移动通信系统中,用户终端可以同时与两个或更多个单独的TRP通信,以便提高系统的可靠性或容量。例如,如图34中所示,UE同时与TRP1和TRP2通信。UE向TRP1和TRP2的传输可以是相干传输或不相干传输,或者DPS(动态点选择传输)或其它CoMP传输模式。
用于TRP1和TRP2的载波频率可以不同或相同。UE侧的发送点可以是单个板或多个板。无论在哪种情况下,从UE到TRP1或TRP2的传播延迟都可能不同,这是因为传播距离d1和d2可能不同。在一些情形下,尤其是在毫米波系统中(其中阻塞对系统造成很大影响),传播距离d1和d2可能显著不同。如果UE对这两个TRP使用相同的TA,则可能存在问题。
图35示出了根据本公开实施例的示例传播延迟3500。图35中示出的传播延迟3500的实施例仅用于说明。图35中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
图35示出了当仅一个TA用于具有到UE的不同传播距离且因此不同传播延迟的两个TRP时可能发生的问题。从TRP1到UE存在传播延迟Δ1,从TRP2到UE存在传播延迟δ1,从UE到TRP1和TRP2分别存在传播延迟Δ2和δ2。这里,假定TRP1比TRP2在距离上更接近于UE,因此下行链路传播延迟Δ1小于δ1,上行链路传播延迟Δ2也小于δ2。
当下行链路无线帧在时刻t1开始发送时,UE可以在时刻t1+Δ1从TRP1接收下行链路无线帧,在时刻t1+δ1从TRP2接收下行链路无线帧。如果UE基于TRP1的下行链路参考定时应用TAΔ1+Δ2,并在提前Δ1+Δ2的时刻开始上行链路无线帧,则TRP1可以在可以确保TRP1的上行链路与下行链路同步的时刻t1接收上行链路无线帧。然而,对于TRP2,它可以在时刻T1+δ2-Δ2接收上行链路无线帧。
假定δ2大于Δ2,因此对于TRP2,不能确保上行链路和下行链路同步。类似地,如果UE基于TRP2的下行链路参考定时应用TA δ1+δ2,并在提前δ1+δ2的时刻开始上行链路无线电帧,则TRP2可以在可以确保TRP2的上行链路与下行链路同步的时刻t1接收上行链路无线帧。然而,对于TRP1,它可以在时刻t1+Δ2–δ2接收上行链路无线帧。我们假定δ2大于Δ2,因此对于TRP1,不能确保上行链路和下行链路同步。
图36示出了根据本公开实施例的示例符号间干扰3600。图36中示出的符号间干扰3600的实施例仅用于说明。图36中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
由于诸如无线信道中的反射、折射之类的无线信号传输特性,无线通信系统中存在多路径延迟,其中无线信号通过多个路径到达接收器并且可能导致符号间干扰(ISI),如图36所示。我们假定在系统中存在三条多路径,接收端可以得到所发送的符号的三个副本。例如,在接收时间窗口t2,接收器不仅获得符号2的多路径信号,而且获得符号1的多路径信号。这意味着符号1构成对符号2的ISI。
图37示出了根据本公开的实施例的示例符号间干扰和CP 3700。图37中示出的符号间干扰和CP 3700的实施例仅用于说明。图37中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
例如在OFDM系统中使用的循环前缀(CP)用作每个OFDM符号之间的保护间隔,以对抗由无线多路径传播导致的ISI。通过在每个OFDM符号之前出现同一符号的结尾部分的副本来创建CP。如以下的图37所示,通过添加比多路径延迟扩展更长的CP,可以有效地消除ISI。例如,在接收时间窗口t2中,仅接收符号2的多路径,来自符号1的ISI被完全消除。CP的缺点在于它占用了系统带宽并且降低了整体的数据速率,所以CP的长度不能太长,以降低整体系统开销。
对于如以上在图35中说明的多TRP的情况,CP可以用于对抗其中仅采用一个TA的传播延迟问题。当不考虑多路径时,传播延迟可以小于CP的长度,也就是说,如果在图35中,Δ2–δ2<CP,则可以避免ISI。如果考虑到多路径,则问题可能更严重。传播延迟加上多路径延迟扩展可能小于CP的长度。也就是说,如果在图35中,Δ2-δ2+多路径延迟扩展<CP,则可以避免ISI。
为了使传播延迟+多路径延迟传播不超过CP的长度,在可以支持的任意两个TRP之间的发送距离差(即图37中的d2-d1)计算如下。这里假定考虑LTE规范中定义的用于28GHz载波频率的CDL-A信道模型。基于LTE帧结构的参数集来假定CP的长度,并根据各种SCS(子载波间隔)相应地缩放。SCS配置基于NR帧结构的参数集。
针对各种SCS的CP长度如以下的表6中所示。任何TRP之间的最大允许传播距离差的计算结果如以下的表7中所示。从表7可以看出,对于120kHz和240kHz的SCS,任何两个TRP之间的最大允许传播距离差都较短。例如,对于窄的BF 2的情况,如果两个TRP之间的传播距离差大于21.46m,则传播延迟+多路径延迟扩展可能超过CP的长度,可能存在ISI。
表6.各种子载波间隔的CP长度
子载波间隔(KHz) CP(us)
60 1.30
120 0.65
240 0.33
表7.TRP之间的最大允许传播距离差
对于毫米波系统,对于UE(特别是高端UE),建议采用多板天线结构,其中可以单独或联合地从不同板形成多波束,以进一步提高系统的可靠性或容量。这里对于多板UE,如图34所示,每个板可以具有不同的最优TRP来进行通信。如果仅一个TA用于每个板,则上述ISI也可能发生。
上述问题的解决方案之一是在多TRP系统中使用多个定时提前。
图38示出了根据本公开的实施例的UE 3800中的示例若干板。图38中所示的UE3800中的若干面板的实施例仅用于说明。图38中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
如图38所示,假设UE中存在若干板。如果对每个板配置单独的TA和PC,则这可能使电源控制非常复杂,这是因为独立的TRP MAC和调度,该调度导致单独的上行链路电源控制BSR报告、PHR报告、DRX、异步操作、PRACH过程、TRP之间的交换信息。
限制最大组数,例如2。对于每个组,相干JT可以用于具有相同的TA和PC的板。非相干JT可用于组之间。例如,在图38中,板1和3属于组1,板2和4属于组2。
在RRC连接建立或重新配置过程期间,可以由gNB配置和指示TA组的最大允许数量和详细的TA组信息。
存在支持多个TRP系统中的多个提前定时过程的若干实施例。在这些实施例中,gNB确定附加的TA并向UE配置附加的TA操作,或者UE确定UE的附加的TA操作,并向TRP通知UE的多TA操作。此外,在每种方法中,都详细阐述了关于如何将多个TA分组以用于多板的UE的过程。
在实施例中,gNB根据上行链路SRS测量来配置附加的TA操作。
在实施例中,gNB通过信号发送额外的RACH过程和RACH测量来配置附加的TA操作。
在实施例中,gNB基于由UE报告的SS块信息反馈来配置附加的TA操作。
在实施例中,UE基于来自多个TRP的DL同步过程来确定附加的TA操作。
图39示出了根据本公开的实施例的多TA过程3900的示例。图39中所示的多TA过程3900的实施例仅用于说明。图39中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在实施例中,多TA过程在图39中示出。在图39中,在步骤1,UE进行与TRP的DL同步,选择一个最优的DL TRP,并记录从所有TRP检测到的所有SS块索引。在步骤2,UE与最优TRP进行UL RACH,并且RRC连接用最优TRP建立。如果使用UE处的多板,则上行链路QCL信息也将报告给gNB。在步骤3,gNB经由RRC信令配置上行链路SRS资源,使UE进行上行链路SRS测量。基于上行链路QCL信息,将SRS资源池(板编号、端口数量、周期、带宽等)映射到每个板。
在周期性SRS配置的实施例中,SRS资源被配置如下。增加SoundingRS-UL-ConfigDedicated IE中的字段srs-Panel以指示板编号,并且每个板中的端口数量由字段srs-AntennaPort指示。
在非周期性SRS配置的另一实施例中,SRS资源被配置如下。添加SRS-ConfigAp IE中的字段srs-Panel以指示板编号,并且每个板中的端口数量由字段srs-AntennaPort指示。
在图39中,在步骤4,UE基于SRS资源配置为每个板开始上行链路SRS发送。在步骤5,gNB测量所有TRP的上行链路SRS定时,并确定是否需要附加的TA。如果任何两个TRP之间的定时较大,则可以决定附加的TA以用于附加的TRP。为了使系统的复杂度最小化,gNB还可以对TA进行分组,即对每个UE限制TA的最大数量。gNB针对与另一TRP的SS块索引相关联的附加的TA配置附加的RACH过程。
对于UE,如果可用的板比允许的TA组多,则gNB可以经由RRC信令指示哪些板属于相同的TAG(定时提前组)组。对于属于相同TA组的板,仅一个RACH过程被gNB配置和触发。
在实施例中,免竞争RACH的RACH配置可如下所示。添加RRC信令中的SoundingRS-UL-ConfigDedicated IE中的字段srs-Panel以指示板编号来进行免竞争RACH。添加SS-Block-index以指示哪个SS块索引用于参考定时。
在另一实施例中,免竞争RACH的RACH配置可以如下所示。它由PDCCH命令触发。添加了在RACH-ConfigDedicated IE中的字段srs-Panel以指示进行免竞争RACH的板编号。添加SS-Block-index以指示哪个SS块索引用于参考定时。字段srs-Panel和SS-Block-index的位可以变化,因此不必然是3位。在一个示例中,前导码索引可以是6位,PRACH掩码索引可以是4位,srs-Panel可以是3位;SS-Block-index可以是3位。
