JP2020053878A - 基地局装置、端末装置、通信方法、および、集積回路 - Google Patents

基地局装置、端末装置、通信方法、および、集積回路 Download PDF

Info

Publication number
JP2020053878A
JP2020053878A JP2018182381A JP2018182381A JP2020053878A JP 2020053878 A JP2020053878 A JP 2020053878A JP 2018182381 A JP2018182381 A JP 2018182381A JP 2018182381 A JP2018182381 A JP 2018182381A JP 2020053878 A JP2020053878 A JP 2020053878A
Authority
JP
Japan
Prior art keywords
resource
csi
time
frequency resource
terminal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018182381A
Other languages
English (en)
Inventor
星野 正幸
Masayuki Hoshino
正幸 星野
山田 昇平
Shohei Yamada
昇平 山田
秀和 坪井
Hidekazu Tsuboi
秀和 坪井
高橋 宏樹
Hiroki Takahashi
宏樹 高橋
麗清 劉
Liqing Liu
麗清 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2018182381A priority Critical patent/JP2020053878A/ja
Priority to PCT/JP2019/036834 priority patent/WO2020066853A1/ja
Publication of JP2020053878A publication Critical patent/JP2020053878A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】無線通信システムにおいて、効率的な通信を可能とする端末装置、基地局装置、通信方法、および、集積回路を提供する。【解決手段】無線通信システムにおいて、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースが、上位レイヤにより設定される。第1の非零電力チャネル状態状算出用参照信号は第2の時間周波数リソースに配置され、端末装置は、第1の非零電力チャネル状態状算出用参照信号を指定する情報を含む下りリンク制御情報を受信する。端末装置は、第2の時間周波数リソースが第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、CSI参照リソースに基づいて、CQIインデックスを算出する。【選択図】図1