在图39中,在步骤6,UE启动到另一TRP的附加RACH。上行链路发送定时基于与由gNB指示的SS块索引相关联的参考定时。
图40示出了根据本公开的实施例的另一示例多TA过程4000。图40中所示的多TA过程4000的实施例仅用于说明。图40中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在一些实施例中,多TA过程在图40中示出。在图40中,在步骤1,UE进行与TRP的DL同步,选择一个最优的DL TRP,并记录所有检测到的TRP的SS块索引。在步骤2,UE与最优的TRP进行UL RACH,并且与最优的TRP建立RRC连接。在步骤3,gNB经由UE的RRC信令配置附加的上行链路RACH过程,以用于UE进行到附加的TRP的RACH。
在实施例中,免竞争RACH的RACH配置可以如下所示。添加在RRC信令中的RACH-ConfigDedicated IE中的字段srs-Panel以指示进行免竞争RACH的板编号。增加SS-Block-index以指示哪个SS块索引用于参考定时。
在另一实施例中,免竞争RACH的RACH配置可以如下所示。它由PDCCH命令触发。添加在RACH-ConfigDedicated IE中的字段srs-Panel以指示进行免竞争RACH的板编号。添加SS-Block-index以指示哪个SS块索引用于参考定时。在该实施例中,前导码索引可以是6位,PRACH掩码索引可以是4位,srs-Panel可以是3位;SS-Block-index可以是3位。
在图40中,在步骤4,UE启动上行链路RACH发送。上行链路发送定时基于与由gNB在RACH配置中指示的SS块索引相关联的参考定时。在步骤5,gNB测量上行链路RACH定时,并确定是否需要额外的TA。如果任何两个TRP之间的定时较大,则可以针对另一TRP确定附加的TA。gNB经由RAR消息或RRC信令配置与另一TRP的SS块索引相关联的附加TA。
图41示出了根据本公开的实施例的经由RAR消息的示例TA配置4100。图41中所示的TA配置4100的实施例仅用于说明。图41中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在实施例中,经由RAR消息的附加TA配置在以下如图41中所示。RAR消息中添加了新的TA标志以指示是否决定附加的TA。附加TA标志的字段指示是触发新的TA还是使用附加TA。附加TA标志也可以是TAG组索引。例如,如果附加TA标志=1,则其意味着对应的板可以使用TAG组1。如果附加TA标志=2,则其意味着当以前仅使用TAG组1时,可以使用附加TA。
在实施例中,经由RRC信令(例如,经由RRC重配置消息)配置附加TA配置。在图41中,在步骤6,UE进行与另一TA相关联的发送。
在实施例中,在图42中示出多TA过程。在图42中,在步骤1,UE进行与TRP的DL同步,选择一个最优的DL TRP,并记录所有TRP的SS块索引。在步骤2,UE与最优的TRP进行ULRACH,并且与最优的TRP建立RRC连接。UE向gNB报告所有检测到的TRP的同步信息(板编号、SS块索引、信号强度等)。
图42示出了根据本公开的实施例的又另一示例多TA过程4200。图42中所示的多TA过程4200的实施例仅用于说明。图42中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在RRC信令的实施例中,同步信息可以包括板编号、SS块索引、信号强度等,RRC消息可以是RRC连接完成消息。在图42中,在步骤3,gNB确定任何两个TRP之间的定时是否较长,并且可以针对附加TRP确定附加TA。如果需要附加TA,则gNB将对与另一TRP的SS块索引关联的附加TA来配置附加的RACH过程。为了使系统的复杂度最小化,gNB可以对TA进行分组,即限制每个UE的最大TA数量。
如果UE的可用板多于允许的TA组,则gNB可以经由RRC信令指示哪些板属于相同的定时提前组(TAG)组。对于属于相同的TA组的板,仅一个RACH过程被gNB配置和触发。
在实施例中,免竞争RACH的RACH配置可以如下所示。添加在RACH-ConfigDedicated IE中的字段srs-Panel以指示进行免竞争RACH的板编号。添加SS-Block-index以指示哪个SS块索引用于参考定时。
在另一实施例中,免竞争RACH的RACH配置可以如下所示。它由PDCCH命令触发。添加在RACH-ConfigDedicated IE中的字段srs-Panel以指示进行免竞争RACH的板编号。添加SS-Block-index以指示哪个SS块索引用于参考定时。在这样的实施例中,前导码索引可以是6位,PRACH掩码索引可以是4位,srs-Panel可以是3位;SS-Block-index可以是3位。在图42中,在步骤4,UE用到TRP的附加TA启动附加的RACH。上行链路发送定时基于与由gNB指示的另一SS块索引相关联的参考定时。
图43示出了根据本公开的实施例的另一示例多TA过程4300。图43中所示的多TA过程4300的实施例仅用于说明。图43中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在实施例中,多TA过程如图43中所示。在图43中,在步骤1,UE与TRP进行DL同步,并对所有检测到的TRP记录SS块索引。在步骤2,UE从检测到的TRP的所有SS块索引确定定时信息,并确定是否需要附加TA。如果任何两个TRP之间的定时较长,则可以决定单独的TA,并且UE还基于来自所有检测到的SS块索引的定时信息进行TA分组。UE对每个TAG组进行到这些对应的TRP的单独UL RACH,并分别建立RRC连接。
在另一实施例中,考虑前述实施例的组合。例如,前述实施例一起用于确定是否需要附加TA。它将SRS测量和附加RACH测量一起使用来确定任何两个TRP之间的定时是否足够长以需要附加的TA操作。
可以一起考虑SRS测量和RACH测量的原因如下:SRS子帧中的CP不如RACH资源中使用的保护周期长。因此,SRS能够检测和支持的动态定时范围不如RACH大。仅仅根据SRS测量来确定是否需要附加TA是不够的;SRS定时可以用于粗略估计需要哪个TRP,使得gNB可以针对UE发送和测量配置附加的RACH资源。
图44示出了根据本公开的实施例的另一示例多TA过程4400。图44中所示的多TA过程4400的实施例仅用于说明。图44中所示的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开的范围的情况下,使用其它实施例。
在图44中,在步骤1,UE与TRP进行DL同步,选择一个最优的DL TRP,并记录来自所有TRP的检测到的所有SS块索引。在步骤2,UE与最优TRP进行UL RACH,并且与最优TRP建立RRC连接。如果使用UE处的多板,则上行链路QCL信息也被报告给gNB。在步骤3,gNB经由RRC信令配置上行链路SRS资源,以用于UE进行上行链路SRS测量。基于上行链路QCL信息,将SRS资源池(板编号、端口数量、周期、带宽等)映射到每个板。在步骤4,UE基于SRS资源配置对每个板开始上行链路SRS发送。在步骤5,gNB测量所有TRP的上行链路SRS定时。如果任何两个TRP之间的定时较长,则配置与另一TRP的SS块索引相关联的附加TA的附加RACH过程。在步骤6,gNB经由RRC信令配置附加的上行链路RACH过程,以用于UE对附加的TRP进行附加RACH。在步骤7,UE开始上行链路RACH发送。上行链路发送定时基于在RACH配置中与由gNB指示的SS块索引相关联的参考定时。在步骤8,gNB测量上行链路RACH定时,并确定是否需要附加的TA。如果任何两个TRP之间的定时较长,则可以对另一TRP决定附加TA。gNB经由RAR消息或RRC信令来配置与另一TRP的SS块索引相关联的附加TA。
为了使系统的复杂度最小化,gNB还可以对TA进行分组,即限制每个UE的最大TA数量。如果针对UE,存在比允许的TA组多的可用板,则gNB可以经由RRC信令来指示哪些板属于相同的TAG(定时提前组)组。
图45示出了根据本公开实施例的示例多TA分组维护4500。图45中示出的多TA分组维护4500的实施例仅用于说明。图45中示出的一个或多个组件可以在被配置为执行所提及功能的专用电路中实现,或者一个或多个组件可以由执行指令以执行所提及功能的一个或多个处理器实现。在不脱离本公开范围的情况下,使用其它实施例。
当由于信道阻塞、反射、UE移动和旋转等而需要动态TA分组时,也可使用前述实施例。gNB和UE可以基于如多TA过程部分中示出的一系列测量来确定更新的多TA分组。例如,如以下在图45中所示,在开始时,板1和3属于相同的TA组1。板2和4属于其它TA组2。之后,板4被从TRP2阻塞并从TRP1接收到比TRP2强的信号,在这种情况下,板4属于TA组1。
尽管已经用示例性实施例描述了本公开,但是可以向本领域技术人员建议进行各种改变和修改。本公开旨在涵盖落入所附权利要求范围内的这些改变和修改。
本申请中的任何描述都不应当被理解为暗示任何特定元件、步骤或功能是必须包括在权利要求范围内的必不可少的元素。专利主题的范围仅由权利要求限定。此外,没有权利要求旨在援引35U.S.C.§112(f),除非确切的词“用于…的设备”跟随以分词。

Claims (15)

1.一种用户设备(UE),包括:
收发器,被配置为从基站(BS)接收指示信道状态信息参考信号(CSI-RS)配置参数的多个第一集合中的一个或多个的配置信息;以及
至少一个处理器,可操作地连接到收发器,被配置为:
确定在包含多个小区的无线通信系统中每个频率上的CSI-RS资源,以及
确定所述多个小区中的每一个的CSI-RS配置参数的多个第一集合,所述CSI-RS配置参数的多个第一集合中的每一个包含所述多个小区中的每一个的物理小区标识符。
2.如权利要求1所述的UE,其中,所述配置信息还指示CSI-RS配置参数的多个第二集合中的一个或多个,以及
其中,所述至少一个处理器还被配置为:
对于所述多个小区中的每一个,确定在下行链路信令中的每个时隙上的用于测量的CSI-RS资源,以及
确定针对所述每个时隙的CSI-RS配置参数的多个第二集合。
3.如权利要求1所述的UE,其中,所述配置信息还指示CSI-RS配置参数的多个第二集合中的一个或多个,以及
其中,所述至少一个处理器还被配置为确定所述CSI-RS配置参数的多个第二集合,所述CSI-RS配置参数的多个第二集合中的每一个包括加扰标识符。
4.如权利要求3所述的UE,其中,所述配置信息还指示CSI-RS配置参数的多个第三集合中的一个或多个,以及
其中,所述至少一个处理器还配置为:
针对所述加扰标识符,确定下行链路信令中的每个时隙上的用于测量的CSI-RS资源,以及
确定针对所述每个时隙的CSI-RS配置参数的多个第三集合。
5.一种基站(BS),包括:
至少一个处理器,被配置为:
配置在包含多个小区的无线通信系统中每个频率上的信道状态信息参考信号(CSI-RS)资源,以及
配置针对所述多个小区中的每一个的CSI-RS配置参数的多个第一集合,所述CSI-RS配置参数的多个第一集合中的每一个包含所述多个小区中的每一个的物理小区标识符;以及
收发器,可操作地连接到所述至少一个处理器,被配置为向用户设备(UE)发送指示所述CSI-RS配置参数的多个第一集合中的一个或多个的配置信息。
6.如权利要求5所述的BS,其中,所述至少一个处理器进一步被配置为:针对所述多个小区中的每一个,配置下行链路信令中的每个时隙上的用于测量的CSI-RS资源,配置针对所述每个时隙的CSI-RS配置参数的多个第二集合,以及
其中,所述配置信息还指示CSI-RS配置参数的多个第二集合中的一个或多个。
7.如权利要求5所述的BS,其中,所述至少一个处理器还被配置为配置CSI-RS配置参数的多个第二集合,所述CSI-RS配置参数的多个第二集合中的每一个包含加扰标识符,以及
其中,所述配置信息还指示CSI-RS配置参数的多个第二集合中的一个或多个。
8.如权利要求7所述的BS,其中,所述至少一个处理器还被配置为:对于所述加扰标识符,配置下行链路信令中的每个时隙上用于测量的CSI-RS资源作为CSI-RS反馈的一部分,并且配置针对所述每个时隙的CSI-RS配置参数的多个第三集合,以及
其中,所述配置信息还指示CSI-RS配置参数的多个第三集合中的一个或多个。
9.一种用户设备(UE)的方法,所述方法包括:
从基站(BS)接收指示信道状态信息参考信号(CSI-RS)配置参数的多个第一集合中的一个或多个的配置信息;
确定在包含多个小区的无线通信系统中每个频率上的CSI-RS资源;以及
确定针对所述多个小区中的每一个的CSI-RS配置参数的多个第一集合,所述CSI-RS配置参数的多个第一集合中的每一个包含所述多个小区中的每一个的物理小区标识符。
10.如权利要求9所述的方法,还包括:
对于所述多个小区中的每一个,确定下行链路信令中的每个时隙上的用于测量的CSI-RS资源;以及
确定针对所述每个时隙的CSI-RS配置参数的多个第二集合,
其中,所述配置信息还指示所述CSI-RS配置参数的多个第二集合中的一个或多个。
11.如权利要求9所述的方法,还包括:
确定所述CSI-RS配置参数的多个第二集合,所述CSI-RS配置参数的多个第二集合中的每一个包含加扰标识符,
其中,所述至少一个处理器还配置为确定所述CSI-RS配置参数的多个第二集合,所述CSI-RS配置参数的多个第二集合中的每一个包含加扰标识符。
12.如权利要求11所述的方法,还包括:
对于所述加扰标识符,确定下行链路信令中的每个时隙上的用于测量的CSI-RS资源;以及
确定针对所述每个时隙的CSI-RS配置参数的多个第三集合,
其中,所述配置信息还指示所述CSI-RS配置参数的多个第三集合中的一个或多个。
13.如权利要求1所述的UE、如权利要求5所述的BS或如权利要求9所述的方法,其中,所述CSI-RS配置参数的多个第一集合中的每一个包含参数集、测量和传输带宽、资源元素(RE)映射密度、周期或资源设置列表中的至少一个。
14.如权利要求2所述的UE、如权利要求6所述的BS或如权利要求10所述的方法,其中,所述CSI-RS配置参数的多个第二集合中的每一个包含加扰标识符(ID)、第一定时偏移、第二定时偏移的位图或资源集列表中的至少一个。
15.如权利要求2所述的UE、如权利要求6所述的BS或如权利要求10所述的方法,其中,所述CSI-RS配置参数的多个第二集合中的每一个包含资源元素(RE)映射信息或准共址的同步信号块(被进行QCL的SSB)信息中的至少一个。
CN201880028384.4A 2017-03-08 2018-03-08 用于在无线通信系统中处理参考信号的方法和装置 Active CN110574328B (zh)

Applications Claiming Priority (23)

Application Number Priority Date Filing Date Title
US201762468670P 2017-03-08 2017-03-08
US62/468,670 2017-03-08
US201762475614P 2017-03-23 2017-03-23
US62/475,614 2017-03-23
US201762484193P 2017-04-11 2017-04-11
US62/484,193 2017-04-11
US201762514384P 2017-06-02 2017-06-02
US62/514,384 2017-06-02
US201762542593P 2017-08-08 2017-08-08
US62/542,593 2017-08-08
US201762543704P 2017-08-10 2017-08-10
US62/543,704 2017-08-10
US201762555426P 2017-09-07 2017-09-07
US62/555,426 2017-09-07
US201762556749P 2017-09-11 2017-09-11
US62/556,749 2017-09-11
US201762583868P 2017-11-09 2017-11-09
US62/583,868 2017-11-09
US201762587853P 2017-11-17 2017-11-17
US62/587,853 2017-11-17
US15/913,730 US10708028B2 (en) 2017-03-08 2018-03-06 Method and apparatus for reference signals in wireless system
US15/913,730 2018-03-06
PCT/KR2018/002784 WO2018164515A1 (en) 2017-03-08 2018-03-08 Method and apparatus for processing reference signals in wireless communication system

Publications (2)

Publication Number Publication Date
CN110574328A true CN110574328A (zh) 2019-12-13
CN110574328B CN110574328B (zh) 2022-08-19

Family

ID=63445703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880028384.4A Active CN110574328B (zh) 2017-03-08 2018-03-08 用于在无线通信系统中处理参考信号的方法和装置

Country Status (4)

Country Link
US (1) US10708028B2 (zh)
KR (1) KR20190119659A (zh)
CN (1) CN110574328B (zh)
WO (1) WO2018164515A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138798A1 (en) * 2020-01-07 2021-07-15 Qualcomm Incorporated Idle search and measurement modifications due to unreliable measurement time configuration
WO2021179799A1 (zh) * 2020-03-11 2021-09-16 中兴通讯股份有限公司 配置信息确定方法及装置、信息配置方法及装置、终端、基站和存储介质
WO2021203869A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 准共址关系管理方法及装置
WO2022028582A1 (zh) * 2020-08-06 2022-02-10 中国移动通信有限公司研究院 测量方法、信息获取方法、发送方法、终端及网络侧设备
WO2022094972A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Methods for csi-rs resource aggregation
WO2022143451A1 (zh) * 2020-12-31 2022-07-07 维沃移动通信有限公司 参考信号配置方法、配置装置、电子设备和可读存储介质
WO2022151382A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置
WO2023078257A1 (zh) * 2021-11-05 2023-05-11 大唐移动通信设备有限公司 资源配置方法、装置、网络设备及终端设备
WO2023130900A1 (zh) * 2022-01-07 2023-07-13 大唐移动通信设备有限公司 定时测量上报、定时配置、信息传输方法、装置及设备
WO2023206538A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 一种基于多发送接收点的通信方法、装置及存储介质

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
US11218236B2 (en) 2016-06-01 2022-01-04 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10887035B2 (en) * 2016-06-01 2021-01-05 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10498437B2 (en) 2016-06-01 2019-12-03 Qualcomm Incorporated Conveying hypotheses through resource selection of synchronization and broadcast channels
US10615897B2 (en) 2016-06-01 2020-04-07 Qualcomm Incorporated Time division multiplexing of synchronization channels
US11563505B2 (en) 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
WO2018165911A1 (en) * 2017-03-15 2018-09-20 Qualcomm Incorporated Method for indicating pdsch/pusch resource element mapping
KR102310719B1 (ko) 2017-03-20 2021-10-08 삼성전자 주식회사 차세대 이동통신에서 대기 모드 동작을 효과적으로 하는 방법 및 장치
US10701647B2 (en) * 2017-03-24 2020-06-30 Electronics And Telecommunications Research Institute Operation method of communication node transmitting synchronization signal in communication network
CN114786269A (zh) * 2017-03-27 2022-07-22 中兴通讯股份有限公司 一种随机接入物理资源的指示方法及装置
US10931514B2 (en) 2017-03-31 2021-02-23 Futurewei Technologies, Inc. System and method for communications beam recovery
US11223967B2 (en) * 2017-04-18 2022-01-11 Qualcomm Incorporated Techniques to provide energy efficient radio resource management
KR102432517B1 (ko) * 2017-04-25 2022-08-12 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 처리 방법 및 기기
PT3618490T (pt) * 2017-04-27 2023-04-19 Sharp Kk Dispositivo de estação base, dispositivo terminal, método de comunicação, e circuito integrado
WO2018198342A1 (ja) * 2017-04-28 2018-11-01 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2020109886A (ja) * 2017-04-28 2020-07-16 シャープ株式会社 端末装置および方法
US20200068513A1 (en) * 2017-05-02 2020-02-27 Ntt Docomo, Inc. Base station, user device and communication method
CN110892759B (zh) 2017-05-03 2021-12-10 索尼公司 用于新无线电系统中的ssb的高效利用的方法和设备
CN112188594B (zh) * 2017-05-04 2023-07-04 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
CN113783676A (zh) * 2017-05-05 2021-12-10 中兴通讯股份有限公司 用于分配资源的系统和方法
CN108809587B (zh) 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
US10644777B2 (en) * 2017-05-05 2020-05-05 Huawei Technologies Co., Ltd. Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
US11310009B2 (en) * 2017-05-05 2022-04-19 Qualcomm Incorporated Reference signal acquisition
WO2018201469A1 (zh) * 2017-05-05 2018-11-08 北京小米移动软件有限公司 信号传输方法、装置、电子设备和计算机可读存储介质
EP3631996A1 (en) 2017-06-02 2020-04-08 Intel IP Corporation Beamformed measurement for new radio (nr)
ES2927423T3 (es) * 2017-06-14 2022-11-04 Ntt Docomo Inc Método de asignación de recursos de frecuencia
US10911997B2 (en) 2017-06-16 2021-02-02 Mediatek Inc. Radio resource management (RRM) measurement for new radio (NR) network
US10462761B2 (en) * 2017-07-25 2019-10-29 Samsung Electronics Co., Ltd. Method and SS block time locations and SS burst set composition for NR unlicensed spectrum
EP3665796A4 (en) * 2017-08-10 2020-10-07 ZTE Corporation COMMUNICATION OF COMMON CONTROL BLOCKS
WO2019028850A1 (en) * 2017-08-11 2019-02-14 Mediatek Singapore Pte. Ltd. METHODS OF TRANSMITTING MULTIPLE SS BLOCKS AND MEASURING RRM IN A BROADBAND CARRIER
US20190052379A1 (en) * 2017-08-11 2019-02-14 Mediatek Inc. Methods on radio resource management and radio link monitoring configurations and procedures
US10009832B1 (en) * 2017-08-11 2018-06-26 At&T Intellectual Property I, L.P. Facilitating compact signaling design for reserved resource configuration in wireless communication systems
CN109474939B (zh) * 2017-09-08 2021-09-24 维沃移动通信有限公司 一种同步信号块测量方法、终端及网络设备