Description

本発明は、基地局装置、端末装置、通信方法、および、集積回路に関する。
現在、第5世代のセルラーシステムに向けた無線アクセス方式および無線ネットワーク技術として、第三世代パートナーシッププロジェクト(3GPP: The Third Generation Partnership Project)において、LTE(Long Term Evolution)-Advanced Pro及びNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。
第5世代のセルラーシステムでは、高速・大容量伝送を実現するeMBB(enhanced Mobile BroadBand)、低遅延・高信頼通信を実現するURLLC(Ultra-Reliable and Low Latency
Communication)、IoT(Internet of Things)などマシン型デバイスが多数接続するmMTC(massive Machine Type Communication)の3つがサービスの想定シナリオとして要求されている。
RP-161214, NTT DOCOMO, "Revision of SI: Study on New Radio Access Technology", 2016年6月
本発明の目的は、上記のような無線通信システムにおいて、効率的な通信を可能とする端末装置、基地局装置、通信方法、および、集積回路を提供することを目的とする。
(1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様における端末装置は、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイヤにより設定され、第2の時間周波
数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信する受信部を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
(2)また、本発明の一態様における基地局装置は、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイヤにより設定し、第2の時間周
波数リソースに配置する第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信する送信部を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する。
(3)また、本発明の一態様における通信方法は、端末装置の通信方法であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイヤ
により設定され、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信し、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
(4)また、本発明の一態様における通信方法は、基地局装置の通信方法であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイ
ヤにより設定し、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信し、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する。
(5)また、本発明の一態様における集積回路は、端末装置に実装される集積回路であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを
上位レイヤにより設定され、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信する受信手段と、を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
(6)また、本発明の一態様における集積回路は、基地局装置に実装される集積回路であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソース
を上位レイヤにより設定され、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信する送信手段と、を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する。
この発明によれば、基地局装置と端末装置が、効率的に通信することができる。
本実施形態における無線通信システムの概念を示す図である。 本実施形態における上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。 サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。 スロットまたはサブフレームの一例を示す図である。 ビームフォーミングの一例を示した図である。 CSIリソース設定およびZP−CSI−RSリソース設定の一例を示す図である。 本実施形態における端末装置1の構成を示す概略ブロック図である。 本実施形態における基地局装置3の構成を示す概略ブロック図である。
以下、本発明の実施形態について説明する。
図1は、本実施形態における無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A、端末装置1B、および基地局装置3を具備する。以下、端末装置1A、および、端末装置1Bを、端末装置1とも称する。
端末装置1は、ユーザ端末、移動局装置、通信端末、移動機、端末、UE(User Equipment)、MS(Mobile Station)とも称される。基地局装置3は、無線基地局装置、基地局、無線基地局、固定局、NB(Node B)、eNB(evolved Node B)、BTS(Base Transceiver Station)、BS(Base Station)、NR NB(NR Node B)、NNB、T
RP(Transmission and Reception Point)、gNBとも称される。基地局装置3は、コアネットワーク装置を含んでも良い。また、基地局装置3は、1つまたは複数の送受信点4(transmission reception point)を具備しても良い。以下で説明する基地局装置3の機能/処理の少なくとも一部は、該基地局装置3が具備する各々の送受信点4における機能/処理であってもよい。基地局装置3は、基地局装置3によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、基地局装置3は、1つまたは複数の送受信点4によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、1つのセルを複数の部分領域(Beamed area)にわけ、それぞれの部分領域において端末装置1をサーブしてもよい。ここで、部分領域は、ビームフォーミングで使用されるビームのインデックスあるいはプリコーディングのインデックスに基づいて識別されてもよい。
基地局装置3から端末装置1への無線通信リンクを下りリンクと称する。端末装置1から基地局装置3への無線通信リンクを上りリンクと称する。
図1において、端末装置1と基地局装置3の間の無線通信では、サイクリックプレフィックス(CP: Cyclic Prefix)を含む直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)、シングルキャリア周波数多重(SC-FDM: Single-Carrier Frequency Division Multiplexing)、離散フーリエ変換拡散OFDM(DFT-S-OFDM: Discrete Fourier Transform Spread OFDM)、マルチキャリア符号分割多重(MC-CDM: Multi-Carrier Code Division Multiplexing)が用いられてもよい。
また、図1において、端末装置1と基地局装置3の間の無線通信では、ユニバーサルフィルタマルチキャリア(UFMC: Universal-Filtered Multi-Carrier)、フィルタOFDM(F-OFDM: Filtered OFDM)、窓関数が乗算されたOFDM(Windowed OFDM)、フィルタバンクマルチキャリア(FBMC: Filter-Bank Multi-Carrier)が用いられてもよい。
なお、本実施形態ではOFDMを伝送方式としてOFDMシンボルで説明するが、上述の他の伝送方式の場合を用いた場合も本発明に含まれる。
また、図1において、端末装置1と基地局装置3の間の無線通信では、CPを用いない、あるいはCPの代わりにゼロパディングをした上述の伝送方式が用いられてもよい。また、CPやゼロパディングは前方と後方の両方に付加されてもよい。
図1において、端末装置1と基地局装置3の無線通信では、以下の物理チャネルが用いられる。
・PBCH(Physical Broadcast CHannel)
・PDCCH(Physical Downlink Control CHannel)
・PDSCH(Physical Downlink Shared CHannel)
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
PBCHは、端末装置1が必要な重要なシステム情報を含む重要情報ブロック(MIB: Master Information Block、EIB: Essential Information Block、BCH:Broadcast Channel)を報知するために用いられる。
また、PBCHは、同期信号のブロック(SS/PBCHブロックとも称する)の周期内の時間インデックスを報知するために用いられてよい。ここで、時間インデックスは、セル内の同期信号およびPBCHのインデックスを示す情報である。例えば、3つの送信ビーム(送信フィルタ設定、受信空間パラメータに関する擬似同位置(QCL:Quasi Co-Location))の想定を用いてSS/PBCHブロックを送信する場合、予め定められた
周期内または設定された周期内の時間順を示してよい。また、端末装置は、時間インデックスの違いを送信ビームの違いと認識してもよい。
PDCCHは、下りリンクの無線通信(基地局装置3から端末装置1への無線通信)において、下りリンク制御情報(Downlink Control Information: DCI)を送信する(また
は運ぶ)ために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。
例えば、以下のDCIフォーマットが定義されてよい。
・DCIフォーマット0_0
・DCIフォーマット0_1
・DCIフォーマット1_0
・DCIフォーマット1_1
・DCIフォーマット2_0
・DCIフォーマット2_1
・DCIフォーマット2_2
・DCIフォーマット2_3
DCIフォーマット0_0は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。
DCIフォーマット0_1は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP:BandWidth Part)を示す情報、チャネル状態情報(CSI:Channel State Information)要求、サウンディ
ング参照信号(SRS:Sounding Reference Signal)要求、アンテナポートに関する情
報を含んでよい。ここで、チャネル状態情報要求はCSIリクエストとも称する。またサウンディング参照信号要求はSRSリクエストとも称する。
DCIフォーマット1_0は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。
DCIフォーマット1_1は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP)を示す情報、送信設定指示(TCI:Transmission Configuration Indication)、アンテナポートに関する
情報を含んでよい。
DCIフォーマット2_0は、1つまたは複数のスロットのスロットフォーマットを通知するために用いられる。スロットフォーマットは、スロット内の各OFDMシンボルが下りリンク、フレキシブル、上りリンクのいずれかに分類されたものとして定義される。例えば、スロットフォーマットが28の場合、スロットフォーマット28が指示されたスロット内の14シンボルのOFDMシンボルに対してDDDDDDDDDDDDFUが適用される。ここで、Dが下りリンクシンボル、Fがフレキシブルシンボル、Uが上りリンクシンボルである。なお、スロットについては後述する。
DCIフォーマット2_1は、端末装置1に対して、送信がないと想定してよい物理リソースブロックとOFDMシンボルを通知するために用いられる。なお、この情報はプリエンプション指示(間欠送信指示)と称してよい。
DCIフォーマット2_2は、PUSCHおよびPUSCHのための送信電力制御(TPC:Transmit Power Control)コマンドの送信のために用いられる。
DCIフォーマット2_3は、1または複数の端末装置1によるサウンディング参照信号(SRS)送信のためのTPCコマンドのグループを送信するために用いられる。また、TPCコマンドとともに、SRS要求が送信されてもよい。また、DCIフォーマット2_3に、PUSCHおよびPUCCHのない上りリンク、またはSRSの送信電力制御がPUSCHの送信電力制御と紐付いていない上りリンクのために、SRS要求とTPCコマンドが定義されてよい。
下りリンクに対するDCIを、下りリンクグラント(downlink grant)、または、下りリンクアサインメント(downlink assignment)とも称する。ここで、上りリンクに対す
るDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。
PUCCHは、上りリンクの無線通信(端末装置1から基地局装置3の無線通信)において、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用い
られる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL−SCHリソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ−ACK(Hybrid Automatic Repeat request ACKnowledgement)が含ま
れてもよい。HARQ−ACKは、下りリンクデータ(Transport block, Medium Access
Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH)に対する
HARQ−ACKを示してもよい。
PDSCHは、媒介アクセス(MAC: Medium Access Control)層からの下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられる。また、下りリンクの場合
にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信にも用いられる。
PUSCHは、MAC層からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)
または上りリンクデータと共にHARQ−ACKおよび/またはCSIを送信するために用いられてもよい。また、CSIのみ、または、HARQ−ACKおよびCSIのみを送信するために用いられてもよい。すなわち、UCIのみを送信するために用いられてもよい。
ここで、基地局装置3と端末装置1は、上位層(higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCシグナリング(RRC message: Radio Resource
Control message、RRC information: Radio Resource Control informationとも称され
る)を送受信してもよい。また、基地局装置3と端末装置1は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。ここで、R
RCシグナリング、および/または、MACコントロールエレメントを、上位層の信号(higher layer signaling)とも称する。ここでの上位層は、物理層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS(Non Access Stratum)層などの一つまたは複数を含んでもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。
PDSCHまたはPUSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingとも称する)で
あってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。
図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。ここで、下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・参照信号(Reference Signal: RS)
同期信号は、プライマリ同期信号(PSS:Primary Synchronization Signal)およびセカンダリ同期信号(SSS)を含んでよい。PSSとSSSを用いてセルIDが検出されてよい。
同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。ここで、同期信号は、端末装置1が基地局装置3によるプリコーディングまたはビームフォーミングにおけるプリコーディングまたはビームの選択に用いられて良い。なお、ビームは、送信または受信フィルタ設定、あるいは空間ドメイン送信フィルタまたは空間ドメイン受信フィルタと呼ばれてもよい。
参照信号は、端末装置1が物理チャネルの伝搬路補償を行うために用いられる。ここで、参照信号は、端末装置1が下りリンクのCSIを算出するためにも用いられてよい。また、参照信号は、無線パラメータやサブキャリア間隔などのヌメロロジーやFFTの窓同期などができる程度の細かい同期(Fine synchronization)に用いられて良い。
本実施形態において、以下の下りリンク参照信号のいずれか1つまたは複数が用いられる。
・DMRS(Demodulation Reference Signal)
・CSI−RS(Channel State Information Reference Signal)
・PTRS(Phase Tracking Reference Signal)
・TRS(Tracking Reference Signal)
DMRSは、変調信号を復調するために使用される。なお、DMRSには、PBCHを復調するための参照信号と、PDSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。CSI−RSは、チャネル状態情報(CSI:Channel State Information)の測定およびビームマネジメントに使用され、周期的ま
たはセミパーシステントまたは非周期のCSI参照信号の送信方法が適用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。TRSは、高速移動時におけるドップラーシフトを保証するために使用される。なお、TRSはCSI−RSの1つの設定として用いられてよい。例えば、1ポートのCSI−RSがTRSとして無線リソースが設定されてもよい。
本実施形態において、以下の上りリンク参照信号のいずれか1つまたは複数が用いられる。
・DMRS(Demodulation Reference Signal)
・PTRS(Phase Tracking Reference Signal)
・SRS(Sounding Reference Signal)
DMRSは、変調信号を復調するために使用される。なお、DMRSには、PUCCHを復調するための参照信号と、PUSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。SRSは、上りリンクチャネル状態情報(CSI)の測定、チャネルサウンディング、およびビームマネジメントに使用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。