JP2019062506A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 端末装置および方法
US10707939B2 (en) * 2017-10-03 2020-07-07 Mediatek Inc. Codebook-based uplink transmission in wireless communications
US10827476B2 (en) * 2017-10-10 2020-11-03 Qualcomm Incorporated Control resource set design under single carrier waveform
US11469834B2 (en) * 2017-10-13 2022-10-11 Apple Inc. Radio link monitoring (RLM) evaluation mechanism for new radio (NR) systems
US10880927B2 (en) * 2017-11-17 2020-12-29 Qualcomm Incorporated Mapping rules between synchronization signal blocks and random access channel resources
JP2020504512A (ja) * 2017-11-27 2020-02-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてcsi報告を行うための方法及びそのための装置
US11463212B2 (en) * 2017-12-29 2022-10-04 Apple Inc. Methods of frequency domain intra-orthogonal frequency-division multiplexing (OFDM) symbol multi RX-beam measurement and dynamic RX beam sweeping
US10986693B2 (en) * 2018-01-11 2021-04-20 Mediatek Inc. Apparatuses and methods for performing a cell measurement
CN111602444B (zh) * 2018-01-12 2024-02-02 瑞典爱立信有限公司 调度请求资源配置
CN110035518B (zh) * 2018-01-12 2022-05-24 华为技术有限公司 一种通信方法及装置
US10938524B2 (en) * 2018-01-24 2021-03-02 Qualcomm Incorporated Timing for reference signals in multiple numerology wireless communications
US11025348B2 (en) * 2018-02-16 2021-06-01 Qualcomm Incorporated Default radio link monitoring reference signal (RLM-RS) determination procedure in new radio (NR)
US11019590B2 (en) * 2018-02-27 2021-05-25 Qualcomm Incorporated Timing adjustments with mixed numerologies
CA3094602A1 (en) * 2018-03-30 2019-10-03 Ntt Docomo, Inc. User terminal
CN112154695A (zh) * 2018-03-30 2020-12-29 株式会社Ntt都科摩 用户终端以及无线基站
CN112335186B (zh) * 2018-06-22 2023-06-16 日本电气株式会社 波束管理
US20210273701A1 (en) * 2018-07-13 2021-09-02 Sony Corporation Time-overlapping beam-swept transmissions
US11224002B2 (en) * 2018-07-16 2022-01-11 Qualcomm Incorporated Multi-cell notification zone single frequency network
CN110740452A (zh) * 2018-07-20 2020-01-31 中兴通讯股份有限公司 发现干扰的方法、装置、接收设备、发射设备及存储介质
CN110831194B (zh) * 2018-08-10 2022-08-26 华为技术有限公司 系统信息传输方法、相关设备及系统
CN110831196B (zh) * 2018-08-14 2022-01-04 维沃移动通信有限公司 Csi报告配置方法、终端设备和网络设备
WO2020061494A1 (en) * 2018-09-20 2020-03-26 Intel Corporation Synchronization signal block pattern and demodulation reference signal design for physical broadcast channel for channel frequencies above 52.6ghz
KR102586001B1 (ko) * 2018-09-21 2023-10-10 삼성전자주식회사 무선 통신 시스템에서 우선 순위를 고려한 물리계층 채널 송수신 방법 및 장치
JP7407726B2 (ja) * 2018-09-21 2024-01-04 株式会社Nttドコモ 端末、無線通信方法及びシステム
CN110944356B (zh) * 2018-09-25 2021-11-09 维沃移动通信有限公司 上报方法、接收方法、终端及网络侧设备
CN112806050B (zh) * 2018-09-26 2023-03-31 联想(北京)有限公司 信道状态信息报告计算
CN110958636B (zh) * 2018-09-26 2022-03-29 维沃移动通信有限公司 Csi报告的上报方法、终端设备及网络设备
JP2020053878A (ja) * 2018-09-27 2020-04-02 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN110972289B (zh) * 2018-09-28 2022-06-28 华为技术有限公司 无线资源管理rrm测量的方法和装置
GB2580414A (en) * 2019-01-11 2020-07-22 Samsung Electronics Co Ltd Improvements in and relating to integrated access and backhaul
US11412400B2 (en) * 2018-10-01 2022-08-09 Nokia Technologies Oy Method for positioning reference design
US10757700B2 (en) * 2018-10-07 2020-08-25 At&T Intellectual Property I, L.P. Frame structure coordination in wireless communication systems with integrated access and backhaul links in advanced networks
US11115944B2 (en) * 2018-10-08 2021-09-07 Qualcomm Incorporated Timing synchronization with neighbor nodes different from parent nodes
WO2020082211A1 (en) 2018-10-22 2020-04-30 Qualcomm Incorporated On-demand measurement gap for inter-frequency rrm measurements
WO2020082208A1 (en) * 2018-10-22 2020-04-30 Qualcomm Incorporated Floating smtc for ssb-based rrm in asynchronous networks
WO2020091191A1 (ko) * 2018-11-01 2020-05-07 엘지전자 주식회사 차세대 통신 시스템에서 릴레이 노드를 위한 디스커버리 신호 송수신 방법 및 이를 위한 장치
CN111147201A (zh) * 2018-11-02 2020-05-12 索尼公司 电子装置、无线通信方法和计算机可读介质
EP3874828A1 (en) * 2018-11-02 2021-09-08 Nokia Technologies Oy Method for power consumption reduction for measurement configurations
CN111148146B (zh) * 2018-11-02 2021-11-19 华为技术有限公司 一种通信方法及装置
CN115296779A (zh) * 2018-11-12 2022-11-04 中兴通讯股份有限公司 一种确定准共址参考信号的方法和装置
CN111106885A (zh) * 2018-11-12 2020-05-05 维沃移动通信有限公司 测量方法、指示方法、装置、终端、网络设备及介质
WO2020107476A1 (zh) * 2018-11-30 2020-06-04 北京小米移动软件有限公司 传输寻呼信令的方法及装置
CN111294891B (zh) * 2018-12-07 2021-06-22 成都华为技术有限公司 一种天线面板及波束的管理方法和设备
US11109448B2 (en) * 2018-12-11 2021-08-31 Samsung Electronics Co., Ltd. Method and apparatus for timing configuration of discovery signal and channel
KR20210104130A (ko) * 2018-12-19 2021-08-24 지티이 코포레이션 동기화 신호 송신
CN113078928A (zh) * 2019-01-07 2021-07-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP3911037A1 (en) * 2019-01-09 2021-11-17 Ntt Docomo, Inc. User terminal and wireless communication method
EP3751920B1 (en) * 2019-01-11 2024-03-27 LG Electronics Inc. Method for obtaining positioning information in wireless communication system and apparatus therefor
US11234219B2 (en) * 2019-01-11 2022-01-25 Intel Corporation Discovery reference signal and control resource set multiplexing
US11445464B2 (en) * 2019-01-11 2022-09-13 Qualcomm Incorporated Group reporting of user equipment measurements in multi-round trip time positioning
KR102621587B1 (ko) * 2019-01-30 2024-01-04 애플 인크. 다운링크 수신 신호 충돌 회피
CN111526565B (zh) 2019-02-01 2021-08-27 华为技术有限公司 一种参考信号管理方法、装置及系统
WO2020168575A1 (zh) * 2019-02-22 2020-08-27 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
FR3094160B1 (fr) * 2019-03-21 2022-05-06 Continental Automotive Gmbh Procede d’estimation d’un rapport signal sur bruit
US11101862B2 (en) * 2019-03-22 2021-08-24 Qualcomm Incorporated Beam update techniques in wireless communications
BR112021019393A2 (pt) * 2019-03-28 2021-12-07 Nokia Technologies Oy Considerações de projeto de pucch de multi-trp
US11419052B2 (en) * 2019-04-03 2022-08-16 Acer Incorporated Techniques for handling measurement set adaptation
US11159225B2 (en) * 2019-05-01 2021-10-26 Qualcomm Incorporated Control for multi-panel UE activation/deactivation
US11457350B2 (en) * 2019-05-10 2022-09-27 Qualcomm Incorporated Signaling user equipment multi-panel capability
WO2020232627A1 (en) * 2019-05-21 2020-11-26 Lenovo (Beijing) Limited Determining signal-to-interference ratios
CN111988068B (zh) 2019-05-22 2021-12-03 华为技术有限公司 一种干扰抑制方法以及基站
US11140646B2 (en) * 2019-05-27 2021-10-05 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving synchronizing signal in a communication system
US11350265B2 (en) 2019-06-28 2022-05-31 Apple Inc. Presence discovery techniques
CN113243121A (zh) * 2019-06-28 2021-08-10 Oppo广东移动通信有限公司 用于波束报告的方法和设备
CN110430583B (zh) * 2019-07-10 2022-07-08 中国联合网络通信集团有限公司 一种ssb波束优化配置方法及装置
CN112312556A (zh) * 2019-08-02 2021-02-02 大唐移动通信设备有限公司 一种定时提前配置方法、终端和网络侧设备
CN112333811B (zh) * 2019-08-05 2022-04-05 成都华为技术有限公司 一种同步信号/物理广播信道块发送功率配置方法及装置
CN112399543B (zh) * 2019-08-15 2022-04-19 大唐移动通信设备有限公司 一种功率控制参数配置方法、终端和网络侧设备
US11617155B2 (en) * 2019-10-08 2023-03-28 Samsung Electronics Co., Ltd. Method and apparatus for UE power saving in RRC_IDLE/INACTIVE STATE
EP4002940A4 (en) 2019-10-13 2022-08-10 LG Electronics Inc. METHOD AND DEVICE FOR REPORTING INFORMATION RELATING TO A CONFIGURATION OF TDD INTERVALS IN V2X NR
EP4040847A4 (en) * 2019-11-06 2022-10-19 Huawei Technologies Co., Ltd. MEASUREMENT METHOD USING SYNCHRONIZATION SIGNAL BLOCKS, TERMINAL DEVICE AND BASE STATION
US20210160907A1 (en) * 2019-11-22 2021-05-27 Huawei Technologies Co., Ltd. Systems and methods for configuring symbol and symbol block parameters in wireless communication
CN110831040B (zh) * 2019-11-28 2023-03-31 中国联合网络通信集团有限公司 网络覆盖性能评估方法和装置
US11424966B2 (en) * 2019-12-05 2022-08-23 Qualcomm Incorporated Procedures for associating a sounding reference signal (SRS) resource to random access channel (RACH)
US10972114B1 (en) * 2019-12-06 2021-04-06 Guzik Technical Enterprises Real-time waveforms averaging with controlled delays
WO2021120009A1 (zh) * 2019-12-17 2021-06-24 Oppo广东移动通信有限公司 信号检测方法、信号传输方法、终端设备和网络设备
US11477760B2 (en) * 2019-12-19 2022-10-18 Qualcomm Incorporated Frequency diversity techniques for single frequency networks
BR112022013198A2 (pt) * 2019-12-31 2022-09-13 Huawei Tech Co Ltd Método e dispositivo de medição direcional