下りリンク物理チャネルおよび/または下りリンク物理シグナルを総称して、下りリンク信号と称する。上りリンク物理チャネルおよび/または上りリンク物理シグナルを総称して、上りリンク信号と称する。下りリンク物理チャネルおよび/または上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理シグナルおよび/または上りリンク物理シグナルを総称して、物理シグナルと称する。
BCH、UL−SCHおよびDL−SCHは、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルをトランスポー
トチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:transport block)および/またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行われる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロッ
クはコードワードにマップされ、コードワード毎に符号化処理が行われる。
また、参照信号は、無線リソース測定(RRM:Radio Resource Measurement)に用いられてよい。また、参照信号は、ビームマネジメントに用いられてよい。
ビームマネジメントは、送信装置(下りリンクの場合は基地局装置3であり、上りリンクの場合は端末装置1である)におけるアナログおよび/またはディジタルビームと、受信装置(下りリンクの場合は端末装置1、上りリンクの場合は基地局装置3である)におけるアナログおよび/またはディジタルビームの指向性を合わせ、ビーム利得を獲得するための基地局装置3および/または端末装置1の手続きであってよい。
なお、ビームペアリンクを構成、設定または確立する手続きとして、下記の手続きを含んでよい。
・ビーム選択(Beam selection)
・ビーム改善(Beam refinement)
・ビームリカバリ(Beam recovery)
例えば、ビーム選択は、基地局装置3と端末装置1の間の通信においてビームを選択する手続きであってよい。また、ビーム改善は、さらに利得の高いビームの選択、あるいは端末装置1の移動によって最適な基地局装置3と端末装置1の間のビームの変更をする手続きであってよい。ビームリカバリは、基地局装置3と端末装置1の間の通信において遮蔽物や人の通過などにより生じるブロッケージにより通信リンクの品質が低下した際にビームを再選択する手続きであってよい。
ビームマネジメントには、ビーム選択、ビーム改善が含まれてよい。ビームリカバリには、下記の手続きを含んでよい。
・ビーム失敗(beam failure)の検出
・新しいビームの発見
・ビームリカバリリクエストの送信
・ビームリカバリリクエストに対する応答のモニタ
例えば、端末装置1における基地局装置3の送信ビームを選択する際にCSI−RSまたはSS/PBCHブロックに含まれるSSSのRSRP(Reference Signal Received Power)を用いてもよいし、CSIを用いてもよい。また、基地局装置3への報告として
CSI−RSリソースインデックス(CRI:CSI-RS Resource Index)を用いてもよい
し、SS/PBCHブロックに含まれるPBCHおよび/またはPBCHの復調に用いられる復調用参照信号(DMRS)の系列で指示されるインデックスを用いてもよい。
また、基地局装置3は、端末装置1へビームを指示する際にCRIまたはSS/PBCHの時間インデックスを指示し、端末装置1は、指示されたCRIまたはSS/PBCHの時間インデックスに基づいて受信する。このとき、端末装置1は指示されたCRIまたはSS/PBCHの時間インデックスに基づいて空間フィルタを設定し、受信してよい。また、端末装置1は、疑似同位置(QCL:Quasi Co-Location)の想定を用いて受信し
てもよい。ある信号(アンテナポート、同期信号、参照信号など)が別の信号(アンテナポート、同期信号、参照信号など)と「QCLである」または、「QCLの想定が用いられる」とは、ある信号が別の信号と関連付けられていると解釈できる。
もしあるアンテナポートにおけるあるシンボルが搬送されるチャネルの長区間特性(Long Term Property)が他方のアンテナポートにおけるあるシンボルが搬送されるチャネルから推論されうるなら、2つのアンテナポートはQCLであるといわれる。チャネルの長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、及び平均遅延の1つまたは複数を含む。例えば、アンテナポート1とアンテナポート2が平均遅延に関してQCLである場合、アンテナポート1の受信タイミングからアンテナポート2の受信タイミングが推論されうることを意味する。
このQCLは、ビームマネジメントにも拡張されうる。そのために、空間に拡張したQCLが新たに定義されてもよい。例えば、空間領域のQCLの想定におけるチャネルの長区間特性(Long term property)として、無線リンクあるいはチャネルにおける到来角(AoA(Angle of Arrival), ZoA(Zenith angle of Arrival)など)および/または角度
広がり(Angle Spread、例えばASA(Angle Spread of Arrival)やZSA(Zenith angle Spread of Arrival))、送出角(AoD, ZoDなど)やその角度広がり(Angle Spread、例え
ばASD(Angle Spread of Departure)やZSD(Zenith angle Spread of Departure))、
空間相関(Spatial Correlation)、受信空間パラメータであってもよい。
例えば、アンテナポート1とアンテナポート2の間で受信空間パラメータに関してQCLであるとみなせる場合、アンテナポート1からの信号を受信する受信ビーム(受信空間フィルタ)からアンテナポート2からの信号を受信する受信ビームが推論されうることを意味する。
QCLタイプとして、QCLであるとみなしてよい長区間特性の組み合わせが定義されてよい。例えば、以下のタイプが定義されてよい。
・タイプA:ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド
・タイプB:ドップラーシフト、ドップラースプレッド
・タイプC:平均遅延、ドップラーシフト
・タイプD:受信空間パラメータ
上述のQCLタイプは、RRCおよび/またはMAC層および/またはDCIで1つまたは2つの参照信号とPDCCHやPDSCH DMRSとのQCLの想定を送信設定指示(TCI:Transmission Configuration Indication)として設定および/または指示
してもよい。例えば、端末装置1がPDCCHを受信する際のTCIの1つの状態として、PBCH/SSブロックのインデックス#2とQCLタイプA+QCLタイプDが設定
および/または指示された場合、端末装置1は、PDCCH DMRSを受信する際、PBCH/SSブロックインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてPDCCHのDMRSを受信して同期や伝搬路推定をしてもよい。このとき、TCIにより指示される参照信号(上述の例ではPBCH/SSブロック)をソース参照信号、ソース参照信号を受信する際のチャネルの長区間特性から推論される長区間特性の影響を受ける参照信号(上述の例ではPDCCH DMRS)をターゲット参照信号と称してよい。また、TCIは、RRCで複数のTCI状態と各状態に対してソース参照信号とQCLタイプの組み合わせが設定され、MAC層またはDCIにより端末装置1に指示されてよい。
TCI設定の一例としてRRCにて4つのTCIを設定する例を示す。ここでは、TCI-State#0にNZP-CSI-RS-Resource#1とQCLタイプA+QCLタイプDが設定され、TCI-State#1にNZP-CSI-RS-Resource#1とQCLタイプB+QCLタイプDが設定され、TCI-State#2にSSB#1とQCLタイプAが設定され、TCI-State#3にSSB#2とQCLタイプA+QCLタイプDが設定される例を示している。端末装置1がRSの設定としてNZP-CSI-RS-Resource#3にTCI-State#0を設定および/または指示された場合、NZP-CSI-RS-Resource#3はNZP-CSI-RS-Resource#1とQCLタイプA+QCLタイプDが設定および/または指示されたこととなる。また端末装置1がPDCCH DMRSにTCI-State#2を設定された場合、P
DCCH DMRSはSSB#1とQCLタイプAが設定されたこととなる。また端末装置1
がPDSCH DMRSにTCI-State#2を設定および/または指示された場合、PDSC
H DMRSはSSB#2とQCLタイプA+QCLタイプDが設定および/または指示され
たこととなる。
同様に、端末装置1がCSIを算出する際のTCIの1つの状態として、PBCH/SSブロックのインデックス#2とQCLタイプA+QCLタイプDが設定および/または
指示された場合、端末装置1は、NZP−CSI−RSリソースを受信する際、PBCH/SSブロックインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてNZP−CSI−RSリソースを受信して同期や伝搬路推定をしてもよい。また、端末装置1がPDSCHを受信する際のTCIの1つの状態として、NZP−CSI−RSリソースのインデックス#2とQCLタイプA+QCLタイプDが設定および/または指示さ
れた場合、端末装置1は、PDSCH DMRSを受信する際、NZP−CSI−RSリ
ソースインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてPDSCHのDMRSを受信して同期や伝搬路推定をしてもよく、前述の例と組み合わせるとPBCH/SSブロックインデックス#2に対応したTCIのPDCCH DMRSを受信してPDCCHを検出し、割り当てられたPDSCHを、DCIにて指示されたNZP−CSI−RSリソースインデックス#2に対応したTCIのPDSCH DMRSを受信して同期や伝搬路推定を行ってもよい。このとき、PBCH/SSブロックインデックス#2とQCLタイプDが設定されたPDCCH DMRSの受信と、NZP−CSI−RS
リソースインデックス#2とQCLタイプDが設定されたPDSCH DMRSの受信とで、端末装置1にて受信空間パラメータを切り替えても良い。受信空間パラメータの切り替えにはアナログ回路のスイッチング動作などを含み切り替え時間を確保する必要のあることなどから、例えば下り割当を指示するPDCCHの受信完了から、指示されたPDSCHの受信開始時間に間に合わない事態を想定し、PDCCHの末尾シンボルから数えて予め設定したしきい値よりも短い時間間隔でのPDSCH割り当てが通知された場合には、空間パラメータの切り替えを実施せずPDCCH DMRS受信と同じ空間パラメータを用いてPDSCHの受信を行っても良い。
この方法により、ビームマネジメントおよびビーム指示/報告として、空間領域のQCLの想定と無線リソース(時間および/または周波数)によりビームマネジメントと等価な基地局装置3、端末装置1の動作が定義されてもよい。
以下、サブフレームについて説明する。本実施形態ではサブフレームと称するが、リソースユニット、無線フレーム、時間区間、時間間隔などと称されてもよい。
図2は、本発明の第1の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10個のサブフレームおよびW個のスロットから構成される。また、1スロットは、X個のOFDMシンボルで構成される。つまり、1サブフレームの長さは1msである。スロットのそれぞれは、サブキャリア間隔によって時間長が定義される。例えば、OFDMシンボルのサブキャリア間隔が15kHz、NCP(Normal Cyclic Prefix)の場合、X=7あるいはX=14であり、それぞれ0.5msおよび1msである。また、サブキャリア間隔が60kHzの場合は、X=7あるいはX=14であり、それぞれ0.125msおよび0.25msである。また、例えば、X=14の場合、サブキャリア間隔が15kHzの場合はW=10であり、サブキャリア間隔が60kHzの場合はW=40である。図2は、X=7の場合を一例として示している。なお、X=14の場合にも同様に拡張できる。また、上りリンクスロットも同様に定義され、下りリンクスロットと上りリンクスロットは別々に定義されてもよい。また、図2のセルの帯域幅は帯域の一部(BWP:BandWidth Part)として定義されてもよい。また、スロットは、送信時間間隔(TTI:Transmission Time Interval)と定義されてもよい。スロットは、TTIとして定義されなくてもよい。TTIは、トランスポートブロックの送信期間であってもよい。
スロットのそれぞれにおいて送信される信号または物理チャネルは、リソースグリッドによって表現されてよい。リソースグリッドは、複数のサブキャリアと複数のOFDMシンボルによって定義される。1つのスロットを構成するサブキャリアの数は、セルの下り
リンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。
リソースグリッドは、ある物理下りリンクチャネル(PDSCHなど)あるいは上りリ
ンクチャネル(PUSCHなど)のリソースエレメントのマッピングを表現するために用いられる。例えば、サブキャリア間隔が15kHzの場合、サブフレームに含まれるOFDMシンボル数X=14で、NCPの場合には、1つの物理リソースブロックは、時間領域において14個の連続するOFDMシンボルと周波数領域において12*Nmax個の連続するサブキャリアとから定義される。Nmaxは、後述するサブキャリア間隔設定μにより決定されるリソースブロックの最大数である。つまり、リソースグリッドは、(14*12*Nmax,μ)個のリソースエレメントから構成される。ECP(Extended CP)の場合、サブキャリア間隔60kHzにおいてのみサポートされるので、1つの物理
リソースブロックは、例えば、時間領域において12(1スロットに含まれるOFDMシンボル数)*4(1サブフレームに含まれるスロット数)=48個の連続するOFDMシンボルと、周波数領域において12*Nmax,μ個の連続するサブキャリアとにより定義される。つまり、リソースグリッドは、(48*12*Nmax,μ)個のリソースエレメントから構成される。
リソースブロックとして、参照リソースブロック、共通リソースブロック、物理リソースブロック、仮想リソースブロックが定義される。1リソースブロックは、周波数領域で連続する12サブキャリアとして定義される。参照リソースブロックは、全てのサブキャリアにおいて共通であり、例えば15kHzのサブキャリア間隔でリソースブロックを構成し、昇順に番号が付されてよい。参照リソースブロックインデックス0におけるサブキャリアインデックス0は、参照ポイントAと称されてよい(単に“参照ポイント”と称されてもよい)。共通リソースブロックは、参照ポイントAから各サブキャリア間隔設定μにおいて0から昇順で番号が付されるリソースブロックである。上述のリソースグリッドはこの共通リソースブロックにより定義される。物理リソースブロックは、後述する帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックであり、物理リソースブロックは、帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックである。ある物理上りリンクチャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。(TS38.211より)
次に、サブキャリア間隔設定μについて説明する。上述のようにNRでは、複数のOFDMヌメロロジーがサポートされる。あるBWPにおいて、サブキャリア間隔設定μ(μ=0,1,...,5)と、サイクリックプレフィックス長は、下りリンクのBWPに対して上位レイヤ(上位層)で与えられ、上りリンクのBWPにおいて上位レイヤで与えられる。ここで、μが与えられると、サブキャリア間隔Δfは、Δf=2^μ・15(kHz)で与えられる。
サブキャリア間隔設定μにおいて、スロットは、サブフレーム内で0からN^{subframe,μ}_{slot}-1に昇順に数えられ、フレーム内で0からN^{frame,μ}_{slot}-1に昇順に
数えられる。スロット設定およびサイクリックプレフィックスに基づいてN^{slot}_{symb}の連続するOFDMシンボルがスロット内にある。N^{slot}_{symb}は14である。サブフレーム内のスロットn^{μ}_{s}のスタートは、同じサブフレーム内のn^{μ}_{s} N^{slot}_{symb}番目のOFDMシンボルのスタートと時間でアラインされている。
次に、サブフレーム、スロット、ミニスロットについて説明する。図3は、サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。同図のように、3種類の時間ユニットが定義される。サブフレームは、サブキャリア間隔によらず1msであり、スロットに含まれるOFDMシンボル数は7または14であり、スロット長はサブキャリア間隔により異なる。ここで、サブキャリア間隔が15kHzの場合、1サブフレームには14OFDMシンボル含まれる。下りリンクスロットはPDSCHマッピングタイプAと称されてよい。上りリンクスロットはPUSCHマッピングタイプAと称され
てよい。
ミニスロット(サブスロットと称されてもよい)は、スロットに含まれるOFDMシンボル数よりも少ないOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。また、ミニスロットを割り当てることを、ノンスロットベースのスケジューリングと称してもよい。また、ミニスロットをスケジューリングされることを参照信号とデータのスタート位置の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。下りリンクミニスロットはPDSCHマッピングタイプBと称されてよい。上りリンクミニスロットはPUSCHマッピングタイプBと称されてよい。
図4は、スロットフォーマットの一例を示す図である。ここでは、サブキャリア間隔15kHzにおいてスロット長が1msの場合を例として示している。同図において、Dは下りリンク、Uは上りリンクを示している。同図に示されるように、ある時間区間内(例えば、システムにおいて1つのUEに対して割り当てなければならない最小の時間区間)においては、
・下りリンクシンボル
・フレキシブルシンボル
・上りリンクシンボル
のうち1つまたは複数を含んでよい。なお、これらの割合はスロットフォーマットとして予め定められてもよい。また、スロット内に含まれる下りリンクのOFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてもよい。また、スロット内に含まれる上りリンクのOFDMシンボルまたはDFT−S−OFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてよい。なお、スロットをスケジューリングされることを参照信号とスロット境界の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。
端末装置1は、下りリンクシンボルまたはフレキシブルシンボルで下りリンク信号または下りリンクチャネルを受信してよい。端末装置1は、上りリンクシンボルまたはフレキシブルシンボルで上りリンク信号または下りリンクチャネルを送信してよい。
図4(a)は、ある時間区間(例えば、1UEに割当可能な時間リソースの最小単位、またはタイムユニットなどとも称されてよい。また、時間リソースの最小単位を複数束ねてタイムユニットと称されてもよい。)で、全て下りリンク送信に用いられている例であり、図4(b)は、最初の時間リソースで例えばPDCCHを介して上りリンクのスケジューリングを行い、PDCCHの処理遅延及び下りから上りの切り替え時間、送信信号の生成を含むフレキシブルシンボルを介して上りリンク信号を送信する。図4(c)は、最初の時間リソースでPDCCHおよび/または下りリンクのPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介してPUSCHまたはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号はHARQ−ACKおよび/またはCSI、すなわちUCIの送信に用いられてよい。図4(d)は、最初の時間リソースでPDCCHおよび/またはPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンクのPUSCHおよび/またはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号は上りリンクデータ、すなわちUL−SCHの送信に用いられてもよい。図4(e)は、全て上りリンク送信(PUSCHまたはPUCCH)に用いられている例である。
上述の下りリンクパート、上りリンクパートは、LTEと同様複数のOFDMシンボルで構成されてよい。
図5は、ビームフォーミングの一例を示した図である。複数のアンテナエレメントは1つの送信ユニット(TXRU: Transceiver unit)10に接続され、アンテナエレメント毎の位相シフタ11によって位相を制御し、アンテナエレメント12から送信することで送信信号に対して任意の方向にビームを向けることができる。典型的には、TXRUがアンテナポートとして定義されてよく、端末装置1においてはアンテナポートのみが定義されてよい。位相シフタ11を制御することで任意の方向に指向性を向けることができるため、基地局装置3は端末装置1に対して利得の高いビームを用いて通信することができる。
以下、帯域部分(BWP)について説明する。BWPは、キャリアBWPとも称される。BWPは、下りリンクと上りリンクのそれぞれに設定されてよい。BWPは、共通リソースブロックの連続するサブセットから選択された連続する物理リソースの集合として定義される。端末装置1は、ある時間に1つの下りリンクキャリアBWPが活性化される4つまでのBWPを設定されうる。端末装置1は、ある時間に1つの上りリンクキャリアBWPが活性化される4つまでのBWPを設定されうる。キャリアアグリゲーションの場合には、BWPは各サービングセルで設定されてもよい。このとき、あるサービングセルにおいてBWPが1つ設定されていることを、BWPが設定されていないと表現されてもよい。また、BWPが2つ以上設定されていることをBWPが設定されていると表現されてもよい。
<MAC entity 動作>
活性化されたサービングセルにおいて、常に一つのアクティブな(活性化された)BWPがある。あるサービングセルに対するBWP切り替え(BWP switching)は、インアクテ
ィブな(非活性化された)BWPを活性化(activate)し、アクティブな(活性化された)BWPを非活性化(deactivate)するために使用される。あるサービングセルに対するBWP切り替え(BWP switching)は、下りリンク割り当てまたは上りリンクグラントを示す
PDCCHによって制御される。あるサービングセルに対するBWP切り替え(BWP switching)は、さらに、BWPインアクティブタイマー(BWP inactivity timer)や、ラン
ダムアクセスプロシージャの開始時にMACエンティティ自身によって制御されてもよい。
SpCell(PCellまたはPSCell)の追加または、SCellの活性化において、一つのBWPが、下りリンク割り当てまたは上りリンクグラントを示すPDCCHを受信することなしに初期的にアクティブである。初期的にアクティブなBWPは、基地局装置3から端末装置1に送られるRRCメッセージで指定されるかもしれない。あるサービングセルに対するアクティブなBWPは、基地局装置3から端末装置1に送られるRRCまたはPDCCHで指定される。アンペアードスペクトラム(Unpaired spectrum)(TDDバンドな
ど)では、DL BWPとUL BWPはペアされていて、BWP切り替えは、ULとDLに対して共通である。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、アクティブなBWPにおいて、端末装置1のMACエンティティは、ノーマル処理を適用する。ノーマル処理には、UL-SCHを送信する、RACHを送信する、PDCCHをモニタする、PUCCHを送信する、SRSを送信する、およびDL−SCH
を受信することを含む。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、インアクティブなBWPにおいて、端末装置1のMACエンティティは、UL-SCHを送信しない、RACHを送信しない、PDCCHをモニタしない、PUCCHを送信しない、SRSを送信しない、およびDL−SCHを受信しない。あるサービング
セルが非活性化された場合、アクティブなBWPは、存在しないようにしてもよい(例えば、アクティブなBWPは非活性化される)。
<RRC 動作>
RRCメッセージ(報知されるシステム情報や、専用RRCメッセージで送られる情報)に含まれるBWPインフォメーションエレメント(IE)は、BWPを設定するために使われる。基地局装置3から送信されたRRCメッセージは、端末装置1によって受信される。それぞれのサービングセルに対して、ネットワーク(基地局装置3など)は、少なくとも下りリンクのBWPと1つ(もしサービングセルが上りリンクの設定された場合など)または2つ(付録のアップリンク(supplementary uplink)が使われる場合など)の上りリンクBWPを含む少なくとも初期BWP(initial BWP)を、端末装置1に対して、設定
する。さらに、ネットワークは、追加の上りリンクBWPや下りリンクBWPをあるサービングセルに対して設定するかもしれない。BWP設定は、上りリンクパラメータと下りリンクパラメータに分けられる。また、BWP設定は、共通(common)パラメータと専用(dedicated)パラメータに分けられる。共通パラメータ(BWP上りリンク共通IEやBWP下りリンク共通IEなど)は、セル特有である。プライマリセルの初期BWPの共通パラメータは
、システム情報でも提供される。他のすべてのサービングセルに対しては、ネットワークは専用信号で共通パラメータを提供する。BWPは、BWP IDで識別される。初期BWPは、BWP IDが0である。他のBWPのBWP IDは、1から4までの値を取る。
上りリンクBWPの専用パラメータは、SRS設定を含む。上りリンクBWPの専用パラメータに対応する上りリンクBWPが、その上りリンクBWPの専用パラメータに含まれるSRS設定に対応する一つまたは複数のSRSに関連付けられる。
端末装置1は、1つのプライマリセルと15までのセカンダリセルが設定されてよい。
端末装置1により使用されるCSIを報告する時間及び周波数リソースは、基地局装置3により制御される。CSIは、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、CRI(CSI-RS Resource Indicator)、LI(Layer Indication)、RI(rank indication)および/またはL1−RSRP(Layer-1 Reference Signal Received Power)の各インデックスを含む。CQI、PMI、CRI、LI、RI、L1−RSRPのために、端末装置1は、N(Nは1以上)のCSI報告に関する設定、M(Mは1以上)のCSI参照信号(CSI−RS)のリソースに関する設定、L(Lは1以上)のリンクを含む1つのCSI測定に関する設定を上位レイヤにより設定される。CSI測定に関する設定は、CSI報告に関する設定のリストと、CSIリソースに関する設定のリストと、リンクの設定のリストと、トリガ状態のリストを含む。以下、それぞれについて説明する。
CSI報告に関する設定の各々は、1つの下りリンクのBWP(上位レイヤのBWPアイデンティティ)に関連付けられ、CSI報告に関する設定の各々は、報告されるパラメータは以下のものを含む。
・CSI報告に関する設定を識別するための1つのアイデンティティ
・時間領域の動作(例えば、周期的(periodic)、セミパーシステント、または非周期(Aperiodic))
・報告されるCSIパラメータ(例えば、CRI、RI、PMI、CQIなど)
・周波数領域の設定(広帯域CQIまたはサブバンドCQIを設定する情報、広帯域PMIまたはサブバンドPMIを設定する情報がそれぞれ含まれる)
・CSI測定の制限の設定(measurement restriction configuration、チャネル測定と
干渉測定のそれぞれに対して設定されてよい)
・コードブック設定(CSIのタイプ(タイプ1かタイプ2かを示す情報)とコードブックサブセット制限の設定)
・1報告あたりのCQIの最大数(1コードワードか2コードワードかを示す情報であってよい)
・CQIテーブルの想定(64QAMまでを含むCQIテーブル、256QAMまでを含むCQIテーブル、URLLCなど)
CSIリソースに関する設定の各々は、S(Sは1以上)のCSI−RSリソースセットに関する情報を含み、各CSI−RSリソースセットは、複数のCSI−RSリソース(チャネル測定または干渉測定のためのNZP−CSI−RSと、干渉測定のためのCSI−IM(Interference Measurement)リソース)と、L1−RSRP計算のために使用されるSS/PBCHブロックのリソースに関する設定を含む。ここで、NZP−CSI−RSリソースとは、予め仕様で定義された生成方法に従って系列が生成され、CSI−RSがマッピングされるリソースエレメントにマップされるCSI−RSである。NZP−CSI−RSは、非零電力チャネル状態情報参照信号と表現されてもよい。また、CSIリソースに関する設定の各々は、上位レイヤで識別された(identified)BWPに置かれ、1つのCSI報告に関する設定に紐づけられたすべてのCSIリソースに関する設定は、同じBWPである。チャネル状態情報参照信号がNZP−CSI−RSと表現されるのと同様に、CSI−IMはZP−CSI−RSまたは零電力チャネル状態情報参照信号と表現されてもよい。
次に、上述のチャネル測定と干渉測定について説明する。チャネル測定は、CSI測定のために下りリンクの所望信号またはチャネルまたは空間多重を想定した場合の各レイヤまたは各コードワードの品質に関する量を測定することであり、干渉測定は、CSI測定のために下りリンクの干渉信号またチャネルまたは空間多重を想定した場合の各レイヤまたはコードワードにおける干渉の量を測定することである。ここでレイヤとは、空間多重されるPDSCHの数である。
ここで、干渉測定のためのZP−CSI−RSは、RRCおよび/またはMAC層および/またはDCIで設定および/または指示してもよい。
なお、L1−RSRP計算のために使用されるSS/PBCHブロックのリソースに関する設定(ssb-Resources)は、CSIリソースに関する設定の各々に含まれてもよい。
また、CSIリソースに関する設定の各々に、CSI―RSリソースの時間領域の動作が含まれてよい。また、各CSI−RSリソースセットに関する設定に、CSI―RSリソースの時間領域の動作が含まれてもよい。
図6に、CSIリソース設定およびZP−CSI−RSリソース設定の一例を示す。ここでは、CSIリソース設定#1に時間領域の動作として非周期的の送信方法をとるNZP−CSI−RSリソースセット#0とNZP−CSI−RSリソースセット#1が設定され、CSIリソース設定#2に時間領域の動作として周期的の送信方法をとるNZP−CSI−RSリソースセット#2とNZP−CSI−RSリソースセット#3が設定される例を、それぞれ示す。各NZP−CSI−RSリソースセットは一つまたは複数のNZP−CSI−RSを含む。非周期的の送信方法をとるNZP−CSI−RSリソースは時間周波数リソース設定を含み、QCL情報が設定されてもよい。周期的またはセミパーシステントの送信方法をとるNZP−CSI−RSリソースは周期およびオフセット設定と時間周波数リソース設定を含み、QCL情報が設定されてもよい。ZP−CSI−RSリソース設定は下りリンクBWP毎に設定されてよく、ここではZP−CSI−RSリソースセット設定#0に時間領域の動作として周期的の送信方法をとるZP−CSI−RSリソース#0とZP−CSI−RSリソース#1が設定され、ZP−CSI−RSリソースセット設定#2に時間領域の動作としてセミパーシステントの送信方法をとるZP−CSI−RSリソース#2とZP−CSI−RSリソース#3が設定され、ZP−CSI−RSリソースセット設定#2に時間領域の動作として非周期的の送信方法をとるZP−CS
I−RSリソース#4とZP−CSI−RSリソース#5が設定される例を、それぞれ示す。周期的またはセミパーシステントの送信方法をとるZP−CSI−RSリソースは周期およびオフセット設定と時間周波数リソース設定が設定される。非周期的の送信方法をとるZP−CSI−RSリソースは時間周波数リソース設定が設定される。
非周期的CSIリソース設定を用いたCSI報告の一例として、上りリンクグラントでトリガしたCSI報告の設定に非周期的CSIリソース設定を含む場合、当該のNZP−CSI−RSリソースを送信し、端末にてトリガされたCSI報告がなされるものとしてよい。ZP−CSI−RSリソース設定を用いた指示の一例として、当該ZP−CSI−RSリソースの設定された下りリンクBWPにPDSCHの割り当てが指示された場合、PDSCHを割り当てたスロットに時間領域の動作として非周期的の送信方法をとるZP−CSI−RSリソースが適用されるものとしてよい。ZP−CSI−RSリソース設定を用いた他の一例として、当該ZP−CSI−RSリソースの設定された下りリンクBWPにPDSCHの割り当てが指示された場合、時間領域の動作として周期的の送信方法をとるZP−CSI−RSリソースおよび/またはセミパーシステントの送信方法をとるZP−CSI−RSリソースのうちDCIまたはMAC CE、RRCシグナリングにより活性化されたZP−CSI−RSリソースが常に適用されるものとしてよい。
各リンクの設定は、CSI報告に関する設定のインディケーションと、CSI設定ののインディケーションと、チャネル測定か干渉測定のどちらを測定するかを示すインディケーションを含む。また、各リンクの設定は、1つまたは複数の非周期なCSI報告のためのCSI報告に関する設定を動的に選択するための複数のトリガ状態を含んでよい。
各トリガ状態は、1つまたは複数のCSI報告に関する設定に関連付けられ、各CSI報告に関する設定は、1つまたは複数の周期的またはセミパーシステントまたは非周期のCSI参照信号に関する設定に紐づけられている。ここで、紐づけられたCSIリソースに関する設定の数により端末装置は下記を想定してよい。
・1つのCSIリソースに関する設定が設定された場合、そのリソース設定はL1−RSRP計算のためのチャネル測定のためである
・2つのCSIリソースに関する設定が設定された場合、1つめのCSIリソースに関する設定はチャネル測定のためであり、2つめのCSIリソースに関する設定は、ZP−CSI−RSリソースまたはNZP−CSI−RSリソース上での干渉測定のためである。・3つのCSIリソースに関する設定が設定された場合、1つめのCSIリソースに関する設定はチャネル測定のためであり、2つめのCSIリソースに関する設定は、ZP−CSI−RSリソース上での干渉測定のためであり、3つめのCSIリソースに関する設定はNZP−CSI−RSリソース上での干渉測定のためである。
CSI測定のために、端末装置1は、下記を想定してよい。
・干渉測定のために設定された各NZP−CSI−RSポートは干渉の送信レイヤに対応すること、
・NZP−CSI−RSポート上のすべての干渉の送信レイヤが、関連付けられたEPRE(Energy per resource element)が考慮されていること、および
・チャネル測定のためのNZP−CSI−RSリソース、または干渉測定のためのCSI−RSリソース、または干渉測定のためのZP−CSI−RSリソース上に他の干渉信号があること。
ここで、EPREは、リソースエレメントあたりのNZP−CSI−RSのエネルギーを表す。具体的には、基地局装置3は、NZP−CSI−RSのEPREに対するPDSCH EPREの比(Pc)、NZP−CSI−RSのEPREに対するPDCCH EPREの比(Pc−PDCCH)、NZP−CSI−RSのEPREに対するSS/PB
CHブロックのEPREの比(Pc_SS)がそれぞれ設定される。これにより、CSI−RS EPREを設定されたエネルギーの比からCSI測定にEPREを考慮することができる。
端末装置1はCSI報告に際して、あるスロットがCSIの各インデックス算出に有効なダウンリンクスロットかを判定しても良い。より具体的には、あるスロットが以下の条件を満たすときに有効なダウンリンクスロットと判定する。
・上位レイヤ設定により少なくとも1シンボル以上の下りリンクシンボルまたはフレキシブルシンボルを含む、かつ
・端末装置1にとってモビリティ測定用のギャップ区間でない、かつ
・少なくとも一回以上のチャネル測定か干渉測定用のCSIリソースの送信機会がある。
ここで、干渉測定のためにRRCおよび/またはMAC層および/またはDCIで設定および/または指示したZP−CSI−RSの配置される時間周波数リソースが、別途設定および/または指示されたNZP−CSI−RSの配置される時間周波数リソースが異なる配置となりえる。特に、後者のNZP−CSI−RSの配置される時間周波数リソースが、前者のZP−CSI−RSの配置される時間周波数リソースの範囲を超える場合、一例としてZP−CSI−RSの配置される時間周波数リソース以外でPDSCHが送信されることにより、チャネル測定に用いるNZP−CSI−RSの配置される時間周波数リソースに予期しない干渉成分が含まれることとなり、事前に期待されたCSIの各インデックスの算出は行えない事となる。このため、端末装置1は、NZP−CSI−RSの配置される時間周波数リソースが、ZP−CSI−RSの配置される時間周波数リソースの一部または全部に限定されない場合には、当該スロットは有効なスロットでないものと判定する。
また、ここでのZP−CSI−RSの配置される時間周波数リソースを特定する際、非周期的の送信方法が適用されたZP−CSI−RSのスロットに、当該のZP−CSI−RSを指示したDCIの他のPDSCHが送信される場合には、当該スロットは有効なスロットでないものと判定する。
端末装置1は、NZP−CSI−RSリソースの時間領域の動作が周期的またはセミパーシステントである場合、前述の有効でないスロットを含めず、過去に観測した有効なスロットにおけるNZP−CSI−RSリソースを用いて、CSIの各インデックスであるCQI、PMI、CRI、LI、RI、L1−RSRPの少なくとも一つを算出し、報告する。
CSI−RSリソースセットの時間領域の動作が非周期であるCSI−RSリソースセットのために、1つまたは複数のコンポーネントキャリアでのチャネル測定および/または干渉測定のための1つまたは複数のCSI報告に関する設定および/または1つまたは複数のCSI−RSリソースセットのためのトリガ状態が上位レイヤで設定される。非周期のCSI報告のトリガのために、1つのCSIトリガ状態のセットが上位レイヤのパラメータで設定され、CSIトリガ状態は、DL BWPのいずれか1つの候補に関連付けられる。端末装置1は、活性化されていない下りリンクBWPのためのCSI報告をトリガされることを期待しない。各トリガ状態は、DCI(例えば、DCIフォーマット0_1)に含まれるCSIリクエストフィールドを用いて開始される。
端末装置1は、NZP−CSI−RSリソースの時間領域の動作が非周期的である場合、前述の有効でないスロットでのCSI算出を指示された場合には、CSI算出および報告を実施しない一方、チャネル状態情報要求を含んだDCIフォーマット0_1の指示に沿って上りデータ信号を生成し送信する。このときの上りデータ信号は、下りリンクデータへのHARQ応答信号または上りリンクデータとしてよい。また端末装置1は、前述の
有効でないスロットでのCSI算出を指示された場合には、当該のDCIが有効でないと判断し、上りグラントを無視して、上りリンク信号を送信しないこととしてもよい。
端末装置1により使用されるSRSを送信する時間及び周波数リソースは、基地局装置3により制御される。より具体的には、前述のBWPに関し上位レイヤにより付与される設定は、SRSに関する設定をを含む。SRSに関する設定は、SRSリソースの設定と、SRSリソースセットに関する設定と、トリガ状態の設定を含む。以下、それぞれについて説明する。
一つまたは複数のSRSリソースが設定された場合について説明する。基地局装置3は、端末装置1に対して複数のSRSリソースを設定する。複数のSRSリソースは、上りリンクスロットの後方の複数シンボルに関連付けられる。例えば、4つSRSリソースが設定され、スロットの後方の4シンボルのうち、それぞれのシンボルに各SRSリソースが関連付けられているとする。端末装置1は、SRSシンボルに送信ビーム(送信フィルタ)を用いて送信する。
一例として、4つのSRSシンボル(それぞれS1、S2、S3、S4と表記する)を用いてSRSリソース(それぞれSRSリソース#1,#2,#3,#4と表記する)が設定された場合を説明する。S1がSRSリソース#1に関連付けられたSRSリソース、S2がSRSリソース#2に関連付けられたSRSリソース、S3がSRSリソース#3に関連付けられたSRSリソース、S4がSRSリソース#4に関連付けられたSRSリソースとし、端末装置1は、この設定に基づいてそれぞれのリソースでそれぞれ送信ビームを適用してSRSを送信する。
端末装置1は、SRSリソース毎に異なる送信アンテナポートを用いて送信してよい。例えば、S1ではアンテナポート10、S2ではアンテナポート11、S3ではアンテナポート12、S4ではアンテナポート13を用いてSRSを送信してよい。
端末装置1は、SRSリソース毎に複数の送信アンテナポートまたは送信アンテナポートグループを用いて送信してよい。例えば、S1ではアンテナポート10および11、S2ではアンテナポート12および13を用いて送信してよい。
SRSリソースの設定には、空間関係情報(Spatial Relation Info)を含む。空間関
係情報は、別途適用した受信または送信フィルタ設定を、サウンディング参照信号の送信フィルタに適用し、ビーム利得を獲得するための情報である。別途適用した受信または送信フィルタ設定の特定のため、受信または送信する信号として同期信号のブロック、CSI参照信号、サウンディング参照信号、のいずれかを設定する。
またSRSリソースの設定には、空間関係情報に加え、下記の情報エレメントの少なくとも1つまたは複数を含んでよい。
(1)サウンディング参照信号を送信するシンボルに関する情報またはインデックス
(2)サウンディング参照信号を送信するアンテナポートに関する情報
(3)サウンディング参照信号の周波数ホッピングパターン
端末装置1は、1つまたは複数のSRSリソース設定を含むSRSリソースセットが設定されても良い。
SRSリソースセット設定は、セットに含まれるSRSリソースに適用する送信電力制御に関する情報に加え、対応CSI参照信号(associatedCSI-RS)の情報を含んでも良い。
SRSリソース設定および/またはSRSリソースセット設定には、時間領域の動作を設定する情報を含んでも良い。時間領域の動作を設定する情報は、周期的(periodic)、セミパーシステント(semi-persistent)、非周期(aperiodic)のいずれかを設定する。
基地局装置3は、設定した各SRSリソースのうち、1つまたは複数を選択してPUSCHの送信のためにSRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、設定された各SRSリソースのうち、SRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1は、指定されたSRSリソースに関連付けられたDMRS(demodulation reference signal)の一つま
たは複数のアンテナポート、および/またはPUSCHの一つまたは複数のアンテナポートを用いて、PUSCH送信を行う。例えば、端末装置1は4つのSRSリソースで送信ビーム#1〜#4を用いてSRSを送信し、基地局装置3からSRIとしてSRSリソース#2が指示された場合、端末装置1は、送信ビーム#2を用いてPUSCHを送信してもよい。また、複数のSRSリソースが指示された場合には、指示されたSRIに関連付けられたSRSリソースで用いた複数の送信ビームを用いてMIMO空間多重(MIMO SM:Multiple Input Multiple Output Spatial Multiplexing)によりPUSCHを送信して
もよい。
基地局装置3は、設定した各SRSリソースのうち、1つまたは複数を選択してPUCCHの送信のためにSRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。PUCCHに関連付けられたSRSリソースを特定するための情報が、下りリンクリソース割り当てを行うDCIに含められる。端末装置1は、下りリンクリソース割り当てを行うDCIに基づいて、PDSCHをデコードし、下りリンクリソース割り当てを行うDCIで示されたPUCCHリソースで、HARQ−ACKを送信する。端末装置1は、設定された各SRSリソースのうち、SRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1は、指定されたSRSリソースに関連付けられたDMRS(demodulation reference signal)の一つまたは複数のアンテナ
ポート、および/またはPUCCHの一つまたは複数のアンテナポートを用いて、PUCCH送信を行う。
基地局装置3は、各SRSリソースのうち時間領域の動作を周期的と設定したSRSリソースにつき、周期およびオフセットの情報を関連付け、DCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、各SRSリソースのうち時間領域の動作を周期的と設定したSRSリソースにつき、SRSリソースに関連付けられた、送信周期およびオフセットの情報を用いて、周期的にSRS送信を行う。
基地局装置3は、各SRSリソースのうち時間領域の動作をセミパーシステントと設定したSRSリソースにつき、周期およびオフセットの情報を関連付け、DCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。 基地局装置3は、各SRSリソースのうち時間領域の動作をセミパーシステントと設定したSRSリソースにつき、SRSリソースの活性化/非活性化をDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、設定された各SRSリソースのうち時間領域の動作をセミパーシステントと設定したSRSリソースにつき、SRSリソー
スの活性化/非活性化をDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1は活性化の指示を受信した際、指定されたSRSリソースに関連づけられた、SRSを送信するシンボルに関する情報またはインデックス、および/またはSRSを送信するアンテナポートに関する情報、および/またはSRSの周波数ホッピングパターンの情報を用いて、指定されたSRSリソースに関連付けられた、周期およびオフセットの情報を用いて、周期的にSRS送信を行う。端末装置1は非活性化の指示を受信した際、指定されたSRSリソースのSRS送信を停止する。
基地局装置3は、各SRSリソースのうち時間領域の動作を非周期的と設定したSRSリソースにつき、SRS送信要求をDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、設定された各SRSリソースのうち時間領域の動作を非周期的と設定したSRSリソースにつき、SRS送信要求をDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1はSRS送信要求を受信した際、指定されたSRSリソースに関連づけられた、SRSを送信するシンボルに関する情報またはインデックス、および/またはSRSを送信するアンテナポートに関する情報、および/またはSRSの周波数ホッピングパターンの情報を用いて、指定されたSRSリソースに関連付けられた、周期およびオフセットの情報を用い、SRS送信を行う。SRS送信要求は、1つまたは複数のトリガ状態を含み、各SRSリソース設定および/または各SRSリソースセット設定のうち時間領域の動作を非周期的と設定した、各SRSリソース設定および/または各SRSリソースセット設定は、1つまたは複数のトリガ状態に関連付けられる。
次に、トリガ状態の設定を説明する。各トリガ状態は、1つまたは複数のSRSリソースセットに関する設定に関連付けられている。
時間領域の動作が非周期であるSRSリソースセットのために、1つまたは複数のコンポーネントキャリアでの上りリンクチャネル状態情報(CSI)および/またはチャネルサウンディングおよび/またはビームマネジメントのための、1つまたは複数のSRSリ
ソースセットにおけるSRS送信のためのトリガ状態が上位レイヤで設定される。非周期のSRSリソースセットにおけるSRS送信のトリガのために、1つのSRSトリガ状態のセットが上位レイヤのパラメータで設定される。各トリガ状態は、DCI(例えば、DCIフォーマット0_1、DCIフォーマット1_1、DCIフォーマット2_3)に含まれるSRS要求フィールドを用いて指示される。
このとき、端末装置は、下記の動作を行う。
・SRS要求フィールドの値が0の場合、SRS送信は要求されない
・SRS要求フィールドの値が1または2または3の場合、対応するトリガ状態に関連付けられたSRSリソースセットに関する設定に基づいて、SRS送信を行う。このとき端末装置は、SRSリソースセットから、SRSリソースに関する設定に含まれる設定情報に基づいてSRSを送信する。
各SRSリソースセットに関する設定には、時間領域の動作を設定する情報、空間関係情報に関する信号のインデックスまたはアイデンティティを含む。
つづいて、あるサービングセル#1におけるSRSに関するRRCの設定およびSRS要求フィールドの一例を示す。ここではサービングセルに設定されているBWPの数が2であるとする。サービングセル#1のSRSに関する情報に、サービングセル#1におけるBWPインデックス#1に関する設定のリストが設定されており、リスト内に、SRSリソースセットに関する設定が4つ設定されている。そのうち、非周期なSRSリソースセットの設定は、SRSリソースセットに関する設定#1〜#3とする。
SRSリソースセットに関する設定#1は、トリガ状態#1に関連付けられ、SRSリソースセットに関する設定#2は、トリガ状態#2に関連付けられ、SRSリソースセットに関する設定#3は、トリガ状態#3に関連付けられている。SRS要求フィールドの“00”はSRSを送信しない。“01”にトリガ状態#0、“10”にトリガ状態#1、“11”にトリガ状態#2がそれぞれ関連付けられている。
端末装置1は、RRCで設定されたSRSに関する設定と、DCIに含まれるSRS要求フィールドの値に基づいて関連付けられたSRSリソースセットに関する設定に基づいて、SRSを送信する。このとき、端末装置1は、SRSに関する設定に関連付けられたSRSリソースセットに関する設定から、SRSに関する設定に含まれる設定情報に基づいてSRSを送信する。
また、各SRSに関する設定は、サービングセル内のBWPと関連付けられている。一例として、SRS設定#1は、BWPインデックス#1に関連付けられてもよい。
ここで、上述の例ではSRS要求フィールドの1つの値に、1つのSRSリソースセットに関する設定が設定されたが、複数のSRSリソースセットが関連付けられるようにしてもよい。
ある2つのサービングセルにおけるRRCで設定されるSRSの設定およびSRS要求フィールドの例を示す。ここで、時間動作が非周期であるSRSリソースセットに関する設定の各々は、トリガ状態が関連付けられている。
端末装置1は、SRS要求フィールドの値として10が指示された場合には、サービングセル#1におけるSRSリソースセットを送信する。すなわち、SRS要求フィールドの値(情報)は複数のトリガ状態のうちの1つを示し、複数のトリガ状態の各々は、サービングセルごとに設定され、1つまたは複数のSRSリソースセットの設定に関連付けら
れる。なお、SRS要求フィールドの値はSRS要求フィールドに含まれる情報と換言されてもよい。
ここで、SRS設定#2のBWPインデックスとして、設定されたBWPの実際のインデックスではなく“active”が設定されている。これは、活性化されたBWPと関連付けられていることを意味する。例えば、端末装置1に対して、あるスロットにおいてBWPインデックス#1を示すBWPが活性化されている場合、SRS設定#2は活性化されているBWPインデックス#1に対応する設定であり、端末装置1は対応するBWP#1のSRSリソースセットを送信する。すなわち、PDCCHのDCIに含まれるSRS要求フィールドは、トリガ状態を含み、各トリガ状態は1つまたは複数のSRSリソースセットに関する設定に関連付けられ、SRS設定は、サービングセルcの活性化されたBWPに関連付けられるように設定されてもよい。
続いて、2つのサービングセルが設定された場合の例を示す。ここでは、サービングセル数として2つが設定され、各セルで、非周期のSRSリソースセットに関する設定にトリガ状態が割り当てられる例を示す。SRS要求フィールドには複数の非周期のSRSリソースセットに関する設定が関連付けられてもよく、サービングセル#1のトリガ状態#0と、サービングセル#2のトリガ状態#0がコードポイント“01”に設定されることとする。
ここで、あるスロットにおいて、端末装置1に対してSRS要求フィールドの値として“10”が指示された場合、端末装置1はサービングセル#1のBWP#1のSRSリソ
ースセットと、サービングセル#2のBWP#1のSRSリソースセットを送信する。このとき、サービングセル#1のBWP#1とサービングセル#2のBWP#1がともに活性化されている場合、端末装置1はサービングセル#1のBWP#1とサービングセル#2のBWP#1のSRSリソースセットを送信する。
また、サービングセル#1のBWP#1が活性化されており、サービングセル#2のBWP#2が活性化されている場合、末装置1はサービングセル#1のBWP#1のCSIを報告する。このように、複数のサービングセルが設定され、SRS要求フィールドの値により指示された各サービングセルのSRSリソースセットを送信する。すなわち、端末装置1は、SRS要求フィールドを含むDCIを運ぶPDCCHを受信し、SRS要求フィールドに基づいて複数のサービングセルにおけるBWPのSRS送信要求がトリガされた場合に、活性化されているBWPインデックスが示すBWPのCSI報告を送信する。このとき、SRS要求フィールドはトリガ状態を示し、トリガ状態は、複数の状態のうち1つを示す。複数の状態の各々の状態は、サービングセル毎に設定され、1つまたは複数のSRSリソースセットに関する設定および1つまたは複数のSRSリソースセットに関する設定および各サービングセルにおけるBWPインデックスに関連付けられる。
上述の例では、各サービングセルのSRSリソースセットに関する設定がBWPインデックスに関する設定に常に関連付けられている場合を示したが、BWPが1つの場合には関連付ける情報が設定されなくてよい。この場合、サービングセルの帯域幅に基づいてSRSリソースセットを送信してよい。
また、上述の例ではSRSリソースセットに関する設定にトリガ状態のインデックスを示す情報を含んだが、SRSリソースセットに関する設定がトリガ状態のリストを含み、各トリガ状態がどのSRSリソースセットに関する設定を含むかが設定されてもよい。
以下、サウンディング参照信号送信に適用する空間ドメイン送信フィルタについて説明する。
前述のように、基地局装置3は端末装置1に対し、あるSRSリソースセットの設定に対応CSI参照信号(associatedCSI-RS)を設定することができる。あるCSI参照信号を対応CSI参照信号として設定された端末装置1は、各種下りリンク信号を受信する。端末装置1は、各種下りリンク信号のうち、SRSの設定によりSRSリソースセットに関連づけられた対応CSI参照信号を特定し、対応CSI参照信号を受信した際に適用した空間ドメイン受信フィルタを特定する。さらに端末装置1は、当該のSRSリソースセットを送信する際に、前記空間ドメイン受信フィルタを空間ドメイン送信フィルタとして適用し、SRSリソースセットを送信する。また、時間動作が非周期であるSRSリソースセットに対する空間関係情報の設定として、空間関係情報を設定するCSI参照信号に時間領域の動作を非周期的と設定したNZP−CSI−RSリソースを設定してもよく、SRS要求のDCIによりNZP−CSI−RSリソースの送信指示としてもよい。
次に、ZP−CSI−RSリソースを勘案した空間ドメイン受信フィルタの特定およびSRSリソース送信について説明する。干渉測定のためにRRCおよび/またはMAC層および/またはDCIで設定および/または指示したZP−CSI−RSの配置される時間周波数リソースが、別途設定および/または指示されたNZP−CSI−RSの配置される時間周波数リソースが異なる配置となりえる。特に、後者のNZP−CSI−RSの配置される時間周波数リソースが、前者のZP−CSI−RSの配置される時間周波数リソースの範囲を超える場合、一例としてZP−CSI−RSの配置される時間周波数リソース以外でPDSCHが送信されることにより、空間ドメイン受信フィルタの特定に用いるNZP−CSI−RSの配置される時間周波数リソースに予期しない干渉成分が含まれ
ることとなり、事前に期待された空間ドメイン送信フィルタの算出は行えない事となる。同様に、端末装置1は空間ドメイン送信フィルタの算出に際して、あるスロットがCSIの各インデックス算出に有効なダウンリンクスロットかを判定しても良い。前述のように、あるスロットが以下の条件を満たすときに有効なダウンリンクスロットと判定してよい。
・上位レイヤ設定により少なくとも1シンボル以上の下りリンクシンボルまたはフレキシブルシンボルを含む、かつ
・端末装置1にとってモビリティ測定用のギャップ区間でない、かつ
・少なくとも一回以上のチャネル測定か干渉測定用のCSIリソースの送信機会がある。
端末装置1は、端末装置1は、NZP−CSI−RSの配置される時間周波数リソースが、ZP−CSI−RSの配置される時間周波数リソースの一部または全部に限定されない場合、過去のSRSリソースの送信に適用した空間ドメイン送信フィルタを用いて、SRSリソースを送信する。また端末装置1は、端末装置1は、NZP−CSI−RSの配置される時間周波数リソースが、ZP−CSI−RSの配置される時間周波数リソースの一部または全部に限定されない場合、SRSリソースの送信を行わず、次回のCSI参照信号の受信タイミング以降にSRSリソースを送信することとしてもよい。
本実施形態の一態様は、LTEやLTE−A/LTE−A Proといった無線アクセス技術(RAT: Radio Access Technology)とのキャリアアグリゲーションまたはデュアルコネクティビティにおいてオペレーションされてもよい。このとき、一部またはすべてのセルまたはセルグループ、キャリアまたはキャリアグループ(例えば、プライマリセル(PCell: Primary Cell)、セカンダリセル(SCell: Secondary Cell)、プライマリセカンダリセル(PSCell)、MCG(Master Cell Group)、SCG(Secondary Cell Group)
など)で用いられてもよい。また、単独でオペレーションするスタンドアローンで用いられてもよい。デュアルコネクティビティオペレーションにおいては、SpCell(Special Cell)は、MACエンティティがMCGに関連付けられているか、SCGに関連付けられているかに応じて、それぞれ、MCGのPCellまたは、SCGのPSCellと称する。デュアルコネクティビティオペレーションでなければ、SpCell(Special Cell)は、PCellと称する。SpCell(Special Cell)は、PUCCH送信と、競合ベースランダム
アクセスをサポートする。
以下、本実施形態における装置の構成について説明する。ここでは、下りリンクの無線伝送方式として、CP−OFDM、上りリンクの無線伝送方式としてCP−OFDMまたはDFTS−OFDM(SC−FDM)を適用する場合の例を示している。
図7は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、上位層処理部101、制御部103、受信部105、送信部107と送受信アンテナ109を含んで構成される。また、上位層処理部101は、無線リソース制御部1011、スケジューリング情報解釈部1013、チャネル状態情報報告制御部1015、および、サウンディング参照信号制御部1017を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057と測定部1059を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077と上りリンク参照信号生成部1079を含んで構成される。
上位層処理部101は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層
、無線リソース制御(Radio Resource Control: RRC)層の処理を行う。
上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報の管理をする。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。
上位層処理部101が備えるスケジューリング情報解釈部1013は、受信部105を介して受信したDCI(スケジューリング情報)の解釈をし、前記DCIを解釈した結果に基づき、受信部105、および送信部107の制御を行うために制御情報を生成し、制御部103に出力する。
CSI報告制御部1015は、測定部1059に、CSI参照リソースに関連するチャネル状態情報(RI/PMI/CQI/CRI)を導き出すよう指示する。CSI報告制御部1015は、送信部107に、RI/PMI/CQI/CRIを送信するよう指示をする。CSI報告制御部1015は、測定部1059がCQIを算出する際に用いる設定をセットする。
サウンディング参照信号制御部1017は、上りリンク参照信号生成部1079に、SRSリソース設定に関連する情報を導き出すよう指示する。サウンディング参照信号制御部1017は、送信部107に、SRSリソースを送信するよう指示をする。サウンディング参照信号制御部1017は、上りリンク参照信号生成部1079がSRSを生成する際に用いる設定をセットする。またサウンディング参照信号制御部1017は、制御部103に、空間関係情報および/または対応CSI参照信号の情報を出力する。またサウンディング参照信号制御部1017は、受信部105より入力された空間ドメイン受信フィルタを、送信部107に出力する。
制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行う制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行う。また制御部103は、サウンディング参照信号制御部1017から入力された空間関係情報および/または対応CSI参照信号の情報を、受信部105および/または送信部107に出力する。受信部105は、制御部103から入力された空間関係情報および/または対応CSI参照信号の情報に対応する下りリンク信号を受信する際に用いた空間ドメイン受信フィルタを、サウンディング参照信号制御部1017に出力する。
無線受信部1057は、送受信アンテナ109を介して受信した下りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、
信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去し、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出す
る。
多重分離部1055は、抽出した信号を下りリンクのPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部1055は、測定部1059から入力された伝搬路の推定値から、PDCCHおよびPUSCHの伝搬路の補償を行う。また、多重分離部1055は、分離した下りリンク参照信号を測定部1059に出力する。
ここで多重分離部1055における信号分離のために、端末装置1は下記を想定してよい。
・周期的およびセミパーシステントの送信方法が適用されたNZP−CSI−RSの時間周波数リソースは、PDSCHには用いられないこと、
・周期的およびセミパーシステントの送信方法が適用されたZP−CSI−RSの時間周波数リソースは、PDSCHには用いられないこと、および
・非周期的の送信方法が適用されたZP−CSI−RSの時間周波数リソースは、当該のZP−CSI−RSを指示したDCIにより割り当てを指示したPDSCHには用いられないこと。
復調部1053は、下りリンクのPDCCHに対して、復調を行い、復号化部1051へ出力する。復号化部1051は、PDCCHの復号を試み、復号に成功した場合、復号した下りリンク制御情報と下りリンク制御情報が対応するRNTIとを上位層処理部101に出力する。
復調部1053は、PDSCHに対して、QPSK(Quadrature Phase Shift Keying
)、16QAM(Quadrature Amplitude Modulation)、64QAM、256QAM等の
下りリンクグラントで通知された変調方式の復調を行い、復号化部1051へ出力する。復号化部1051は、下りリンク制御情報で通知された伝送または原符号化率に関する情報に基づいて復号を行い、復号した下りリンクデータ(トランスポートブロック)を上位層処理部101へ出力する。
測定部1059は、多重分離部1055から入力された下りリンク参照信号から、下りリンクのパスロスの測定、チャネル測定、および/または、干渉測定を行う。測定部1059は、測定結果に基づいて算出したCSI、および、測定結果を上位層処理部101へ出力する。また、測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。
送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ109を介して基地局装置3に送信する。また、送信部107は、サウンディング参照信号制御部1017から入力された空間ドメイン受信フィルタを、多重部1075へ出力する。
符号化部1071は、上位層処理部101から入力された上りリンク制御情報、および、上りリンクデータを符号化する。変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の変調方式で変調する。
上りリンク参照信号生成部1079は、基地局装置3を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称する。)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。また、上りリンク参照信号生成部は、SRSリソースの送信に際し適用した空間ドメイン送信フィルタを、多重部1075に出力する。
多重部1075は、PUSCHのスケジューリングに用いられる情報に基づき、空間多重されるPUSCHのレイヤの数を決定し、MIMO空間多重(MIMO SM: Multiple Input Multiple Output Spatial Multiplexing)を用いることにより同一のPUSCHで送信
される複数の上りリンクデータを、複数のレイヤにマッピングし、このレイヤに対してプレコーディング(precoding)を行う。
多重部1075は、制御部103から入力された制御信号に従って、PUSCHの変調シンボルを離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部
1075は、PUCCHおよび/またはPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部1075は、PUCCHおよび/またはPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。また、多重部1075は、送信部107より入力された空間ドメイン受信フィルタまたは上りリンク参照信号生成部1079より入力された空間ドメイン送信フィルタを用い、上りリンクデータおよび上りリンク参照信号に対してプレコーディング(precoding)を行う。
無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier
Transform: IFFT)して、SC−FDM方式の変調を行い、SC−FDM変調されたSC−FDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ109に出力して送信する。
図8は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011、スケジューリング部3013、チャネル状態情報報告制御部3015、および、サウンディング参照信号制御部3017を含んで構成される。また、受信部305は、復号化部3051、復調部3053、多重分離部3055、無線受信部3057と測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077と下りリンク参照信号生成部3079を含んで構成される。
上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行う。また、上位層処理部301は、受信部305、および送信部307の制御を行うために制御情報を生成し、制御部303に出力する。
上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノー
ドから取得し、送信部307に出力する。また、無線リソース制御部3011は、端末装置1各々の各種設定情報の管理をする。
上位層処理部301が備えるスケジューリング部3013は、受信したCSIおよび測定部3059から入力された伝搬路の推定値やチャネルの品質などから、物理チャネル(PDSCHまたはPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHまたはPUSCH)の伝送符号化率および変調方式および送信電力などを決定する。スケジューリング部3013は、スケジューリング結果に基づき、受信部305、および送信部307の制御を行うために制御情報を生成し、制御部303に出力する。スケジューリング部3013は、スケジューリング結果に基づき、物理チャネル(PDSC
HまたはPUSCH)のスケジューリングに用いられる情報(例えば、DCI(フォーマット))を生成する。
ここで上位層処理部301は物理チャネルの割り当てに際して、下記の処理を行う。
・周期的およびセミパーシステントの送信方法が適用されたNZP−CSI−RSの時間周波数リソースには、PDSCHを割り当てない、
・周期的およびセミパーシステントの送信方法が適用されたZP−CSI−RSの時間周波数リソースには、PDSCHを割り当てない、および
・非周期的の送信方法が適用されたZP−CSI−RSの時間周波数リソースには、当該のZP−CSI−RSを指示したDCIにより割り当てを指示したPDSCHを割り当てない。
上位層処理部301が備えるチャネル状態情報報告制御部3015は、端末装置1のCSI報告を制御する。サウンディング参照信号制御部3017は、端末装置1がSRSを生成する際に用いる設定を、送信部307を介して、端末装置1に送信する。また上位層処理部301が備えるサウンディング参照信号制御部3017は、端末装置1のSRS送信を制御する。サウンディング参照信号制御部3017は、端末装置1がSRSを生成する際に用いる設定を、送信部307を介して、端末装置1に送信する。
制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行う制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行う。
受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ309を介して端末装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。無線受信部3057は、送受信アンテナ309を介して受信された上りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、
不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
無線受信部3057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去する。無線受信部3057は、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数
領域の信号を抽出し多重分離部3055に出力する。
多重分離部1055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。尚、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各端末装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行われる。また、多重分離部3055は、測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行う。また、多重分離部3055は、分離した上りリンク参照信号を測定部3059に出力する。
復調部3053は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK(Binary Phase Shift Keying)、QPSK、16QAM、64
QAM、256QAM等の予め定められた、または自装置が端末装置1各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行う。復調部3053は、端
末装置1各々に上りリンクグラントで予め通知した空間多重される系列の数と、この系列に対して行うプリコーディングを指示する情報に基づいて、MIMO SMを用いることにより同一のPUSCHで送信された複数の上りリンクデータの変調シンボルを分離する。
復号化部3051は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、又は自装置が端末装置1に上りリンクグラントで予め通知した伝送または原符号化率で復号を行い、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号化部3051は、上位層処理部301から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行う。測定部3059は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。
送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力された下りリンク制御情報、下りリンクデータを符号化、および変調し、PDCCH、PDSCH、および下りリンク参照信号を多重または別々の無線リソースで、送受信アンテナ309を介して端末装置1に信号を送信する。
符号化部3071は、上位層処理部301から入力された下りリンク制御情報、および下りリンクデータを符号化する。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の変調方式で変調する。
下りリンク参照信号生成部3079は、基地局装置3を識別するための物理セル識別子(PCI)などを基に予め定められた規則で求まる、端末装置1が既知の系列を下りリンク参照信号として生成する。
多重部3075は、空間多重されるPDSCHのレイヤの数に応じて、1つのPDSCHで送信される1つまたは複数の下りリンクデータを、1つまたは複数のレイヤにマッピングし、該1つまたは複数のレイヤに対してプレコーディング(precoding)を行う。多
重部3075は、下りリンク物理チャネルの信号と下りリンク参照信号を送信アンテナポート毎に多重する。多重部3075は、送信アンテナポート毎に、下りリンク物理チャネルの信号と下りリンク参照信号をリソースエレメントに配置する。
無線送信部3077は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行い、OFDM変調されたOFDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ309に出力して送信する。
(1)より具体的には、本発明の第1の態様における端末装置1は、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイヤにより設定さ
れ、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信する受信部を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基
づいて、CQIインデックスを算出する。
(2)本発明の第2の態様における基地局装置3は、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイヤにより設定し、第2の時間周
波数リソースに配置する第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信する送信部を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する。
(3)本発明の第3の態様における通信方法は、端末装置の通信方法であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイヤに
より設定され、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信し、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
(4)本発明の第4の態様における通信方法は、基地局装置の通信方法であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位レイヤ
により設定し、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信し、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する。
(5)本発明の第5の態様における集積回路は、端末装置に実装される集積回路であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上
位レイヤにより設定され、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信する受信手段と、を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
(6)本発明の第6の態様における集積回路は、基地局装置に実装される集積回路であって、一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを
上位レイヤにより設定され、第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信する送信手段と、を備え、前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する。
本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによ
って取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。
なお、本発明に関わる実施形態では、基地局装置と端末装置で構成される通信システムに適用される例を記載したが、D2D(Device to Device)のような、端末同士が通信を行うシステムにおいても適用可能である。
なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
1(1A、1B) 端末装置
3 基地局装置
10 TXRU
11 位相シフタ
12 アンテナ
101 上位層処理部
103 制御部
105 受信部
107 送信部
109 アンテナ
301 上位層処理部
303 制御部
305 受信部
307 送信部
1011 無線リソース制御部
1013 スケジューリング情報解釈部
1015 チャネル状態情報報告制御部
1017 サウンディング参照信号制御部
1051 復号化部
1053 復調部
1055 多重分離部
1057 無線受信部
1059 測定部
1071 符号化部
1073 変調部
1075 多重部
1077 無線送信部
1079 上りリンク参照信号生成部
3011 無線リソース制御部
3013 スケジューリング部
3015 チャネル状態情報報告制御部
3017 サウンディング参照信号制御部
3051 復号化部
3053 復調部
3055 多重分離部
3057 無線受信部
3059 測定部
3071 符号化部
3073 変調部
3075 多重部
3077 無線送信部
3079 下りリンク参照信号生成部

Claims (6)

  1. 端末装置であって、
    一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位
    レイヤにより設定され、
    第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信する受信部を備え、
    前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、
    あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
    前記CSI参照リソースに基づいて、CQIインデックスを算出する、
    端末装置
  2. 基地局装置であって、
    一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位
    レイヤにより設定し、
    第2の時間周波数リソースに配置する第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信する送信部を備え、
    前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、
    あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
    前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する、
    基地局装置。
  3. 端末装置の通信方法であって、
    一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位
    レイヤにより設定され、
    第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信し、
    前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、
    あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
    前記CSI参照リソースに基づいて、CQIインデックスを算出する、
    通信方法。
  4. 基地局装置の通信方法であって、
    一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位
    レイヤにより設定し、
    第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信し、
    前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、
    あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
    前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する、
    通信方法。
  5. 端末装置に実装される集積回路であって、
    一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位
    レイヤにより設定され、
    第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を受信する受信手段と、を備え、
    前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、
    あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
    前記CSI参照リソースに基づいて、CQIインデックスを算出する、
    集積回路。
  6. 基地局装置に実装される集積回路であって、
    一つまたは複数の零電力チャネル状態情報参照信号の第1の時間周波数リソースを上位
    レイヤにより設定され、
    第2の時間周波数リソースに配置される第1の非零電力チャネル状態情報算出用参照信号を指定する情報を含む下りリンク制御情報を送信する送信手段と、を備え、
    前記第2の時間周波数リソースが前記第1の時間周波数リソースの一部または全体に限定されるかどうかに基づいて、
    あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
    前記CSI参照リソースに基づいて算出されたCQIインデックスを受信する、
    集積回路。
JP2018182381A 2018-09-27 2018-09-27 基地局装置、端末装置、通信方法、および、集積回路 Pending JP2020053878A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018182381A JP2020053878A (ja) 2018-09-27 2018-09-27 基地局装置、端末装置、通信方法、および、集積回路
PCT/JP2019/036834 WO2020066853A1 (ja) 2018-09-27 2019-09-19 基地局装置、端末装置、通信方法、および、集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182381A JP2020053878A (ja) 2018-09-27 2018-09-27 基地局装置、端末装置、通信方法、および、集積回路

Publications (1)

Publication Number Publication Date
JP2020053878A true JP2020053878A (ja) 2020-04-02

Family

ID=69950571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182381A Pending JP2020053878A (ja) 2018-09-27 2018-09-27 基地局装置、端末装置、通信方法、および、集積回路

Country Status (2)

Country Link
JP (1) JP2020053878A (ja)
WO (1) WO2020066853A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203298A1 (en) * 2020-04-08 2021-10-14 Apple Inc. Channel state information feedback in wireless communications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931353B2 (en) * 2015-08-21 2021-02-23 Lg Electronics Inc. Method for transmitting or receiving channel state information in wireless communication system and apparatus therefor
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system

Also Published As

Publication number Publication date
WO2020066853A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
CN110214466B (zh) 基站装置、终端装置、通信方法和集成电路
JP7094673B2 (ja) 基地局装置、端末装置、および、通信方法
EP3780807B1 (en) Base station device, terminal device, communication method, and integrated circuit
CN111670591B (zh) 基站装置、终端装置以及通信方法
JP7272748B2 (ja) 端末装置、基地局装置、および通信方法
JP2020057825A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020066852A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2020031248A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020166672A1 (ja) 基地局装置、端末装置および通信方法
JP2019050470A (ja) 基地局装置、端末装置、通信方法、および、集積回路
JPWO2018123468A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020031701A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019189397A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2019050472A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020091046A1 (ja) 基地局装置、端末装置、および、通信方法
WO2020031700A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020066853A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019189396A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019189395A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP7526008B2 (ja) 端末装置、基地局装置、および、通信方法
JP7526009B2 (ja) 端末装置、基地局装置、および、通信方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200706