CN113260001B (zh) * 2020-02-12 2022-06-10 维沃移动通信有限公司 关联邻小区的方法和设备
WO2021159439A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Delay spread scaling
WO2021168852A1 (zh) * 2020-02-29 2021-09-02 华为技术有限公司 通信方法、装置及设备
JP7445766B2 (ja) * 2020-03-10 2024-03-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて無線リンク品質評価方法及び装置
WO2021207901A1 (en) * 2020-04-13 2021-10-21 Apple Inc. Techniques for csi-rs configuration in wireless communications
US20210337487A1 (en) * 2020-04-22 2021-10-28 Qualcomm Incorporated Mixed synchronization signal blocks
US11672019B2 (en) * 2020-05-01 2023-06-06 Ofinno, Llc Random access procedure
US11570648B2 (en) * 2020-05-15 2023-01-31 Samsung Electronics Co., Ltd. Method and apparatus for base station audit correction in wireless communication networks
US20220312247A1 (en) * 2020-07-29 2022-09-29 Apple Inc. Measurement period extension with smtc2-lp in idle and inactive radio resource management
US20220046443A1 (en) * 2020-08-06 2022-02-10 Apple Inc. Channel state information-reference signal based measurement
US11799604B2 (en) 2020-08-21 2023-10-24 Qualcomm Incorporated Techniques for adapting a number of tracking reference signal symbols
US11778545B2 (en) * 2020-08-28 2023-10-03 Qualcomm Incorporated Coverage enhancement for initial access with feedback via PRACH sequence
CN114205015B (zh) * 2020-09-18 2023-06-06 维沃移动通信有限公司 测量方法、发送方法及相关设备
KR20230082658A (ko) * 2020-10-09 2023-06-08 애플 인크. Ue에 의한 커버리지 향상 및 시스템 효율
US11589252B2 (en) * 2020-12-08 2023-02-21 Qualcomm Incorporated Configuration for a channel measurement resource (CMR) or an interference measurement resource (IMR) time restriction
WO2022154822A1 (en) * 2021-01-13 2022-07-21 Zeku, Inc. Apparatus and method of master information block delivery using separate payloads
US20220231751A1 (en) * 2021-01-15 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Beam switching time indication
US11700610B2 (en) * 2021-02-17 2023-07-11 Qualcomm Incorporated Layer one sidelink channel state information reporting
US11632729B2 (en) * 2021-03-11 2023-04-18 Qualcomm Incorporated Grouping of synchronization signal block subsets from different base stations in a single timing advance group
WO2023028924A1 (zh) * 2021-09-01 2023-03-09 北京小米移动软件有限公司 参考信号的生效指示方法及装置
US11937226B2 (en) * 2021-09-24 2024-03-19 Qualcomm Incorporated Space division multiplexing of reference signals
WO2023146455A1 (en) * 2022-01-31 2023-08-03 Beammwave Ab A method of configuring sets of transceivers/antennas to be active or candidates, computer program product, processing unit and wireless devices therefor
CN117640041A (zh) * 2022-08-17 2024-03-01 华为技术有限公司 一种资源配置方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247525A (zh) * 2012-04-06 2014-12-24 株式会社Ntt都科摩 无线通信方法、局域基站装置、移动终端装置以及无线通信系统
CN104350695A (zh) * 2012-06-05 2015-02-11 Lg电子株式会社 在无线通信系统中接收控制信息的方法和设备
US20150249972A1 (en) * 2012-12-17 2015-09-03 Lg Electronics Inc. Method and user device for receiving uplink control information, and method and base station for transmitting uplink control information
WO2015156573A1 (ko) * 2014-04-09 2015-10-15 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036264B (zh) * 2009-09-30 2013-12-04 华为技术有限公司 对小区进行信道测量的方法和装置
US8743799B2 (en) * 2010-06-24 2014-06-03 Nokia Siemens Networks Oy Change of rate matching modes in presence of channel state information reference signal transmission
CN103220066B (zh) 2012-01-18 2017-04-26 华为技术有限公司 测量方法,csi‑rs资源共享方法和装置
US9451488B2 (en) * 2012-01-20 2016-09-20 Lg Electronics Inc. Method and apparatus for channel state information feedback in wireless communication system
CN103458415B (zh) * 2012-05-28 2016-12-28 华为技术有限公司 虚子载波动态设置方法、接收方法和装置及系统
CN103781092B (zh) 2012-10-19 2019-08-16 北京三星通信技术研究有限公司 测量信道参考信号的方法及设备
US9801192B2 (en) * 2013-06-19 2017-10-24 Lg Electronics Inc. Method for interference cancellation in wireless communication system and apparatus therefor
JP6323964B2 (ja) * 2014-02-21 2018-05-16 華為技術有限公司Huawei Technologies Co.,Ltd. Dtxを使用した基地局のアクティブ状態に関するタイミング情報の送信
EP3432647A1 (en) * 2014-05-08 2019-01-23 Ntt Docomo, Inc. Method and device for detection of reference signals in small cells
US20160301505A1 (en) 2014-10-10 2016-10-13 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods related to flexible csi-rs configuration and associated feedback
US10735155B2 (en) * 2014-11-03 2020-08-04 Qualcomm Incorporated Rate matching around reference signals in wireless communications
JP2019057747A (ja) * 2016-02-04 2019-04-11 シャープ株式会社 端末装置、基地局装置および通信方法
US10568102B2 (en) * 2017-02-23 2020-02-18 Qualcomm Incorporated Usage of synchronization signal block index in new radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247525A (zh) * 2012-04-06 2014-12-24 株式会社Ntt都科摩 无线通信方法、局域基站装置、移动终端装置以及无线通信系统
CN104350695A (zh) * 2012-06-05 2015-02-11 Lg电子株式会社 在无线通信系统中接收控制信息的方法和设备
US20150249972A1 (en) * 2012-12-17 2015-09-03 Lg Electronics Inc. Method and user device for receiving uplink control information, and method and base station for transmitting uplink control information
WO2015156573A1 (ko) * 2014-04-09 2015-10-15 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "R1-154272 "CSI process and CSI-RS configurations for supporting EBF/FD-MIMO"", 《3GPP TSG_RAN\WG1_RL1》 *
LG ELECTRONICS: "R1-1702443 "discussion on RRM measurement in NR"", 《3GPP TSG_RAN\WG1_RL1》 *
NOKIA等: "R1-1703178 "On the CSI-RS configurations for NR CSI acquisition"", 《3GPP TSG_RAN\WG1_RL1》 *
NOKIA等: "R1-1703179 "On CSI-RS Design for DL Beam Management"", 《3GPP TSG_RAN\WG1_RL1》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138798A1 (en) * 2020-01-07 2021-07-15 Qualcomm Incorporated Idle search and measurement modifications due to unreliable measurement time configuration
AU2021235908B2 (en) * 2020-03-11 2023-09-21 Zte Corporation Configuration information determination method and apparatus, information configuration method and apparatus, and terminal, base station, and storage medium
WO2021179799A1 (zh) * 2020-03-11 2021-09-16 中兴通讯股份有限公司 配置信息确定方法及装置、信息配置方法及装置、终端、基站和存储介质
WO2021203869A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 准共址关系管理方法及装置
CN113518355A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 准共址关系管理方法及装置
CN113518355B (zh) * 2020-04-10 2023-10-20 华为技术有限公司 准共址关系管理方法及装置
WO2022028582A1 (zh) * 2020-08-06 2022-02-10 中国移动通信有限公司研究院 测量方法、信息获取方法、发送方法、终端及网络侧设备
WO2022094972A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Methods for csi-rs resource aggregation
WO2022143451A1 (zh) * 2020-12-31 2022-07-07 维沃移动通信有限公司 参考信号配置方法、配置装置、电子设备和可读存储介质
WO2022151382A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置
WO2023078257A1 (zh) * 2021-11-05 2023-05-11 大唐移动通信设备有限公司 资源配置方法、装置、网络设备及终端设备
WO2023130900A1 (zh) * 2022-01-07 2023-07-13 大唐移动通信设备有限公司 定时测量上报、定时配置、信息传输方法、装置及设备
WO2023206538A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 一种基于多发送接收点的通信方法、装置及存储介质

Also Published As

Publication number Publication date
KR20190119659A (ko) 2019-10-22
CN110574328B (zh) 2022-08-19
US20180262313A1 (en) 2018-09-13
US10708028B2 (en) 2020-07-07
WO2018164515A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
CN110574328B (zh) 用于在无线通信系统中处理参考信号的方法和装置
KR102542055B1 (ko) 무선 시스템에서의 동기 신호 블록 인덱스 및 타이밍 지시를 위한 방법 및 장치
US11870523B2 (en) Method and apparatus for indication of reference signals in wireless systems
CN111066370B (zh) 在无线通信系统中配置波束指示的装置和方法
KR102358102B1 (ko) 무선 시스템에서 랜덤 액세스를 위한 방법 및 장치
EP3639593B1 (en) Method and apparatus for control resource set configuration for 5g next radio system.
CN111919414B (zh) 用于基于触发传输的时间和频率跟踪信号的系统和方法
CN109923844B (zh) 用于在无线通信系统中发送初始接入信号的方法和装置
US10924984B2 (en) Device, network, and method for utilizing a downlink discovery reference signal
US20210288773A1 (en) Method and apparatus for csi-rs in rrc_idle/inactive state
US10158465B2 (en) Method for transceiving signal in wireless communication system and apparatus therefor
CN106537964B (zh) 用于网络适配和利用下行链路发现参考信号的设备、网络和方法
KR102397997B1 (ko) Lte-a를 위한 신호 발견 방법 및 장치
CN111316610A (zh) 无线通信系统中rmsi coreset配置的方法和装置
CN111149402A (zh) 用于无线通信系统中的控制资源集配置的方法和装置
KR20200110387A (ko) 사용자 장치에서의 절전 방법 및 장치
WO2014017767A1 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 서빙 셀의 운용 방법 및 이를 위한 장치
CN116848794A (zh) 用于无线通信系统中的动态多波束操作的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant