WO2020031700A1 - 基地局装置、端末装置、通信方法、および、集積回路 - Google Patents

基地局装置、端末装置、通信方法、および、集積回路 Download PDF

Info

Publication number
WO2020031700A1
WO2020031700A1 PCT/JP2019/029042 JP2019029042W WO2020031700A1 WO 2020031700 A1 WO2020031700 A1 WO 2020031700A1 JP 2019029042 W JP2019029042 W JP 2019029042W WO 2020031700 A1 WO2020031700 A1 WO 2020031700A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal device
resource
csi
channel state
Prior art date
Application number
PCT/JP2019/029042
Other languages
English (en)
French (fr)
Inventor
星野 正幸
山田 昇平
秀和 坪井
高橋 宏樹
麗清 劉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020031700A1 publication Critical patent/WO2020031700A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a base station device, a terminal device, a communication method, and an integrated circuit.
  • This application claims priority based on Japanese Patent Application No. 2018-149239 for which it applied to Japan on August 8, 2018, and uses the content here.
  • Non-Patent Document 1 As the wireless access method and wireless network technology for the fifth generation cellular system, in the 3rd generation partnership project (3GPP: The Third Generation Partnership Project), LTE (Long Term Evolution) -Advanced Pro and NR (New Radio) technology) and standard formulation (Non-Patent Document 1).
  • 3GPP The Third Generation Partnership Project
  • LTE Long Term Evolution
  • NR New Radio
  • 5th generation cellular systems include enhanced mobile broadband (eMBB) for high-speed and large-capacity transmission, ultra-reliable and low-latency communication (URLLC) for low-latency and high-reliability communication, and Internet of Things (IoT).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communication
  • IoT Internet of Things
  • mmMTC massive Machine Type Communication
  • An object of one embodiment of the present invention is to provide a terminal device, a base station device, a communication method, and an integrated circuit that enable efficient communication in the above wireless communication system.
  • the terminal device includes a receiving unit that receives the first reference signal for channel state information calculation of the first serving cell, assumes a first QCL used for PDSCH reception, and the first It is determined whether a certain slot is a valid downlink slot based on whether or not the second QCL assumption used for receiving the channel state information calculation reference signal is different. Based on the valid downlink slot, CSI reference is performed. A resource is determined, and a CQI index is calculated based on the CSI reference resource.
  • the terminal device further includes a receiving unit that receives a first PDCCH indicating an uplink grant of the first serving cell, and the first channel state information calculation reference signal is Receiving a first channel state report request using the first channel state information calculation reference signal on the first PDCCH, wherein a periodic or semi-persistent or aperiodic transmission method is applied;
  • the first uplink signal is transmitted without including the channel state report.
  • the terminal device further includes a receiving unit that receives a first PDCCH indicating an uplink grant of the first serving cell, wherein the first channel state information calculating reference signal is Receiving a first channel state report request using the first channel state information calculation reference signal on the first PDCCH, wherein a periodic or semi-persistent or aperiodic transmission method is applied; If the slot corresponding to the first channel state report request is not a valid downlink slot, the mobile station does not transmit the uplink signal indicated by the first PDCCH.
  • the base station apparatus includes: a transmission unit that transmits a first channel state information calculation reference signal of a first serving cell; and a transmission unit that transmits a PDSCH. It is determined whether a certain slot is a valid downlink slot based on whether a first QCL assumption used for reception is different from a second QCL assumption used for receiving the first channel state information calculation reference signal. And determining a CSI reference resource based on the valid downlink slot, and receiving a CQI index referenced based on the CSI reference resource.
  • the communication method is a communication method for a terminal device, wherein the first QCL used for receiving the first channel state information calculation reference signal of the first serving cell and used for PDSCH reception. Determining whether a certain slot is a valid downlink slot based on whether the assumption and a second QCL assumption used for receiving the first channel state information calculation reference signal are different, and A CSI reference resource is determined based on the slot, and a CQI index is calculated based on the CSI reference resource.
  • a communication method is a communication method for a base station apparatus, in which a first reference signal for channel state information calculation of a first serving cell is transmitted, a PDSCH is transmitted, and a PDSCH is transmitted. It is determined whether a certain slot is a valid downlink slot based on whether a first QCL assumption used for reception is different from a second QCL assumption used for receiving the first channel state information calculation reference signal. And determining a CSI reference resource based on the valid downlink slot and receiving a CQI index calculated based on the CSI reference resource.
  • an integrated circuit is an integrated circuit mounted on a terminal device, and a receiving unit that receives a first channel state information calculation reference signal of a first serving cell;
  • Receiving means for receiving the PDSCH based on whether the first QCL assumption used for PDSCH reception and the second QCL assumption used for receiving the first channel state information calculation reference signal are different, It is determined whether a certain slot is a valid downlink slot, a CSI reference resource is determined based on the valid downlink slot, and a CQI index is calculated based on the CSI reference resource.
  • the integrated circuit is an integrated circuit mounted on the base station device, and a transmitting unit that transmits a first channel state information calculation reference signal of a first serving cell; Transmitting means for transmitting a PDSCH, based on whether a first QCL assumption used for PDSCH reception and a second QCL assumption used for receiving the first channel state information calculation reference signal are different. Determining whether a certain slot is a valid downlink slot, determining a CSI reference resource based on the valid downlink slot, and receiving a CQI index calculated based on the CSI reference resource.
  • the base station device and the terminal device can communicate efficiently.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of an uplink and a downlink slot in the present embodiment.
  • FIG. 3 is a diagram showing a relationship in a time domain between subframes, slots, and minislots.
  • FIG. 3 is a diagram illustrating an example of a slot or a subframe.
  • FIG. 3 is a diagram illustrating an example of beam forming. It is a figure showing an example of QCL setting.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a terminal device 1 according to the embodiment.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a base station device 3 according to the present embodiment.
  • FIG. 1 is a conceptual diagram of the wireless communication system according to the present embodiment.
  • the wireless communication system includes a terminal device 1A, a terminal device 1B, and a base station device 3.
  • the terminal devices 1A and 1B are also referred to as terminal devices 1.
  • the terminal device 1 is also called a user terminal, a mobile station device, a communication terminal, a mobile device, a terminal, a UE (User Equipment), and an MS (Mobile Station).
  • the base station device 3 includes a wireless base station device, a base station, a wireless base station, a fixed station, an NB (Node B), an eNB (evolved Node B), a BTS (Base Transceiver Station), a BS (Base Station), and an NR NB ( Also called NR (Node B), NNB, TRP (Transmission and Reception Point), and gNB.
  • the base station device 3 may include a core network device.
  • the base station device 3 may include one or more transmission / reception points 4 (transmission @ reception @ point). At least a part of the functions / processes of the base station device 3 described below may be the functions / processes at each transmission / reception point 4 of the base station device 3.
  • the base station device 3 may serve the terminal device 1 with one or more cells in a communicable range (communication area) controlled by the base station device 3. Further, the base station device 3 may serve the terminal device 1 with one or a plurality of cells in a communicable range (communication area) controlled by one or a plurality of transmission / reception points 4. Further, one cell may be divided into a plurality of partial areas (Beamed @ area), and the terminal device 1 may be served in each of the partial areas.
  • the partial area may be identified based on an index of a beam used in beamforming or an index of precoding.
  • a wireless communication link from the base station device 3 to the terminal device 1 is referred to as a downlink.
  • the wireless communication link from the terminal device 1 to the base station device 3 is called an uplink.
  • orthogonal frequency division multiplexing including a cyclic prefix (CP: Cyclic Prefix), single carrier frequency multiplexing (SC- ().
  • FDM Single-Carrier Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • MC-CDM Multi-Carrier Code Division Multiplexing
  • UFMC universal filter multicarrier
  • F-OFDM filter OFDM
  • FBMC filter bank multicarrier
  • OFDM symbols will be described using OFDM as a transmission method, but the present invention includes a case using the above-described other transmission methods.
  • the above-described transmission method using no padding or zero padding instead of the CP may be used. Also, the CP and zero padding may be added to both the front and the rear.
  • the following physical channels are used in wireless communication between the terminal device 1 and the base station device 3.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH is used to broadcast important information blocks (MIB: Master Information Block, EIB: Essential Information Block, BCH: Broadcast Channel) containing important system information required by the terminal device 1.
  • MIB Master Information Block
  • EIB Essential Information Block
  • BCH Broadcast Channel
  • the PBCH may be used to broadcast a time index within a cycle of a synchronization signal block (also referred to as an SS / PBCH block).
  • the time index is information indicating an index of a synchronization signal and a PBCH in a cell.
  • the SS / PBCH block is set within a predetermined period or set. Chronological order within the specified cycle.
  • the terminal device may recognize the difference in the time index as the difference in the transmission beam.
  • the PDCCH is used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from the base station device 3 to the terminal device 1).
  • DCI Downlink Control Information
  • one or a plurality of DCIs (which may be referred to as DCI formats) are defined for transmission of downlink control information. That is, a field for downlink control information is defined as DCI and is mapped to information bits.
  • DCI format 0_0 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • the DCI format 0_1 is information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP: BandWidth @ Part), channel state information (CSI: Channel @ State @ Information) request, sounding reference.
  • BWP BandWidth @ Part
  • CSI Channel @ State @ Information
  • a signal (SRS: Sounding Reference Signal) request and information on an antenna port may be included.
  • the channel state information request is also referred to as a CSI request.
  • the sounding reference signal request is also called an SRS request.
  • the DCI format 1_0 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • the DCI format 1_1 includes information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP), a transmission configuration instruction (TCI: Transmission Configuration Indication), and information regarding an antenna port. Is fine.
  • $ DCI format 2_0 is used to notify the slot format of one or more slots.
  • the slot format is defined such that each OFDM symbol in a slot is classified into one of downlink, flexible, and uplink. For example, when the slot format is 28, DDDDDDDDDDDFU is applied to 14 OFDM symbols in the slot for which the slot format 28 is indicated.
  • D is a downlink symbol
  • F is a flexible symbol
  • U is an uplink symbol. The slot will be described later.
  • the DCI format 2_1 is used to notify the terminal device 1 of a physical resource block and an OFDM symbol that may be assumed to have no transmission. This information may be referred to as a preemption instruction (intermittent transmission instruction).
  • the DCI format 2_2 is used for transmitting a PUSCH and a transmission power control (TPC: Transmit Power Control) command for the PUSCH.
  • TPC Transmit Power Control
  • the DCI format 2_3 is used to transmit a group of TPC commands for transmitting a sounding reference signal (SRS) by one or a plurality of terminal devices 1. Further, an SRS request may be transmitted together with the TPC command. Further, in DCI format 2_3, an SRS request and a TPC command may be defined for an uplink without a PUSCH and a PUCCH, or for an uplink in which SRS transmission power control is not associated with PUSCH transmission power control.
  • SRS sounding reference signal
  • the DCI for the downlink is also called a downlink grant (downlink @ grant) or a downlink assignment (downlink @ assignment).
  • DCI for the uplink is also referred to as an uplink grant (uplink @ grant) or an uplink assignment (Uplink @ assignment).
  • the PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI) in uplink wireless communication (wireless communication from the terminal device 1 to the base station device 3).
  • the uplink control information may include channel state information (CSI: ⁇ Channel ⁇ State ⁇ Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used to request the UL-SCH resource.
  • the uplink control information may include HARQ-ACK (Hybrid ⁇ Automatic ⁇ Repeat ⁇ request ⁇ ACKnowledgement).
  • HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
  • the PDSCH is used for transmitting downlink data (DL-SCH: Downlink Shared CHannel) from the medium access (MAC: Medium Access Control) layer.
  • DL-SCH Downlink Shared CHannel
  • MAC Medium Access Control
  • SI system information
  • RAR Random ⁇ Access ⁇ Response
  • the PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. Also, it may be used to transmit only CSI or only HARQ-ACK and CSI. That is, it may be used to transmit only UCI.
  • UL-SCH Uplink Shared CHannel
  • the base station device 3 and the terminal device 1 exchange (transmit and receive) signals in an upper layer (higher layer).
  • the base station device 3 and the terminal device 1 transmit and receive RRC signaling (RRC message: Radio Resource Control message, RRC information: also referred to as Radio Resource Control information) in a radio resource control (RRC: Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the base station device 3 and the terminal device 1 may transmit and receive a MAC control element in a MAC (Medium Access Control) layer.
  • the RRC signaling and / or the MAC control element are also referred to as a higher layer signal (higher layer signal).
  • the upper layer here means the upper layer as viewed from the physical layer, and may include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS (Non Access Stratum) layer, and the like.
  • the upper layer may include one or more of an RRC layer, an RLC layer, a PDCP layer, a NAS layer, and the like.
  • $ PDSCH or PUSCH may be used for transmitting RRC signaling and MAC control elements.
  • RRC signaling transmitted from the base station device 3 may be common signaling to a plurality of terminal devices 1 in a cell.
  • the RRC signaling transmitted from the base station apparatus 3 may be signaling dedicated to a certain terminal apparatus 1 (also referred to as dedicated signaling). That is, terminal device-specific (UE-specific) information may be transmitted to a certain terminal device 1 using dedicated signaling.
  • the PUSCH may be used for transmission of UE capability (UE Capability) in the uplink.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • SS Synchronization signal
  • RS Reference Signal
  • the synchronization signal may include a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • the cell ID may be detected using the PSS and the SSS.
  • the synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and the time domain.
  • the synchronization signal may be used by the terminal device 1 for precoding or beam selection in precoding or beamforming by the base station device 3.
  • the beam may be called a transmission or reception filter setting, or a spatial domain transmission filter or a spatial domain reception filter.
  • the reference signal is used by the terminal device 1 to perform channel compensation of the physical channel.
  • the reference signal may also be used by the terminal device 1 to calculate downlink CSI.
  • the reference signal may be used for fine synchronization (Fine synchronization) to enable numerology such as wireless parameters and subcarrier intervals, FFT window synchronization, and the like.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PTRS Phase Tracking Reference Signal
  • TRS Tracking Reference Signal
  • DMRS is used to demodulate a modulated signal.
  • two types of reference signals for demodulating the PBCH and a reference signal for demodulating the PDSCH may be defined, or both may be referred to as DMRS.
  • CSI-RS is used for channel state information (CSI) measurement and beam management, and a periodic, semi-persistent, or aperiodic CSI reference signal transmission method is applied.
  • PTRS is used to track the phase in the time axis in order to guarantee a frequency offset due to phase noise.
  • TRS is used to guarantee Doppler shift during high-speed movement. Note that TRS may be used as one setting of CSI-RS. For example, a radio resource may be set as one port CSI-RS as TRS.
  • uplink reference signals are used.
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • SRS Sounding Reference Signal
  • DMRS is used to demodulate a modulated signal.
  • two types of reference signals for demodulating the PUCCH and reference signals for demodulating the PUSCH may be defined, or both may be referred to as DMRS.
  • the SRS is used for uplink channel state information (CSI) measurement, channel sounding, and beam management.
  • PTRS is used to track the phase in the time axis in order to guarantee a frequency offset due to phase noise.
  • a downlink physical channel and / or a downlink physical signal are collectively referred to as a downlink signal.
  • An uplink physical channel and / or an uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and / or the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and / or the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in a medium access control (MAC) layer is called a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (TB) and / or a MAC PDU (Protocol Data Unit).
  • HARQ Hybrid Automatic Repeat Repeat reQuest
  • the transport block is a unit of data that the MAC layer delivers to the physical layer.
  • transport blocks are mapped to codewords, and encoding is performed for each codeword.
  • the reference signal may be used for radio resource measurement (RRM). Further, the reference signal may be used for beam management.
  • RRM radio resource measurement
  • the reference signal may be used for beam management.
  • Beam management includes analog and / or digital beams in a transmitting device (the base station device 3 in the case of downlink, and the terminal device 1 in the case of uplink) and a receiving device (the terminal device 1 in the case of downlink). (In the case of the uplink, the base station apparatus 3), the procedure of the base station apparatus 3 and / or the terminal apparatus 1 for matching the directivity of the analog and / or digital beams and obtaining the beam gain.
  • the procedure for configuring, setting, or establishing a beam pair link may include the following procedure. ⁇ Beam selection ⁇ Beam refinement ⁇ Beam recovery
  • beam selection may be a procedure for selecting a beam in communication between the base station device 3 and the terminal device 1.
  • the beam improvement may be a procedure of selecting a beam having a higher gain or changing a beam between the base station apparatus 3 and the terminal apparatus 1 optimally by moving the terminal apparatus 1.
  • the beam recovery may be a procedure for reselecting a beam when the quality of a communication link is degraded due to a blockage caused by a shield or the passage of a person in communication between the base station device 3 and the terminal device 1.
  • Beam management may include beam selection and beam improvement.
  • Beam recovery may include the following procedures. Detection of beam failure detection of a new beam transmission of a beam recovery request monitoring of a response to a beam recovery request
  • CSI-RS or RSRP Reference Signal Received Power
  • CSI-RS resource index CRI: CSI-RS ⁇ Resource ⁇ Index
  • DMRS reference signal
  • the base station apparatus 3 indicates a time index of CRI or SS / PBCH when instructing a beam to the terminal apparatus 1, and the terminal apparatus 1 receives a signal based on the instructed CRI or SS / PBCH time index. I do.
  • the terminal device 1 may set and receive a spatial filter based on the designated CRI or SS / PBCH time index.
  • the terminal device 1 may receive the data using an assumption of a pseudo-same location (QCL: Quasi @ Co-Location).
  • a signal (antenna port, synchronization signal, reference signal, etc.) is "QCL" or another signal (antenna port, synchronization signal, reference signal, etc.) with another signal (antenna port, synchronization signal, reference signal, etc.) Can be interpreted as being associated with another signal.
  • Two antenna ports are said to be QCL if the Long Term Property of a channel carrying a symbol at one antenna port can be inferred from the channel carrying a symbol at the other antenna port.
  • the long-range characteristics of the channel include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. For example, if the antenna port 1 and the antenna port 2 are QCL with respect to the average delay, it means that the reception timing of the antenna port 2 can be inferred from the reception timing of the antenna port 1.
  • This QCL can be extended to beam management.
  • a QCL extended to the space may be newly defined.
  • the arrival angle AoA (Angle of Arrival), ZoA (Zenith angle of Arrival), etc.
  • / or the angular spread in a radio link or a channel AoA (Angle of Arrival), ZoA (Zenith angle of Arrival), etc.
  • Angle Spread for example, ASA (Angle Spread of Arrival) or ZSA (Zenith angle Spread of Arrival)
  • transmission angle AoD, ZoD, etc.
  • Angle Spread such as ASD (Angle Spread of Departure) or ZSD ( Zenith angle Spread of Departure)
  • spatial correlation Spatial Correlation
  • the reception spatial parameter can be regarded as QCL between the antenna port 1 and the antenna port 2
  • the reception from the reception beam (reception spatial filter) for receiving the signal from the antenna port 1 receives the signal from the antenna port 2 It means that the beam can be inferred.
  • QCL type a combination of long-range characteristics that may be regarded as a QCL may be defined.
  • types may be defined: -Type A: Doppler shift, Doppler spread, average delay, delay spread-Type B: Doppler shift, Doppler spread-Type C: average delay, Doppler shift-Type D: reception spatial parameter
  • the above-mentioned QCL type sets and / or sets one or two reference signals and an assumption of QCL of PDCCH or PDSCH @ DMRS as a transmission setting instruction (TCI: Transmission Configuration Indication) in the RRC and / or MAC layer and / or DCI. You may instruct.
  • TCI Transmission Configuration Indication
  • the terminal device 1 when the index # 2 of the PBCH / SS block and the QCL type A + QCL type D are set and / or indicated, the terminal device 1 sets the PDCCH @ DMRS Is received, the PDCCH DMRS is received, and the synchronization and propagation path are considered as the Doppler shift, Doppler spread, average delay, delay spread, reception spatial parameters and the long-term characteristics of the channel in the reception of the PBCH / SS block index # 2. An estimate may be made.
  • the reference signal indicated by the TCI (the PBCH / SS block in the above example) is a source reference signal, and a reference affected by the long-term characteristic inferred from the long-term characteristic of the channel when the source reference signal is received.
  • the signal (PDCCH @ DMRS in the above example) may be referred to as a target reference signal.
  • a combination of a source reference signal and a QCL type may be set for a plurality of TCI states and each state by RRC, and may be instructed to the terminal device 1 by a MAC layer or DCI.
  • FIG. 6 shows an example of setting four TCIs by RRC as an example of the TCI setting.
  • NZP-CSI-RS-Resource # 1 and QCL type A + QCL type D are set in TCI-State # 0
  • NZP-CSI-RS-Resource # 1 and QCL type B + QCL type D are set in TCI-State # 1.
  • An example is shown in which SSB # 1 and QCL type A are set in TCI-State # 2, and SSB # 2 and QCL type A + QCL type D are set in TCI-State # 3.
  • NZP-CSI-RS-Resource # 3 becomes NZP-CSI-RS-Resource # 1 and QCL type A + QCL type D are set and / or designated. Also, when the terminal device 1 sets TCI-State # 2 in PDCCH @ DMRS, it means that SSB # 1 and QCL type A are set in PDCCH @ DMRS.
  • the terminal device 1 sets and / or instructs TSCH-State # 2 in PDSCH @ DMRS, it means that SSB # 2 and QCL type A + QCL type D are set and / or instructed in PDSCH @ DMRS.
  • the terminal device 1 when the terminal device 1 sets and / or instructs the index # 2 of the PBCH / SS block and the QCL type A + QCL type D as one state of the TCI when calculating the CSI, the terminal device 1 -When receiving the CSI-RS resource, the NZP-CSI-RS resource is regarded as a Doppler shift, a Doppler spread, an average delay, a delay spread, a reception spatial parameter and a long-range characteristic of the channel in receiving the PBCH / SS block index # 2. May be received to perform synchronization or channel estimation.
  • the terminal device 1 when the index # 2 of the NZP-CSI-RS resource and the QCL type A + QCL type D are set and / or instructed, the terminal device 1 When receiving the PDSCH @ DMRS, the PDSCH DMRS is received by considering the Doppler shift, the Doppler spread, the average delay, the delay spread, the reception spatial parameter and the long-range characteristics of the channel in the reception of the NZP-CSI-RS resource index # 2. Synchronization and propagation path estimation may be performed.
  • the PDCCH DMRS of the TCI corresponding to the PBCH / SS block index # 2 is received, the PDCCH is detected, and the assigned PDSCH is indicated by the DCI.
  • NZP @ CSI-RS resource The synchronization and the propagation path estimation may be performed by receiving the PDSCH @ DMRS of the TCI corresponding to the index # 2.
  • terminal apparatus 1 receives PDCCH @ DMRS in which PBCH / SS block index # 2 and QCL type D are set, and receives PDSCH @ DMRS in which NZP @ CSI-RS resource index # 2 and QCL type D are set. May be used to switch the reception space parameter.
  • the switching of the reception space parameter includes the switching operation of the analog circuit and the like, it is necessary to secure a switching time. For example, from the completion of reception of the PDCCH instructing the downlink allocation, the reception start time of the instructed PDSCH cannot be met. Assuming a situation, when PDSCH allocation is notified at a time interval shorter than a preset threshold counted from the last symbol of PDCCH, spatial parameter switching is not performed and the same spatial parameter as PDCCH DMRS reception is used. May be used to receive PDSCH.
  • the operations of the base station apparatus 3 and the terminal apparatus 1 equivalent to the beam management are defined by the assumption of the QCL in the spatial domain and the radio resources (time and / or frequency) as beam management and beam instruction / report. Good.
  • the subframe will be described.
  • it is called a subframe, but may be called a resource unit, a radio frame, a time section, a time interval, or the like.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of an uplink and a downlink slot according to the first embodiment of the present invention.
  • Each of the radio frames is 10 ms long.
  • Each radio frame is composed of 10 subframes and W slots.
  • One slot is composed of X OFDM symbols. That is, the length of one subframe is 1 ms.
  • NCP Normal Cyclic Prefix
  • an uplink slot is defined similarly, and a downlink slot and an uplink slot may be defined separately.
  • the bandwidth of the cell in FIG. 2 may be defined as a part of the bandwidth (BWP: BandWidth Part).
  • a slot may be defined as a transmission time interval (TTI: Transmission @ Time @ Interval).
  • TTI Transmission @ Time @ Interval
  • the signal or physical channel transmitted in each of the slots may be represented by a resource grid.
  • a resource grid is defined by multiple subcarriers and multiple OFDM symbols. The number of subcarriers forming one slot depends on the downlink and uplink bandwidth of the cell, respectively.
  • Each of the elements in the resource grid is called a resource element. Resource elements may be identified using subcarrier numbers and OFDM symbol numbers.
  • Reference resource blocks, common resource blocks, physical resource blocks, and virtual resource blocks are defined as resource blocks.
  • One resource block is defined as 12 continuous subcarriers in the frequency domain.
  • the reference resource block is common to all subcarriers.
  • a resource block may be configured at a subcarrier interval of 15 kHz, and may be numbered in ascending order.
  • Subcarrier index 0 in reference resource block index 0 may be referred to as reference point A (or simply referred to as "reference point").
  • the common resource block is a resource block that is numbered in ascending order from 0 at each subcarrier interval setting ⁇ from the reference point A.
  • the resource grid described above is defined by this common resource block.
  • the physical resource blocks are resource blocks numbered in ascending order from 0 included in a bandwidth portion (BWP) described later, and the physical resource blocks are allocated in ascending order from 0 included in the bandwidth portion (BWP). This is a numbered resource block.
  • a physical uplink channel is first mapped to a virtual resource block. Thereafter, the virtual resource blocks are mapped to physical resource blocks. (From TS38.211)
  • NR supports multiple OFDM numerologies.
  • N ⁇ ⁇ slot ⁇ _ ⁇ symb ⁇ consecutive OFDM symbols are in the slot.
  • N ⁇ ⁇ slot ⁇ _ ⁇ symb ⁇ is 14.
  • the start of slot n ⁇ ⁇ _ ⁇ s ⁇ in a subframe is the start and time of the n ⁇ ⁇ _ ⁇ s ⁇ N ⁇ ⁇ slot ⁇ _ ⁇ symb ⁇ th OFDM symbol in the same subframe. Are aligned.
  • FIG. 3 is a diagram illustrating the relationship in the time domain between subframes, slots, and minislots. As shown in the figure, three types of time units are defined.
  • the subframe is 1 ms regardless of the subcarrier interval, the number of OFDM symbols included in the slot is 7 or 14, and the slot length varies depending on the subcarrier interval.
  • the subcarrier interval is 15 kHz, 14 OFDM symbols are included in one subframe.
  • the downlink slot may be referred to as PDSCH mapping type A.
  • Uplink slots may be referred to as PUSCH mapping type A.
  • a minislot (which may be referred to as a subslot) is a time unit composed of fewer OFDM symbols than the number of OFDM symbols included in the slot.
  • the figure shows an example where the minislot is composed of 2 OFDM symbols.
  • An OFDM symbol in a mini-slot may coincide with the OFDM symbol timing making up the slot.
  • the minimum unit of scheduling may be a slot or a minislot.
  • Assigning minislots may also be referred to as non-slot based scheduling.
  • scheduling a minislot may be expressed as scheduling a resource whose relative time position between the reference signal and the data start position is fixed.
  • the downlink minislot may be referred to as PDSCH mapping type B.
  • An uplink minislot may be referred to as PUSCH mapping type B.
  • FIG. 4 is a diagram illustrating an example of the slot format.
  • a case where the slot length is 1 ms at a subcarrier interval of 15 kHz is shown as an example.
  • D indicates downlink and U indicates uplink.
  • U indicates uplink.
  • a certain time interval for example, the minimum time interval that must be assigned to one UE in the system.
  • One or more of downlink symbols, flexible symbols, and uplink symbols may be included. Note that these ratios may be predetermined as a slot format. Also, it may be defined by the number of downlink OFDM symbols included in the slot or the start position and the end position in the slot.
  • scheduling a slot may be expressed as scheduling a resource whose relative time position between the reference signal and the slot boundary is fixed.
  • the terminal device 1 may receive a downlink signal or a downlink channel using a downlink symbol or a flexible symbol.
  • the terminal device 1 may transmit an uplink signal or a downlink channel using an uplink symbol or a flexible symbol.
  • FIG. 4A may be referred to as a certain time section (for example, a minimum unit of a time resource that can be allocated to one UE, or a time unit. Also, a plurality of the minimum units of a time resource are bundled and called a time unit.
  • FIG. 4B illustrates an example in which uplink scheduling is performed using, for example, a PDCCH in the first time resource, and processing delay of the PDCCH and downlink are performed. To transmit an uplink signal through a flexible symbol including an uplink switching time and generation of a transmission signal.
  • FIG. 4B illustrates an example in which uplink scheduling is performed using, for example, a PDCCH in the first time resource, and processing delay of the PDCCH and downlink are performed.
  • the uplink signal may be used for transmission of HARQ-ACK and / or CSI, that is, UCI.
  • FIG. 4 (d) is used for transmission of the PDCCH and / or PDSCH in the first time resource, and uses the processing delay and the switching time from downlink to uplink, the PUSCH and / or uplink through the gap for generating the transmission signal.
  • the uplink signal may be used for transmission of uplink data, that is, UL-SCH.
  • FIG. 4E shows an example in which all the signals are used for uplink transmission (PUSCH or PUCCH).
  • the above-mentioned downlink part and uplink part may be composed of a plurality of OFDM symbols as in LTE.
  • FIG. 5 is a diagram showing an example of beam forming.
  • the plurality of antenna elements are connected to one transmission unit (TXRU: Transceiver unit) 10, the phase is controlled by the phase shifter 11 for each antenna element, and the transmission is performed from the antenna element 12, so that the transmission signal is transmitted in an arbitrary direction. Can direct the beam.
  • TXRU may be defined as an antenna port, and in terminal device 1, only an antenna port may be defined.
  • directivity can be directed in an arbitrary direction, so that the base station apparatus 3 can communicate with the terminal apparatus 1 using a beam having a high gain.
  • BWP is also called carrier BWP.
  • the BWP may be set for each of the downlink and the uplink.
  • BWP is defined as a set of contiguous physical resources selected from a contiguous subset of a common resource block.
  • the terminal device 1 can set up to four BWPs in which one downlink carrier BWP is activated at a certain time.
  • the terminal device 1 can set up to four BWPs in which one uplink carrier BWP is activated at a certain time.
  • BWP may be set in each serving cell. At this time, the fact that one BWP is set in a certain serving cell may be expressed as not setting the BWP.
  • the setting of two or more BWPs may be expressed as the setting of the BWP.
  • BWP switching for a serving cell is used to activate an inactive (deactivated) BWP and to deactivate an active (activated) BWP. Is done.
  • BWP switching for a certain serving cell is controlled by a PDCCH indicating a downlink assignment or an uplink grant.
  • BWP switching for a serving cell may be further controlled by the MAC entity itself at the start of a BWP inactivity timer or a random access procedure.
  • SpCell PCell or PSCell
  • SCell SpCell
  • one BWP is initially active without receiving a PDCCH indicating a downlink assignment or an uplink grant.
  • the initially active BWP may be specified in an RRC message sent from the base station device 3 to the terminal device 1.
  • the active BWP for a certain serving cell is specified by RRC or PDCCH sent from base station apparatus 3 to terminal apparatus 1.
  • RRC or PDCCH sent from base station apparatus 3 to terminal apparatus 1.
  • DL BWP and UL BWP are paired, and BWP switching is common to UL and DL.
  • the MAC entity of the terminal device 1 applies a normal process.
  • the normal processing includes transmitting a UL-SCH, transmitting a RACH, monitoring a PDCCH, transmitting a PUCCH, transmitting an SRS, and receiving a DL-SCH.
  • the MAC entity of the terminal device 1 For each activated serving cell for which BWP is set, in an inactive BWP, the MAC entity of the terminal device 1 does not transmit a UL-SCH, does not transmit a RACH, does not monitor a PDCCH, does not transmit a PUCCH, It does not transmit SRS and does not receive DL-SCH. If a serving cell is deactivated, there may be no active BWP (eg, the active BWP is deactivated).
  • the BWP information element (IE) included in the RRC message (system information to be broadcast or information sent in a dedicated RRC message) is used to set BWP.
  • the RRC message transmitted from the base station device 3 is received by the terminal device 1.
  • the network eg, base station device 3
  • the network has at least one downlink BWP and one (eg, if the serving cell is configured as an uplink) or two (appendix uplink).
  • At least an initial BWP (initial BWP) including the uplink BWP in the case where is used is set for the terminal device 1.
  • the network may configure additional uplink and downlink BWPs for certain serving cells.
  • BWP configuration is divided into uplink parameters and downlink parameters.
  • the BWP setting is divided into a common parameter and a dedicated parameter.
  • Common parameters (such as BWP uplink common IE and BWP downlink common IE) are cell-specific.
  • the common parameters of the primary BWP of the primary cell are also provided in the system information.
  • the network provides common parameters with dedicated signals.
  • BWP is identified by BWP ID.
  • the initial BWP has a BWP ID of 0.
  • BWP IDs of other BWPs take values from 1 to 4.
  • Dedicated parameters for uplink BWP include SRS settings.
  • the uplink BWP corresponding to the dedicated parameter of the uplink BWP is associated with one or more SRSs corresponding to the SRS setting included in the dedicated parameter of the uplink BWP.
  • one primary cell and up to 15 secondary cells may be set.
  • the time and frequency resources for reporting the CSI used by the terminal device 1 are controlled by the base station device 3.
  • the CSI includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), LI (Layer Indication), RI (rank indication), and / or L1-RSRP (Layer-1 Reference Signal Signal Received). Power).
  • CQI, PMI, CRI, LI, RI, and L1-RSRP the terminal device 1 sets N (N is 1 or more) CSI reporting, and M (M is 1 or more) CSI reference signal (CSI-RS ), And settings relating to one CSI measurement including L (L is 1 or more) links are set by the upper layer.
  • the settings for CSI measurement include a list of settings for CSI reporting, a list of settings for CSI resources, a list of link settings, and a list of trigger states. Hereinafter, each of them will be described.
  • Each of the settings for CSI reporting is associated with one downlink BWP (upper layer BWP identity), and for each of the settings for CSI reporting, the reported parameters include: • One identity to identify settings for CSI reporting • Time domain operation (eg, periodic, semi-persistent, or aperiodic) -Reported CSI parameters (eg, CRI, RI, PMI, CQI, etc.) -Setting of frequency domain (Information for setting wideband CQI or subband CQI, information for setting wideband PMI or subband PMI are included, respectively) -Setting of CSI measurement restriction (measurement restriction configuration, may be set for each of channel measurement and interference measurement) -Codebook setting (setting of CSI type (information indicating type 1 or type 2) and codebook subset restriction) -Maximum number of CQIs per report (may be information indicating 1 codeword or 2 codewords) Assumption of CQI table (CQI table including up to 64 QAM, CQI table including up to 256
  • Each of the settings for the CSI resources includes information about S (S is 1 or more) CSI-RS resource sets, and each CSI-RS resource set includes a plurality of CSI-RS resources (NZPCSI for channel measurement or interference measurement).
  • NZPCSI for channel measurement or interference measurement
  • the NZP @ CSI-RS resource is a CSI-RS in which a sequence is generated according to a generation method defined in advance in specifications and mapped to a resource element to which the CSI-RS is mapped.
  • each of the settings for the CSI resources is placed in an identified BWP in the upper layer, and the settings for all the CSI resources associated with the settings for one CSI report are the same BWP.
  • Channel measurement is to measure a quantity related to the quality of each layer or each codeword assuming a downlink desired signal or channel or spatial multiplexing for CSI measurement
  • interference measurement is to measure CSI measurement for CSI measurement. It is to measure the amount of interference in each layer or codeword assuming a downlink interference signal or channel or spatial multiplexing.
  • the layer is the number of PDSCHs spatially multiplexed.
  • the settings (ssb-Resources) related to the SS / PBCH block resources used for the L1-RSRP calculation may be included in each of the settings related to the CSI resources.
  • each of the settings related to the CSI resource may include a time-domain operation of the CSI-RS resource.
  • the setting for each CSI-RS resource set may include the operation of the CSI-RS resource in the time domain.
  • the setting of each link includes an indication of a setting related to a CSI report, an indication of a CSI setting, and an indication indicating whether to measure a channel measurement or an interference measurement.
  • the configuration of each link may include multiple trigger states to dynamically select a configuration for CSI reporting for one or more aperiodic CSI reports.
  • Each trigger state is associated with a setting for one or more CSI reports, and a setting for each CSI report is tied to a setting for one or more periodic or semi-persistent or aperiodic CSI reference signals.
  • the terminal device may assume the following depending on the number of settings related to the linked CSI resource.
  • the setting for one CSI resource is set, the resource setting is for channel measurement for L1-RSRP calculation.
  • the setting for two CSI resources is set, the setting for the first CSI resource.
  • Is for channel measurement and the setting for the second CSI resource is for interference measurement on CSI-IM or NZP CSI-RS resource.
  • the settings for the first CSI resource are for channel measurement
  • the settings for the second CSI resource are for interference measurement on the CSI-IM resource.
  • the setting related to the third CSI resource is for measuring interference on the NZP CSI-RS resource.
  • the terminal device 1 may assume the following.
  • Each NZP CSI-RS port configured for interference measurement corresponds to the interference transmission layer;
  • the transmission layer of all interference on the NZP CSI-RS port takes into account the associated Energy per Resource Element (EPRE), and the NZP CSI-RS resource for channel measurement or the interference measurement Interference signal on CSI-RS resource for CSI-IM resource or CSI-IM resource for interference measurement
  • EPRE Energy per Resource Element
  • EPRE represents the energy of NZP-CSI-RS per resource element.
  • the base station apparatus 3 determines the ratio of the PDSCHSEPRE to the EPRE of the NZP CSI-RS (Pc), the ratio of the PDCCH EPRE to the EPRE of the NZP CSI-RS (Pc-PDCCH), and the ratio of the NZP CSI-RS to the EPRE.
  • An EPRE ratio (Pc_SS) of the SS / PBCH block is set, respectively.
  • the CSI-RS @ EPRE can be considered for the CSI measurement based on the energy ratio set.
  • the terminal device 1 may determine whether a certain slot is a downlink slot effective for calculating each index of the CSI. More specifically, when a certain slot satisfies the following conditions, it is determined to be a valid downlink slot. -At least one symbol or more downlink symbols or flexible symbols are included by the upper layer setting, and-It is not a gap section for mobility measurement for the terminal device 1, and-CSI resources for at least one time channel measurement or interference measurement There is a transmission opportunity.
  • the spatial parameter used for receiving the PDSCH allocated to the slot may be different from the spatial parameter of the NZP CSI-RS set in the terminal device 1 for CSI measurement.
  • the reference signal in which the NZP CSI-RS resource and the QCL assumption are set in the CSI measurement may be different from the reference signal in which the QCL assumption is set or instructed in the PDSCH DMRS.
  • the terminal device 1 switches to the spatial parameter for receiving the PDSCH, and operates to apply the same spatial parameter to the reception of the NZP CSI-RS resource in the slot. For this reason, since the operation is to apply a spatial parameter different from the preset spatial parameter used for receiving the NZP CSI-RS resource, it is impossible to calculate each index of the CSI expected in advance.
  • the terminal apparatus 1 changes the spatial parameter when the spatial parameter is switched. , It is determined that the slot is not a valid slot.
  • the terminal device 1 uses the NZP @ CSI-RS resource in the valid slot observed in the past without including the invalid slot. Then, at least one of CQI, PMI, CRI, LI, RI, and L1-RSRP as each index of CSI is calculated and reported.
  • One or more CSI reports for channel measurement and / or interference measurement on one or more component carriers for a CSI-RS resource set whose operation in the time domain of the CSI-RS resource set is aperiodic The settings for and / or the trigger state for one or more CSI-RS resource sets are set at higher layers. For triggering an aperiodic CSI report, one set of CSI trigger states is set in upper layer parameters, and the CSI trigger states are associated with any one of DL @ BWP candidates. The terminal device 1 does not expect to be triggered a CSI report for a downlink BWP that has not been activated. Each trigger state is started using a CSI request field included in DCI (for example, DCI format 0_1).
  • the terminal device 1 does not perform CSI calculation and reporting when the operation of the NZP @ CSI-RS resource in the time domain is aperiodic, and when instructed to calculate CSI in the above-mentioned ineffective slot, An uplink data signal is generated and transmitted according to the DCI format 0_1 instruction including the status information request.
  • the uplink data signal at this time may be a HARQ response signal to downlink data or uplink data.
  • the terminal device 1 determines that the DCI is not valid, ignores the uplink grant, and may not transmit the uplink signal. .
  • the time and frequency resources for transmitting the SRS used by the terminal device 1 are controlled by the base station device 3. More specifically, the setting given by the upper layer for BWP includes the setting for SRS.
  • the setting related to the SRS includes the setting of the SRS resource, the setting related to the SRS resource set, and the setting of the trigger state. Hereinafter, each of them will be described.
  • the base station device 3 sets a plurality of SRS resources for the terminal device 1.
  • the multiple SRS resources are associated with multiple symbols behind the uplink slot. For example, it is assumed that four SRS resources are set and each of the four symbols behind the slot is associated with each SRS resource.
  • the terminal device 1 transmits an SRS symbol using a transmission beam (transmission filter).
  • SRS resources (expressed as SRS resources # 1, # 2, # 3, and # 4, respectively) are set using four SRS symbols (expressed as S1, S2, S3, and S4, respectively) explain.
  • S1 is an SRS resource associated with SRS resource # 1
  • S2 is an SRS resource associated with SRS resource # 2
  • S3 is an SRS resource associated with SRS resource # 3
  • S4 is an SRS resource associated with SRS resource # 4.
  • the terminal device 1 transmits an SRS by applying a transmission beam for each resource based on this setting.
  • the terminal device 1 may transmit using a different transmission antenna port for each SRS resource.
  • the SRS may be transmitted using the antenna port 10 in S1, the antenna port 11 in S2, the antenna port 12 in S3, and the antenna port 13 in S4.
  • the terminal device 1 may transmit using a plurality of transmission antenna ports or transmission antenna port groups for each SRS resource. For example, transmission may be performed using the antenna ports 10 and 11 in S1, and using the antenna ports 12 and 13 in S2.
  • the SRS resource setting includes spatial relation information (Spatial Relation Info).
  • the spatial relation information is information for obtaining a beam gain by applying the separately applied reception or transmission filter setting to the transmission filter of the sounding reference signal.
  • To specify the separately applied reception or transmission filter setting one of a synchronization signal block, a CSI reference signal, and a sounding reference signal is set as a signal to be received or transmitted.
  • the setting of the SRS resource may include at least one or more of the following information elements in addition to the spatial relation information.
  • Information about a symbol for transmitting a sounding reference signal or index (2) Information about an antenna port for transmitting a sounding reference signal (3) Frequency hopping pattern of the sounding reference signal
  • the terminal device 1 may be configured with an SRS resource set including one or more SRS resource configurations.
  • the SRS resource set configuration may include information on an associated CSI reference signal (associated CSI-RS) in addition to information on transmission power control applied to SRS resources included in the set.
  • associated CSI-RS associated CSI reference signal
  • the SRS resource setting and / or SRS resource set setting may include information for setting an operation in the time domain.
  • the information for setting the operation in the time domain sets one of a periodic (periodic), a semi-persistent, and an aperiodic (aperiodic).
  • the base station apparatus 3 selects one or more of the set SRS resources and transmits an SRI (SRS Resource Index) for transmitting the PUSCH, an index associated with the SRS resource, or an index associated with the SRI. May be instructed to the terminal device 1 by DCI or MAC @ CE, RRC signaling.
  • the terminal device 1 transmits an SRI (SRS @ Resource @ Index), an index associated with the SRS resource, or an index associated with the SRI among the set SRS resources from the base station device 3 by DCI or MAC @ CE and RRC signaling. You may receive it.
  • the terminal device 1 performs PUSCH transmission using one or more DMRS (demodulation reference signal) antenna ports and / or one or more PUSCH antenna ports associated with the specified SRS resource.
  • DMRS demodulation reference signal
  • the terminal device 1 transmits an SRS using the transmission beams # 1 to # 4 using four SRS resources, and when the base station device 3 instructs the SRS resource # 2 as the SRI, the terminal device 1
  • the PUSCH may be transmitted using # 2.
  • PUSCH is performed by MIMO spatial multiplexing (MIMO SM: Multiple Input Multiple Multiple Output Spatial Multiplexing) using a plurality of transmission beams used in the SRS resources associated with the specified SRI. May be transmitted.
  • MIMO SM Multiple Input Multiple Multiple Output Spatial Multiplexing
  • the base station apparatus 3 selects one or more of the set SRS resources and transmits an SRI (SRS ⁇ Resource ⁇ Index) for transmitting the PUCCH, an index associated with the SRS resource, or an index associated with the SRI. May be instructed to the terminal device 1 by DCI or MAC @ CE, RRC signaling.
  • Information for specifying the SRS resource associated with the PUCCH is included in DCI for performing downlink resource allocation.
  • the terminal device 1 decodes the PDSCH based on the DCI for performing downlink resource allocation, and transmits HARQ-ACK on the PUCCH resource indicated by the DCI for performing downlink resource allocation.
  • the terminal device 1 transmits an SRI (SRS @ Resource @ Index), an index associated with the SRS resource, or an index associated with the SRI among the set SRS resources from the base station device 3 by DCI or MAC @ CE and RRC signaling. You may receive it.
  • the terminal device 1 performs PUCCH transmission using one or more antenna ports of DMRS (demodulation reference signal) associated with the designated SRS resource and / or one or more antenna ports of PUCCH.
  • DMRS demodulation reference signal
  • the base station apparatus 3 may associate the information of the cycle and the offset with the SRS resource for which the operation in the time domain is set to be periodic among the SRS resources, and instruct the terminal apparatus 1 by DCI or MAC @ CE and RRC signaling.
  • the terminal device 1 periodically performs the SRS transmission on the SRS resources for which the operation in the time domain is set to be periodic among the SRS resources, using the information of the transmission cycle and the offset associated with the SRS resources.
  • the base station apparatus 3 may associate the information of the period and the offset with the SRS resource in which the operation in the time domain is set as semi-persistent among the SRS resources, and instruct the terminal apparatus 1 by DCI or MAC @ CE and RRC signaling. .
  • the base station device 3 instructs the terminal device 1 to activate / deactivate the SRS resource by DCI or MAC @ CE and RRC signaling for the SRS resource for which the operation in the time domain is set as semi-persistent among the SRS resources. May be.
  • the terminal device 1 activates / deactivates the SRS resource for each SRS resource for which the operation in the time domain is set to be semi-persistent among the set SRS resources by DCI or MAC @ CE, and RRC signaling. May be received.
  • the terminal device 1 Upon receiving the activation instruction, the terminal device 1 receives information or an index related to a symbol for transmitting an SRS and / or information related to an antenna port for transmitting an SRS, and / or information of an SRS associated with the specified SRS resource. Using the information of the frequency hopping pattern, the SRS is periodically transmitted using the information of the cycle and the offset associated with the designated SRS resource. When receiving the deactivation instruction, the terminal device 1 stops the SRS transmission of the specified SRS resource.
  • the base station apparatus 3 may instruct the terminal apparatus 1 to issue an SRS transmission request by DCI or MAC @ CE and RRC signaling for the SRS resource for which the operation in the time domain is set to be non-periodic among the SRS resources.
  • the terminal device 1 may receive an SRS transmission request from the base station device 3 by DCI, MAC @ CE, or RRC signaling for the SRS resource for which the operation in the time domain is set to be non-periodic among the set SRS resources. .
  • the terminal device 1 When the terminal device 1 receives the SRS transmission request, the information or index relating to the symbol for transmitting the SRS, and / or the information regarding the antenna port for transmitting the SRS, and / or the frequency of the SRS associated with the specified SRS resource Using the information on the hopping pattern, SRS transmission is performed using the information on the period and offset associated with the designated SRS resource.
  • the SRS transmission request includes one or more trigger states, and each SRS resource setting and / or each SRS in which the time domain operation of each SRS resource setting and / or each SRS resource set setting is set to be non-periodic.
  • the resource set settings are associated with one or more trigger states.
  • Each trigger state is associated with a setting for one or more SRS resource sets.
  • a trigger state for SRS transmission in a plurality of SRS resource sets is set in an upper layer.
  • For triggering SRS transmission in a non-periodic SRS resource set one set of SRS trigger states is set in upper layer parameters.
  • Each trigger state is indicated using an SRS request field included in DCI (for example, DCI format 0_1, DCI format 1_1, DCI format 2_3).
  • the terminal device performs the following operation. If the value of the SRS request field is 0, no SRS transmission is requested. If the value of the SRS request field is 1 or 2 or 3, the SRS transmission is performed based on the setting for the SRS resource set associated with the corresponding trigger state. I do. At this time, the terminal device transmits an SRS from the SRS resource set based on the setting information included in the setting related to the SRS resource.
  • the setting for each SRS resource set includes information for setting the operation in the time domain, and an index or identity of a signal for spatial relation information.
  • an example of an RRC setting for an SRS in a certain serving cell # 1 and an example of an SRS request field will be described.
  • the number of BWPs set in the serving cell is two.
  • a list of settings for the BWP index # 1 in the serving cell # 1 is set in the information about the SRS of the serving cell # 1, and four settings for the SRS resource set are set in the list.
  • the setting of the aperiodic SRS resource set is the setting # 1 to # 3 related to the SRS resource set.
  • Setting # 1 for the SRS resource set is associated with trigger state # 1
  • setting # 2 for the SRS resource set is associated with trigger state # 2
  • setting # 3 for the SRS resource set is associated with trigger state # 3. ing. “00” in the SRS request field does not transmit the SRS.
  • Trigger state # 0 is associated with "01”, trigger state # 1 with “10”, and trigger state # 2 with "11".
  • the terminal device 1 transmits the SRS based on the setting related to the SRS set by the RRC and the setting related to the SRS resource set associated with the value of the SRS request field included in the DCI. At this time, the terminal device 1 transmits the SRS from the setting related to the SRS resource set associated with the setting related to the SRS, based on the setting information included in the setting related to the SRS.
  • the settings for each SRS are associated with the BWP in the serving cell.
  • SRS configuration # 1 may be associated with BWP index # 1.
  • one SRS request field is set to one SRS resource set, but a plurality of SRS resource sets may be associated with each other.
  • each of the settings related to the SRS resource set whose time operation is aperiodic is associated with a trigger state.
  • the terminal device 1 transmits the SRS resource set in the serving cell # 1 when 10 is indicated as the value of the SRS request field. That is, the value (information) of the SRS request field indicates one of the plurality of trigger states, and each of the plurality of trigger states is set for each serving cell and is associated with the setting of one or more SRS resource sets. . Note that the value of the SRS request field may be paraphrased with information included in the SRS request field.
  • “active” is set as the BWP index of the SRS setting # 2, not the actual index of the set BWP. This means that it is associated with the activated BWP.
  • the SRS setting # 2 is a setting corresponding to the activated BWP index # 1
  • the terminal device 1 transmits the corresponding BRS # 1 SRS resource set. That is, the SRS request field included in the DCI of the PDCCH includes trigger states, each trigger state is associated with a setting for one or more SRS resource sets, and the SRS setting is associated with an activated BWP of the serving cell c. May be set to be set.
  • a trigger state is assigned to a setting related to an aperiodic SRS resource set in each cell.
  • a plurality of aperiodic SRS resource set settings may be associated with the SRS request field, and the trigger state # 0 of the serving cell # 1 and the trigger state # 0 of the serving cell # 2 are set to the code point "01". It shall be.
  • the terminal device 1 transmits the SRS resource set of the BWP # 1 of the serving cell # 1 and the BWP of the serving cell # 2.
  • # 1 SRS resource set is transmitted.
  • terminal apparatus 1 sets SRS resource set of BWP # 1 of serving cell # 1 and BWP # 1 of serving cell # 2.
  • terminal device 1 reports the CSI of BWP # 1 of serving cell # 1.
  • a plurality of serving cells are set, and the SRS resource set of each serving cell indicated by the value of the SRS request field is transmitted. That is, the terminal device 1 receives the PDCCH carrying the DCI including the SRS request field, and when an SRS transmission request of BWP in a plurality of serving cells is triggered based on the SRS request field, the activated BWP index is Transmit the indicated BWP CSI report.
  • the SRS request field indicates a trigger state
  • the trigger state indicates one of a plurality of states.
  • Each state of the plurality of states is set for each serving cell, and is associated with a setting for one or more SRS resource sets and a setting for one or more SRS resource sets and a BWP index in each serving cell.
  • the setting related to the SRS resource set of each serving cell is always associated with the setting related to the BWP index.
  • the information to be associated may not be set.
  • the SRS resource set may be transmitted based on the bandwidth of the serving cell.
  • the setting for the SRS resource set includes information indicating the index of the trigger state.
  • the setting for the SRS resource set includes a list of trigger states, and the setting for which SRS resource set each trigger state includes. It may be set.
  • the base station device 3 can set the terminal device 1 to the CSI reference signal (associated CSI-RS) corresponding to the setting of a certain SRS resource set.
  • the terminal device 1 in which a certain CSI reference signal is set as a corresponding CSI reference signal receives various downlink signals.
  • the terminal device 1 specifies a corresponding CSI reference signal associated with the SRS resource set by setting the SRS among various downlink signals, and specifies a spatial domain reception filter applied when the corresponding CSI reference signal is received. Further, when transmitting the SRS resource set, the terminal device 1 applies the spatial domain reception filter as a spatial domain transmission filter and transmits the SRS resource set.
  • an NZP @ CSI-RS resource in which the operation in the time domain is set as aperiodic is set in a CSI reference signal for setting the spatial relation information.
  • the transmission instruction of the NZP @ CSI-RS resource may be given by the DCI of the SRS request.
  • the spatial parameter used for receiving the PDSCH allocated to the slot may be different from the spatial parameter of the corresponding CSI reference signal set in the terminal device 1 in the SRS setting.
  • the reference signal in which the NZP @ CSI-RS resource and the QCL assumption are set in the SRS setting may be different from the reference signal in which the QCL assumption is set or instructed in the PDSCH @ DMRS.
  • the terminal device 1 switches to a spatial parameter for receiving the PDSCH, and operates to apply the same spatial parameter to the reception of the NZP @ CSI-RS resource in the slot. For this reason, since the operation is to apply a spatial parameter different from the preset spatial parameter used for receiving the NZP @ CSI-RS resource, it is impossible to calculate a spatial domain transmission filter expected in advance.
  • the terminal apparatus 1 applies the transmission to the past SRS resource.
  • the SRS resource is transmitted using the spatial domain transmission filter thus set.
  • the terminal apparatus 1 does not transmit the SRS resource.
  • the SRS resource may be transmitted after the reception timing of the next CSI reference signal.
  • One aspect of the present embodiment may be operated in carrier aggregation or dual connectivity with a radio access technology (RAT: Radio Access Technology) such as LTE or LTE-A / LTE-A Pro.
  • RAT Radio Access Technology
  • some or all cells or cell groups, carriers or carrier groups for example, a primary cell (PCell: ⁇ Primary ⁇ Cell), a secondary cell (SCell: ⁇ Secondary ⁇ Cell), a primary secondary cell (PSCell), and an MCG (Master Cell Group) ), SCG (Secondary Cell Group), etc.
  • PCell ⁇ Primary ⁇ Cell
  • SCell secondary cell
  • PSCell primary secondary cell
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • SpCell (Special @ Cell) is referred to as PCell of MCG or PSCell of SCG, respectively, depending on whether the MAC entity is associated with MCG or SCG. If it is not a dual connectivity operation, SpCell (Special @ Cell) is called PCell. SpCell (Special @ Cell) supports PUCCH transmission and contention-based random access.
  • CP-OFDM is applied as a downlink radio transmission scheme
  • SC-FDM DFTS-OFDM
  • FIG. 7 is a schematic block diagram showing the configuration of the terminal device 1 of the present embodiment.
  • the terminal device 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmitting / receiving antenna 109.
  • the upper layer processing unit 101 is configured to include a radio resource control unit 1011, a scheduling information interpretation unit 1013, a channel state information report control unit 1015, and a sounding reference signal control unit 1017.
  • the receiving unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a wireless reception unit 1057, and a measurement unit 1059.
  • transmitting section 107 is configured to include coding section 1071, modulating section 1073, multiplexing section 1075, radio transmitting section 1077, and uplink reference signal generating section 1079.
  • the upper layer processing unit 101 outputs the uplink data (transport block) generated by a user operation or the like to the transmission unit 107.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: ⁇ RLC) layer, and a radio resource control. (Radio ⁇ Resource ⁇ Control: ⁇ RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • ⁇ RLC Radio Link Control
  • ⁇ RRC radio resource control
  • the radio resource control unit 1011 included in the upper layer processing unit 101 manages various setting information of its own device. Further, the radio resource control unit 1011 generates information to be allocated to each uplink channel and outputs the information to the transmission unit 107.
  • the scheduling information interpreting unit 1013 included in the upper layer processing unit 101 interprets the DCI (scheduling information) received via the receiving unit 105 and, based on the result of interpreting the DCI, determines whether the receiving unit 105 and the transmitting unit 107 It generates control information for performing control and outputs it to the control unit 103.
  • DCI scheduling information
  • CSI report control section 1015 instructs measurement section 1059 to derive channel state information (RI / PMI / CQI / CRI) related to the CSI reference resource.
  • CSI report control section 1015 instructs transmission section 107 to transmit RI / PMI / CQI / CRI.
  • CSI report control section 1015 sets a setting used by measurement section 1059 when calculating CQI.
  • Sounding reference signal control section 1017 instructs uplink reference signal generation section 1079 to derive information related to SRS resource configuration. Sounding reference signal control section 1017 instructs transmitting section 107 to transmit an SRS resource. Sounding reference signal control section 1017 sets a setting used when uplink reference signal generation section 1079 generates an SRS. Further, sounding reference signal control section 1017 outputs spatial relation information and / or information of the corresponding CSI reference signal to control section 103. Also, sounding reference signal control section 1017 outputs the spatial domain reception filter input from reception section 105 to transmission section 107.
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the upper layer processing unit 101.
  • the control unit 103 outputs the generated control signal to the receiving unit 105 and the transmitting unit 107 to control the receiving unit 105 and the transmitting unit 107.
  • control section 103 outputs the spatial relation information and / or the information of the corresponding CSI reference signal input from sounding reference signal control section 1017 to receiving section 105 and / or transmitting section 107.
  • Receiving section 105 transmits the spatial domain reception filter used for receiving the downlink signal corresponding to the spatial relation information and / or the information of the corresponding CSI reference signal input from control section 103 to sounding reference signal control section 1017. Output.
  • the radio reception unit 1057 converts the downlink signal received via the transmission / reception antenna 109 into an intermediate frequency (down conversion: ⁇ down ⁇ covert), removes unnecessary frequency components, and maintains the signal level appropriately.
  • the quadrature demodulation is performed based on the in-phase and quadrature components of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the radio receiving unit 1057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal, performs fast Fourier transform (Fast Fourier Transform: FFT) on the signal from which the guard interval has been removed, and Extract the signal of the area.
  • GI Guard Interval
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 demultiplexes the extracted signal into a downlink PDCCH, a PDSCH, and a downlink reference signal. Also, the demultiplexing section 1055 compensates for the PDCCH and PUSCH propagation paths based on the propagation path estimation values input from the measurement section 1059. Further, demultiplexing section 1055 outputs the separated downlink reference signal to measurement section 1059.
  • Demodulation section 1053 demodulates the downlink PDCCH and outputs the result to decoding section 1051.
  • Decoding section 1051 attempts to decode the PDCCH and, if decoding is successful, outputs the decoded downlink control information and the RNTI corresponding to the downlink control information to upper layer processing section 101.
  • the demodulation unit 1053 demodulates the PDSCH with the modulation scheme notified by a downlink grant such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, or 256 QAM, and outputs it to the decoding unit 1051.
  • a downlink grant such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, or 256 QAM.
  • Decoding section 1051 performs decoding based on the information on the transmission or the original coding rate notified by the downlink control information, and outputs the decoded downlink data (transport block) to upper layer processing section 101.
  • Measurement section 1059 performs downlink path loss measurement, channel measurement, and / or interference measurement from the downlink reference signal input from demultiplexing section 1055.
  • the measurement unit 1059 outputs the CSI calculated based on the measurement result and the measurement result to the upper layer processing unit 101. Also, measuring section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal and outputs the estimated value to demultiplexing section 1055.
  • Transmitting section 107 generates an uplink reference signal according to the control signal input from control section 103, encodes and modulates uplink data (transport block) input from upper layer processing section 101, and generates PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station device 3 via the transmission / reception antenna 109. Further, transmitting section 107 outputs the spatial domain reception filter input from sounding reference signal control section 1017 to multiplexing section 1075.
  • Encoding section 1071 encodes uplink control information and uplink data input from upper layer processing section 101.
  • Modulating section 1073 modulates the coded bits input from coding section 1071 using a modulation method such as BPSK, QPSK, 16QAM, 64QAM, or 256QAM.
  • the uplink reference signal generation unit 1079 uses a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station device 3, a bandwidth for allocating the uplink reference signal, and an uplink grant. Based on the notified cyclic shift, the value of the parameter for generating the DMRS sequence, and the like, a sequence determined by a predetermined rule (formula) is generated. In addition, the uplink reference signal generation unit outputs the spatial domain transmission filter applied when transmitting the SRS resource to the multiplexing unit 1075.
  • a physical cell identifier physical cell identity: referred to as PCI, Cell ID, etc.
  • the multiplexing unit 1075 determines the number of PUSCH layers to be spatially multiplexed based on information used for PUSCH scheduling, and uses MIMO spatial multiplexing (MIMO SM: Multiple Input Multiple Output ⁇ Spatial Multiplexing) to generate the same PUSCH.
  • MIMO SM Multiple Input Multiple Output ⁇ Spatial Multiplexing
  • a plurality of uplink data to be transmitted are mapped to a plurality of layers, and precoding is performed on the layers.
  • the multiplexing unit 1075 performs a discrete Fourier transform (Discrete Fourier Transform: DFT) on the PUSCH modulation symbol according to the control signal input from the control unit 103.
  • the multiplexing unit 1075 multiplexes the PUCCH and / or PUSCH signal and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 1075 arranges the PUCCH and / or PUSCH signal and the generated uplink reference signal in the resource element for each transmission antenna port. Further, multiplexing section 1075 uses the spatial domain reception filter input from transmission section 107 or the spatial domain transmission filter input from uplink reference signal generation section 1079 to perform precoding on the uplink data and the uplink reference signal. (Precoding).
  • Precoding Precoding
  • the radio transmitting unit 1077 performs an inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed signal, performs SC-FDM modulation, and adds a guard interval to the SC-FDM modulated SC-FDM symbol.
  • IFFT inverse Fast Fourier Transform
  • Generating a baseband digital signal converting the baseband digital signal to an analog signal, generating an in-phase component and a quadrature component of an intermediate frequency from the analog signal, removing extra frequency components for the intermediate frequency band,
  • the signal of the intermediate frequency is converted into a signal of a high frequency (up-conversion: up convert), an extra frequency component is removed, power is amplified, and the amplified signal is output to the transmitting / receiving antenna 109 and transmitted.
  • FIG. 8 is a schematic block diagram showing the configuration of the base station device 3 of the present embodiment.
  • the base station device 3 is configured to include an upper layer processing unit 301, a control unit 303, a reception unit 305, a transmission unit 307, and a transmission / reception antenna 309.
  • the upper layer processing unit 301 is configured to include a radio resource control unit 3011, a scheduling unit 3013, a channel state information report control unit 3015, and a sounding reference signal control unit 3017.
  • the receiving unit 305 includes a decoding unit 3051, a demodulating unit 3053, a demultiplexing unit 3055, a wireless receiving unit 3057, and a measuring unit 3059.
  • the transmitting section 307 includes an encoding section 3071, a modulating section 3073, a multiplexing section 3075, a radio transmitting section 3077, and a downlink reference signal generating section 3079.
  • the upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: ⁇ RLC) layer, and a radio resource control (Radio). Resource Control: RRC) layer processing. Further, the upper layer processing unit 301 generates control information for controlling the receiving unit 305 and the transmitting unit 307, and outputs the control information to the control unit 303.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • Radio Link Control Radio Link Control
  • Radio Radio Resource Control
  • the radio resource control unit 3011 included in the upper layer processing unit 301 generates downlink data (transport block), system information, RRC message, MAC @ CE (Control @ Element), etc., arranged in the downlink PDSCH, or The information is acquired from the node and output to the transmission unit 307.
  • the radio resource control unit 3011 manages various setting information of each terminal device 1.
  • the scheduling unit 3013 included in the upper layer processing unit 301 determines the frequency and subframe to which a physical channel (PDSCH or PUSCH) is to be allocated, The transmission coding rate, modulation scheme, transmission power, and the like of the channel (PDSCH or PUSCH) are determined.
  • the scheduling unit 3013 generates control information for controlling the receiving unit 305 and the transmitting unit 307 based on the scheduling result, and outputs the control information to the control unit 303.
  • the scheduling unit 3013 generates information (for example, DCI (format)) used for scheduling the physical channel (PDSCH or PUSCH) based on the scheduling result.
  • the channel state information report control unit 3015 included in the upper layer processing unit 301 controls the CSI report of the terminal device 1.
  • the sounding reference signal control unit 3017 transmits the setting used when the terminal device 1 generates the SRS to the terminal device 1 via the transmission unit 307. Further, sounding reference signal control section 3017 provided in upper layer processing section 301 controls SRS transmission of terminal apparatus 1. The sounding reference signal control unit 3017 transmits the setting used when the terminal device 1 generates the SRS to the terminal device 1 via the transmission unit 307.
  • the control unit 303 generates a control signal for controlling the receiving unit 305 and the transmitting unit 307 based on the control information from the upper layer processing unit 301.
  • the control unit 303 outputs the generated control signal to the receiving unit 305 and the transmitting unit 307, and controls the receiving unit 305 and the transmitting unit 307.
  • Receiving section 305 separates, demodulates, and decodes a received signal received from terminal apparatus 1 via transmitting / receiving antenna 309 according to the control signal input from control section 303, and outputs the decoded information to upper layer processing section 301.
  • the wireless receiving unit 3057 converts an uplink signal received via the transmission / reception antenna 309 into an intermediate frequency (down-conversion: ⁇ down ⁇ covert), removes unnecessary frequency components, and appropriately maintains a signal level.
  • the amplification level is controlled as described above, quadrature demodulation is performed based on the in-phase and quadrature components of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless receiving unit 3057 removes a part corresponding to a guard interval (Guard GI) from the converted digital signal.
  • the wireless receiving unit 3057 performs fast Fourier transform (Fast Fourier Transform: FFT) on the signal from which the guard interval has been removed, extracts a signal in the frequency domain, and outputs the signal to the demultiplexing unit 3055.
  • FFT Fast Fourier transform
  • the demultiplexing unit 1055 separates the signal input from the radio reception unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signals. This separation is performed based on the radio resource allocation information included in the uplink grant, which is determined in advance by the base station apparatus 3 in the radio resource control unit 3011 and notified to each terminal apparatus 1. Further, the demultiplexing section 3055 compensates for the PUCCH and PUSCH propagation paths based on the propagation path estimation values input from the measurement section 3059. Further, demultiplexing section 3055 outputs the separated uplink reference signal to measurement section 3059.
  • the demodulation unit 3053 performs an inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, obtains modulation symbols, and performs BPSK (Binary Phase Shift Keying), QPSK, 16QAM,
  • IDFT inverse discrete Fourier transform
  • BPSK Binary Phase Shift Keying
  • QPSK 16QAM
  • the own device demodulates the received signal using a predetermined modulation method such as 64QAM or 256QAM, or a modulation method notified by the own device to each terminal device 1 in advance by an uplink grant.
  • Demodulation section 3053 uses MIMO SM based on the number of spatially multiplexed sequences notified in advance in the uplink grant to each of terminal devices 1 and information indicating precoding to be performed on the sequences.
  • the modulation symbols of a plurality of uplink data transmitted on PUSCH are separated.
  • the decoding unit 3051 transmits the demodulated coded bits of the PUCCH and PUSCH to the transmission or transmission of the predetermined information in a predetermined coding scheme or in advance by the own apparatus to the terminal apparatus 1 by an uplink grant. Decoding is performed at the coding rate, and the decoded uplink data and uplink control information are output to the upper layer processing unit 101. When the PUSCH is retransmitted, the decoding unit 3051 performs decoding using the coded bits held in the HARQ buffer input from the upper layer processing unit 301 and the demodulated coded bits. Measuring section 3059 measures an estimated value of the propagation path, channel quality, and the like from the uplink reference signal input from demultiplexing section 3055, and outputs the measured value to demultiplexing section 3055 and upper layer processing section 301.
  • the transmitting section 307 generates a downlink reference signal according to the control signal input from the control section 303, encodes and modulates downlink control information and downlink data input from the upper layer processing section 301, and performs PDCCH , PDSCH, and the downlink reference signal are multiplexed or transmitted using separate radio resources to the terminal device 1 via the transmission / reception antenna 309.
  • Encoding section 3071 encodes downlink control information and downlink data input from upper layer processing section 301.
  • the modulation unit 3073 modulates the coded bits input from the coding unit 3071 using a modulation method such as BPSK, QPSK, 16QAM, 64QAM, or 256QAM.
  • the downlink reference signal generation unit 3079 generates a sequence known by the terminal device 1 as a downlink reference signal, which is obtained by a predetermined rule based on a physical cell identifier (PCI) for identifying the base station device 3 and the like. I do.
  • PCI physical cell identifier
  • the multiplexing unit 3075 maps one or a plurality of downlink data transmitted on one PDSCH to one or a plurality of layers according to the number of spatially multiplexed PDSCH layers, and Precoding is performed on the layer of.
  • the multiplexing unit 3075 multiplexes a downlink physical channel signal and a downlink reference signal for each transmission antenna port.
  • the multiplexing unit 3075 arranges a downlink physical channel signal and a downlink reference signal in a resource element for each transmission antenna port.
  • the radio transmission unit 3077 performs an inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbols and the like, performs OFDM modulation, adds a guard interval to the OFDM symbol that has been OFDM modulated, A digital signal of a baseband, converts a baseband digital signal into an analog signal, generates an in-phase component and a quadrature component of an intermediate frequency from the analog signal, removes extra frequency components for the intermediate frequency band, and outputs a signal of the intermediate frequency. Is converted into a high-frequency signal (up-conversion: ⁇ ⁇ up convert), an extra frequency component is removed, power is amplified, and the signal is output to the transmission / reception antenna 309 and transmitted.
  • IFFT inverse Fast Fourier Transform
  • the terminal device 1 includes a receiving unit that receives a first channel state information calculation reference signal of a first serving cell, and a terminal unit that is used for PDSCH reception. And determining whether a certain slot is a valid downlink slot based on whether the QCL assumption of 1 is different from the second QCL assumption used for receiving the first channel state information calculation reference signal.
  • the CSI reference resource is determined based on the appropriate downlink slot, and the CQI index is calculated based on the CSI reference resource.
  • the terminal device 1 further includes a receiving unit that receives a first PDCCH indicating an uplink grant of the first serving cell, and the first channel state information calculation reference signal. Is applied a periodic or semi-persistent or aperiodic transmission method, receives a first channel state report request using the first channel state information calculation reference signal on the first PDCCH, If the slot corresponding to the first channel state report request is not a valid downlink slot, the first uplink signal is transmitted without including the channel state report.
  • the terminal device 1 further includes a receiving unit that receives a first PDCCH indicating an uplink grant of the first serving cell, and the first channel state information calculation reference signal. Is applied a periodic or semi-persistent or aperiodic transmission method, receives a first channel state report request using the first channel state information calculation reference signal on the first PDCCH, If the slot corresponding to the first channel state report request is not a valid downlink slot, the mobile station does not transmit the uplink signal indicated by the first PDCCH.
  • the base station device 3 includes: a transmitting unit that transmits a first channel state information calculation reference signal of a first serving cell; and a transmitting unit that transmits PDSCH. Based on whether a first QCL assumption used for PDSCH reception and a second QCL assumption used for receiving the first channel state information calculation reference signal are different, whether a certain slot is a valid downlink slot is determined. Determining, determining a CSI reference resource based on the valid downlink slot, and receiving a CQI index referenced based on the CSI reference resource.
  • the communication method is a communication method for a terminal device, wherein the first QCL used for receiving a first channel state information calculation reference signal of a first serving cell and receiving the PDSCH is used. Determining whether a certain slot is a valid downlink slot based on whether the assumption and a second QCL assumption used for receiving the first channel state information calculation reference signal are different, and A CSI reference resource is determined based on the slot, and a CQI index is calculated based on the CSI reference resource.
  • a communication method is a communication method for a base station apparatus, wherein the first reference signal for channel state information calculation of the first serving cell is transmitted, the PDSCH is transmitted, and the PDSCH is transmitted. It is determined whether a certain slot is a valid downlink slot based on whether a first QCL assumption used for reception is different from a second QCL assumption used for receiving the first channel state information calculation reference signal. And determining a CSI reference resource based on the valid downlink slot and receiving a CQI index calculated based on the CSI reference resource.
  • An integrated circuit is an integrated circuit mounted on a terminal device, comprising: a receiving unit that receives a first channel state information calculation reference signal of a first serving cell; and a PDSCH.
  • Receiving means for receiving the PDSCH based on whether the first QCL assumption used for PDSCH reception and the second QCL assumption used for receiving the first channel state information calculation reference signal are different, It is determined whether a certain slot is a valid downlink slot, a CSI reference resource is determined based on the valid downlink slot, and a CQI index is calculated based on the CSI reference resource.
  • An integrated circuit is an integrated circuit mounted on a base station apparatus, wherein the transmitting means transmits a first channel state information calculation reference signal of a first serving cell; Transmitting means for transmitting a PDSCH, based on whether a first QCL assumption used for PDSCH reception and a second QCL assumption used for receiving the first channel state information calculation reference signal are different. Determining whether a certain slot is a valid downlink slot, determining a CSI reference resource based on the valid downlink slot, and receiving a CQI index calculated based on the CSI reference resource.
  • the program that operates on the device according to the present invention may be a program that controls a central processing unit (CPU) or the like to cause a computer to function so as to realize the functions of the embodiment according to the present invention.
  • the program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiment according to the present invention may be recorded on a computer-readable recording medium.
  • the program may be realized by causing a computer system to read and execute the program recorded on the recording medium.
  • the “computer system” is a computer system built in the device, and includes an operating system and hardware such as peripheral devices.
  • the “computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium for dynamically storing a program for a short time, or another recording medium readable by a computer. Is also good.
  • Each functional block or various features of the device used in the above-described embodiment may be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other Logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor, or may be a conventional processor, controller, microcontroller, or state machine.
  • the above-described electric circuit may be configured by a digital circuit or an analog circuit.
  • one or more aspects of the present invention can use a new integrated circuit based on the technology.
  • the present invention is not limited to the above embodiment.
  • an example of the device is described.
  • the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, for example, AV devices, kitchen devices, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

チャネル状態情報を効率的に送信する。無線通信システムにおいて、基地局装置と端末装置が、効率的に端末装置、基地局装置、通信方法、および、集積回路を提供することを目的とし、チャネル状態情報算出用参照信号を受信する受信部と、を備え、PDSCH受信に用いるQCL想定と、チャネル状態情報算出用参照信号の受信に用いるQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。

Description

基地局装置、端末装置、通信方法、および、集積回路
 本発明は、基地局装置、端末装置、通信方法、および、集積回路に関する。本願は、2018年8月8日に日本に出願された特願2018-149239号に基づき優先権を主張し、その内容をここに援用する。
 現在、第5世代のセルラーシステムに向けた無線アクセス方式および無線ネットワーク技術として、第三世代パートナーシッププロジェクト(3GPP: The Third Generation Partnership Project)において、LTE(Long Term Evolution)-Advanced Pro及びNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。
 第5世代のセルラーシステムでは、高速・大容量伝送を実現するeMBB(enhanced Mobile BroadBand)、低遅延・高信頼通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、IoT(Internet of Things)などマシン型デバイスが多数接続するmMTC(massive Machine Type Communication)の3つがサービスの想定シナリオとして要求されている。
RP-161214, NTT DOCOMO, "Revision of SI: Study on New Radio Access Technology", 2016年6月
 本発明の一態様の目的は、上記のような無線通信システムにおいて、効率的な通信を可能とする端末装置、基地局装置、通信方法、および、集積回路を提供することを目的とする。
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の一態様における端末装置は、第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信する受信部を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
 (2)また、本発明の一態様における端末装置において、前記第1のサービングセルの上りリンクグラントを示す第1のPDCCHを受信する受信部を備え、前記第1のチャネル状態情報算出用参照信号は、周期的またはセミパーシステントまたは非周期的の送信方法が適用され、前記第1のPDCCHにて前記第1のチャネル状態情報算出用参照信号を用いる第1のチャネル状態報告要求を受信し、前記第1のチャネル状態報告要求に対応したスロットが有効なダウンリンクスロットでない場合に、チャネル状態報告を含めず第1の上りリンク信号を送信する。
 (3)また、本発明の一態様における端末装置において、前記第1のサービングセルの上りリンクグラントを示す第1のPDCCHを受信する受信部を備え、前記第1のチャネル状態情報算出用参照信号は、周期的またはセミパーシステントまたは非周期的の送信方法が適用され、前記第1のPDCCHにて前記第1のチャネル状態情報算出用参照信号を用いる第1のチャネル状態報告要求を受信し、前記第1のチャネル状態報告要求に対応したスロットが有効なダウンリンクスロットでない場合に、前記第1のPDCCHで指示された上りリンク信号を送信しない。
 (4)また、本発明の一態様における基地局装置は、第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信する送信部と、PDSCHを送信する送信部と、を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて参照されたCQIインデックスを受信する。
 (5)また、本発明の一態様における通信方法は、端末装置の通信方法であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信しPDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
 (6)また、本発明の一態様における通信方法は、基地局装置の通信方法であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信し、PDSCHを送信し、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されるCQIインデックスを受信する。
 (7)また、本発明の一態様における集積回路は、端末装置に実装される集積回路であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信する受信手段と、PDSCHを受信する受信手段と、を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
 (8)また、本発明の一態様における集積回路は、基地局装置に実装される集積回路であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信する送信手段と、PDSCHを送信する送信手段と、を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されるCQIインデックスを受信する。
 この発明によれば、基地局装置と端末装置が、効率的に通信することができる。
本実施形態における無線通信システムの概念を示す図である。 本実施形態における上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。 サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。 スロットまたはサブフレームの一例を示す図である。 ビームフォーミングの一例を示した図である。 QCL設定の一例を示す図である。 本実施形態における端末装置1の構成を示す概略ブロック図である。 本実施形態における基地局装置3の構成を示す概略ブロック図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態における無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A、端末装置1B、および基地局装置3を具備する。以下、端末装置1A、および、端末装置1Bを、端末装置1とも称する。
 端末装置1は、ユーザ端末、移動局装置、通信端末、移動機、端末、UE(User Equipment)、MS(Mobile Station)とも称される。基地局装置3は、無線基地局装置、基地局、無線基地局、固定局、NB(Node B)、eNB(evolved Node B)、BTS(Base Transceiver Station)、BS(Base Station)、NR NB(NR Node B)、NNB、TRP(Transmission and Reception Point)、gNBとも称される。基地局装置3は、コアネットワーク装置を含んでも良い。また、基地局装置3は、1つまたは複数の送受信点4(transmission reception point)を具備しても良い。以下で説明する基地局装置3の機能/処理の少なくとも一部は、該基地局装置3が具備する各々の送受信点4における機能/処理であってもよい。基地局装置3は、基地局装置3によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、基地局装置3は、1つまたは複数の送受信点4によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、1つのセルを複数の部分領域(Beamed area)にわけ、それぞれの部分領域において端末装置1をサーブしてもよい。ここで、部分領域は、ビームフォーミングで使用されるビームのインデックスあるいはプリコーディングのインデックスに基づいて識別されてもよい。
 基地局装置3から端末装置1への無線通信リンクを下りリンクと称する。端末装置1から基地局装置3への無線通信リンクを上りリンクと称する。
 図1において、端末装置1と基地局装置3の間の無線通信では、サイクリックプレフィックス(CP: Cyclic Prefix)を含む直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)、シングルキャリア周波数多重(SC-FDM: Single-Carrier Frequency Division Multiplexing)、離散フーリエ変換拡散OFDM(DFT-S-OFDM: Discrete Fourier Transform Spread OFDM)、マルチキャリア符号分割多重(MC-CDM: Multi-Carrier Code Division Multiplexing)が用いられてもよい。
 また、図1において、端末装置1と基地局装置3の間の無線通信では、ユニバーサルフィルタマルチキャリア(UFMC: Universal-Filtered Multi-Carrier)、フィルタOFDM(F-OFDM: Filtered OFDM)、窓関数が乗算されたOFDM(Windowed OFDM)、フィルタバンクマルチキャリア(FBMC: Filter-Bank Multi-Carrier)が用いられてもよい。
 なお、本実施形態ではOFDMを伝送方式としてOFDMシンボルで説明するが、上述の他の伝送方式の場合を用いた場合も本発明に含まれる。
 また、図1において、端末装置1と基地局装置3の間の無線通信では、CPを用いない、あるいはCPの代わりにゼロパディングをした上述の伝送方式が用いられてもよい。また、CPやゼロパディングは前方と後方の両方に付加されてもよい。
 図1において、端末装置1と基地局装置3の無線通信では、以下の物理チャネルが用いられる。
・PBCH(Physical Broadcast CHannel)
・PDCCH(Physical Downlink Control CHannel)
・PDSCH(Physical Downlink Shared CHannel)
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
 PBCHは、端末装置1が必要な重要なシステム情報を含む重要情報ブロック(MIB: Master Information Block、EIB: Essential Information Block、BCH:Broadcast Channel)を報知するために用いられる。
 また、PBCHは、同期信号のブロック(SS/PBCHブロックとも称する)の周期内の時間インデックスを報知するために用いられてよい。ここで、時間インデックスは、セル内の同期信号およびPBCHのインデックスを示す情報である。例えば、3つの送信ビーム(送信フィルタ設定、受信空間パラメータに関する擬似同位置(QCL:Quasi Co-Location))の想定を用いてSS/PBCHブロックを送信する場合、予め定められた周期内または設定された周期内の時間順を示してよい。また、端末装置は、時間インデックスの違いを送信ビームの違いと認識してもよい。
 PDCCHは、下りリンクの無線通信(基地局装置3から端末装置1への無線通信)において、下りリンク制御情報(Downlink Control Information: DCI)を送信する(または運ぶ)ために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。
 例えば、以下のDCIフォーマットが定義されてよい。
 ・DCIフォーマット0_0
 ・DCIフォーマット0_1
 ・DCIフォーマット1_0
 ・DCIフォーマット1_1
 ・DCIフォーマット2_0
 ・DCIフォーマット2_1
 ・DCIフォーマット2_2
 ・DCIフォーマット2_3
 DCIフォーマット0_0は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。
 DCIフォーマット0_1は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP:BandWidth Part)を示す情報、チャネル状態情報(CSI:Channel State Information)要求、サウンディング参照信号(SRS:Sounding Reference Signal)要求、アンテナポートに関する情報を含んでよい。ここで、チャネル状態情報要求はCSIリクエストとも称する。またサウンディング参照信号要求はSRSリクエストとも称する。
 DCIフォーマット1_0は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。
 DCIフォーマット1_1は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP)を示す情報、送信設定指示(TCI:Transmission Configuration Indication)、アンテナポートに関する情報を含んでよい。
 DCIフォーマット2_0は、1つまたは複数のスロットのスロットフォーマットを通知するために用いられる。スロットフォーマットは、スロット内の各OFDMシンボルが下りリンク、フレキシブル、上りリンクのいずれかに分類されたものとして定義される。例えば、スロットフォーマットが28の場合、スロットフォーマット28が指示されたスロット内の14シンボルのOFDMシンボルに対してDDDDDDDDDDDDFUが適用される。ここで、Dが下りリンクシンボル、Fがフレキシブルシンボル、Uが上りリンクシンボルである。なお、スロットについては後述する。
 DCIフォーマット2_1は、端末装置1に対して、送信がないと想定してよい物理リソースブロックとOFDMシンボルを通知するために用いられる。なお、この情報はプリエンプション指示(間欠送信指示)と称してよい。
 DCIフォーマット2_2は、PUSCHおよびPUSCHのための送信電力制御(TPC:Transmit Power Control)コマンドの送信のために用いられる。
 DCIフォーマット2_3は、1または複数の端末装置1によるサウンディング参照信号(SRS)送信のためのTPCコマンドのグループを送信するために用いられる。また、TPCコマンドとともに、SRS要求が送信されてもよい。また、DCIフォーマット2_3に、PUSCHおよびPUCCHのない上りリンク、またはSRSの送信電力制御がPUSCHの送信電力制御と紐付いていない上りリンクのために、SRS要求とTPCコマンドが定義されてよい。
 下りリンクに対するDCIを、下りリンクグラント(downlink grant)、または、下りリンクアサインメント(downlink assignment)とも称する。ここで、上りリンクに対するDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。
 PUCCHは、上りリンクの無線通信(端末装置1から基地局装置3の無線通信)において、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH)に対するHARQ-ACKを示してもよい。
 PDSCHは、媒介アクセス(MAC: Medium Access Control)層からの下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられる。また、下りリンクの場合にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信にも用いられる。
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。また、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわち、UCIのみを送信するために用いられてもよい。
 ここで、基地局装置3と端末装置1は、上位層(higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCシグナリング(RRC message: Radio Resource Control message、RRC information: Radio Resource Control informationとも称される)を送受信してもよい。また、基地局装置3と端末装置1は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。ここで、RRCシグナリング、および/または、MACコントロールエレメントを、上位層の信号(higher layer signaling)とも称する。ここでの上位層は、物理層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS(Non Access Stratum)層などの一つまたは複数を含んでもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。
 PDSCHまたはPUSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。ここで、下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・参照信号(Reference Signal: RS)
 同期信号は、プライマリ同期信号(PSS:Primary Synchronization Signal)およびセカンダリ同期信号(SSS)を含んでよい。PSSとSSSを用いてセルIDが検出されてよい。
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。ここで、同期信号は、端末装置1が基地局装置3によるプリコーディングまたはビームフォーミングにおけるプリコーディングまたはビームの選択に用いられて良い。なお、ビームは、送信または受信フィルタ設定、あるいは空間ドメイン送信フィルタまたは空間ドメイン受信フィルタと呼ばれてもよい。
 参照信号は、端末装置1が物理チャネルの伝搬路補償を行うために用いられる。ここで、参照信号は、端末装置1が下りリンクのCSIを算出するためにも用いられてよい。また、参照信号は、無線パラメータやサブキャリア間隔などのヌメロロジーやFFTの窓同期などができる程度の細かい同期(Fine synchronization)に用いられて良い。
 本実施形態において、以下の下りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・CSI-RS(Channel State Information Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・TRS(Tracking Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PBCHを復調するための参照信号と、PDSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。CSI-RSは、チャネル状態情報(CSI:Channel State Information)の測定およびビームマネジメントに使用され、周期的またはセミパーシステントまたは非周期のCSI参照信号の送信方法が適用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。TRSは、高速移動時におけるドップラーシフトを保証するために使用される。なお、TRSはCSI-RSの1つの設定として用いられてよい。例えば、1ポートのCSI-RSがTRSとして無線リソースが設定されてもよい。
 本実施形態において、以下の上りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・SRS(Sounding Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PUCCHを復調するための参照信号と、PUSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。SRSは、上りリンクチャネル状態情報(CSI)の測定、チャネルサウンディング、およびビームマネジメントに使用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。
 下りリンク物理チャネルおよび/または下りリンク物理シグナルを総称して、下りリンク信号と称する。上りリンク物理チャネルおよび/または上りリンク物理シグナルを総称して、上りリンク信号と称する。下りリンク物理チャネルおよび/または上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理シグナルおよび/または上りリンク物理シグナルを総称して、物理シグナルと称する。
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:transport block)および/またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行われる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行われる。
 また、参照信号は、無線リソース測定(RRM:Radio Resource Measurement)に用いられてよい。また、参照信号は、ビームマネジメントに用いられてよい。
 ビームマネジメントは、送信装置(下りリンクの場合は基地局装置3であり、上りリンクの場合は端末装置1である)におけるアナログおよび/またはディジタルビームと、受信装置(下りリンクの場合は端末装置1、上りリンクの場合は基地局装置3である)におけるアナログおよび/またはディジタルビームの指向性を合わせ、ビーム利得を獲得するための基地局装置3および/または端末装置1の手続きであってよい。
 なお、ビームペアリンクを構成、設定または確立する手続きとして、下記の手続きを含んでよい。
・ビーム選択(Beam selection)
・ビーム改善(Beam refinement)
・ビームリカバリ(Beam recovery)
 例えば、ビーム選択は、基地局装置3と端末装置1の間の通信においてビームを選択する手続きであってよい。また、ビーム改善は、さらに利得の高いビームの選択、あるいは端末装置1の移動によって最適な基地局装置3と端末装置1の間のビームの変更をする手続きであってよい。ビームリカバリは、基地局装置3と端末装置1の間の通信において遮蔽物や人の通過などにより生じるブロッケージにより通信リンクの品質が低下した際にビームを再選択する手続きであってよい。
 ビームマネジメントには、ビーム選択、ビーム改善が含まれてよい。ビームリカバリには、下記の手続きを含んでよい。
・ビーム失敗(beam failure)の検出
・新しいビームの発見
・ビームリカバリリクエストの送信
・ビームリカバリリクエストに対する応答のモニタ
 例えば、端末装置1における基地局装置3の送信ビームを選択する際にCSI-RSまたはSS/PBCHブロックに含まれるSSSのRSRP(Reference Signal Received Power)を用いてもよいし、CSIを用いてもよい。また、基地局装置3への報告としてCSI-RSリソースインデックス(CRI:CSI-RS Resource Index)を用いてもよいし、SS/PBCHブロックに含まれるPBCHおよび/またはPBCHの復調に用いられる復調用参照信号(DMRS)の系列で指示されるインデックスを用いてもよい。
 また、基地局装置3は、端末装置1へビームを指示する際にCRIまたはSS/PBCHの時間インデックスを指示し、端末装置1は、指示されたCRIまたはSS/PBCHの時間インデックスに基づいて受信する。このとき、端末装置1は指示されたCRIまたはSS/PBCHの時間インデックスに基づいて空間フィルタを設定し、受信してよい。また、端末装置1は、疑似同位置(QCL:Quasi Co-Location)の想定を用いて受信してもよい。ある信号(アンテナポート、同期信号、参照信号など)が別の信号(アンテナポート、同期信号、参照信号など)と「QCLである」または、「QCLの想定が用いられる」とは、ある信号が別の信号と関連付けられていると解釈できる。
 もしあるアンテナポートにおけるあるシンボルが搬送されるチャネルの長区間特性(Long Term Property)が他方のアンテナポートにおけるあるシンボルが搬送されるチャネルから推論されうるなら、2つのアンテナポートはQCLであるといわれる。チャネルの長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、及び平均遅延の1つまたは複数を含む。例えば、アンテナポート1とアンテナポート2が平均遅延に関してQCLである場合、アンテナポート1の受信タイミングからアンテナポート2の受信タイミングが推論されうることを意味する。
 このQCLは、ビームマネジメントにも拡張されうる。そのために、空間に拡張したQCLが新たに定義されてもよい。例えば、空間領域のQCLの想定におけるチャネルの長区間特性(Long term property)として、無線リンクあるいはチャネルにおける到来角(AoA(Angle of Arrival), ZoA(Zenith angle of Arrival)など)および/または角度広がり(Angle Spread、例えばASA(Angle Spread of Arrival)やZSA(Zenith angle Spread of Arrival))、送出角(AoD, ZoDなど)やその角度広がり(Angle Spread、例えばASD(Angle Spread of Departure)やZSD(Zenith angle Spread of Departure))、空間相関(Spatial Correlation)、受信空間パラメータであってもよい。
 例えば、アンテナポート1とアンテナポート2の間で受信空間パラメータに関してQCLであるとみなせる場合、アンテナポート1からの信号を受信する受信ビーム(受信空間フィルタ)からアンテナポート2からの信号を受信する受信ビームが推論されうることを意味する。
 QCLタイプとして、QCLであるとみなしてよい長区間特性の組み合わせが定義されてよい。例えば、以下のタイプが定義されてよい。
 ・タイプA:ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド
 ・タイプB:ドップラーシフト、ドップラースプレッド
 ・タイプC:平均遅延、ドップラーシフト
 ・タイプD:受信空間パラメータ
 上述のQCLタイプは、RRCおよび/またはMAC層および/またはDCIで1つまたは2つの参照信号とPDCCHやPDSCH DMRSとのQCLの想定を送信設定指示(TCI:Transmission Configuration Indication)として設定および/または指示してもよい。例えば、端末装置1がPDCCHを受信する際のTCIの1つの状態として、PBCH/SSブロックのインデックス#2とQCLタイプA+QCLタイプDが設定および/または指示された場合、端末装置1は、PDCCH DMRSを受信する際、PBCH/SSブロックインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてPDCCHのDMRSを受信して同期や伝搬路推定をしてもよい。このとき、TCIにより指示される参照信号(上述の例ではPBCH/SSブロック)をソース参照信号、ソース参照信号を受信する際のチャネルの長区間特性から推論される長区間特性の影響を受ける参照信号(上述の例ではPDCCH DMRS)をターゲット参照信号と称してよい。また、TCIは、RRCで複数のTCI状態と各状態に対してソース参照信号とQCLタイプの組み合わせが設定され、MAC層またはDCIにより端末装置1に指示されてよい。
 図6に、TCI設定の一例としてRRCにて4つのTCIを設定する例を示す。ここでは、TCI-State#0にNZP-CSI-RS-Resource#1とQCLタイプA+QCLタイプDが設定され、TCI-State#1にNZP-CSI-RS-Resource#1とQCLタイプB+QCLタイプDが設定され、TCI-State#2にSSB#1とQCLタイプAが設定され、TCI-State#3にSSB#2とQCLタイプA+QCLタイプDが設定される例を示している。端末装置1がRSの設定としてNZP-CSI-RS-Resource#3にTCI-State#0を設定および/または指示された場合、NZP-CSI-RS-Resource#3はNZP-CSI-RS-Resource#1とQCLタイプA+QCLタイプDが設定および/または指示されたこととなる。また端末装置1がPDCCH DMRSにTCI-State#2を設定された場合、PDCCH DMRSはSSB#1とQCLタイプAが設定されたこととなる。また端末装置1がPDSCH DMRSにTCI-State#2を設定および/または指示された場合、PDSCH DMRSはSSB#2とQCLタイプA+QCLタイプDが設定および/または指示されたこととなる。
 同様に、端末装置1がCSIを算出する際のTCIの1つの状態として、PBCH/SSブロックのインデックス#2とQCLタイプA+QCLタイプDが設定および/または指示された場合、端末装置1は、NZP-CSI-RSリソースを受信する際、PBCH/SSブロックインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてNZP-CSI-RSリソースを受信して同期や伝搬路推定をしてもよい。また、端末装置1がPDSCHを受信する際のTCIの1つの状態として、NZP-CSI-RSリソースのインデックス#2とQCLタイプA+QCLタイプDが設定および/または指示された場合、端末装置1は、PDSCH DMRSを受信する際、NZP-CSI-RSリソースインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてPDSCHのDMRSを受信して同期や伝搬路推定をしてもよく、前述の例と組み合わせるとPBCH/SSブロックインデックス#2に対応したTCIのPDCCH DMRSを受信してPDCCHを検出し、割り当てられたPDSCHを、DCIにて指示されたNZP CSI-RSリソースインデックス#2に対応したTCIのPDSCH DMRSを受信して同期や伝搬路推定を行ってもよい。このとき、PBCH/SSブロックインデックス#2とQCLタイプDが設定されたPDCCH DMRSの受信と、NZP CSI-RSリソースインデックス#2とQCLタイプDが設定されたPDSCH DMRSの受信とで、端末装置1にて受信空間パラメータを切り替えても良い。受信空間パラメータの切り替えにはアナログ回路のスイッチング動作などを含み切り替え時間を確保する必要のあることなどから、例えば下り割当を指示するPDCCHの受信完了から、指示されたPDSCHの受信開始時間に間に合わない事態を想定し、PDCCHの末尾シンボルから数えて予め設定したしきい値よりも短い時間間隔でのPDSCH割り当てが通知された場合には、空間パラメータの切り替えを実施せずPDCCH DMRS受信と同じ空間パラメータを用いてPDSCHの受信を行っても良い。
 この方法により、ビームマネジメントおよびビーム指示/報告として、空間領域のQCLの想定と無線リソース(時間および/または周波数)によりビームマネジメントと等価な基地局装置3、端末装置1の動作が定義されてもよい。
 以下、サブフレームについて説明する。本実施形態ではサブフレームと称するが、リソースユニット、無線フレーム、時間区間、時間間隔などと称されてもよい。
 図2は、本発明の第1の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10個のサブフレームおよびW個のスロットから構成される。また、1スロットは、X個のOFDMシンボルで構成される。つまり、1サブフレームの長さは1msである。スロットのそれぞれは、サブキャリア間隔によって時間長が定義される。例えば、OFDMシンボルのサブキャリア間隔が15kHz、NCP(Normal Cyclic Prefix)の場合、X=7あるいはX=14であり、それぞれ0.5msおよび1msである。また、サブキャリア間隔が60kHzの場合は、X=7あるいはX=14であり、それぞれ0.125msおよび0.25msである。また、例えば、X=14の場合、サブキャリア間隔が15kHzの場合はW=10であり、サブキャリア間隔が60kHzの場合はW=40である。図2は、X=7の場合を一例として示している。なお、X=14の場合にも同様に拡張できる。また、上りリンクスロットも同様に定義され、下りリンクスロットと上りリンクスロットは別々に定義されてもよい。また、図2のセルの帯域幅は帯域の一部(BWP:BandWidth Part)として定義されてもよい。また、スロットは、送信時間間隔(TTI:Transmission Time Interval)と定義されてもよい。スロットは、TTIとして定義されなくてもよい。TTIは、トランスポートブロックの送信期間であってもよい。
 スロットのそれぞれにおいて送信される信号または物理チャネルは、リソースグリッドによって表現されてよい。リソースグリッドは、複数のサブキャリアと複数のOFDMシンボルによって定義される。1つのスロットを構成するサブキャリアの数は、セルの下りリンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。
 リソースグリッドは、ある物理下りリンクチャネル(PDSCHなど)あるいは上りリンクチャネル(PUSCHなど)のリソースエレメントのマッピングを表現するために用いられる。例えば、サブキャリア間隔が15kHzの場合、サブフレームに含まれるOFDMシンボル数X=14で、NCPの場合には、1つの物理リソースブロックは、時間領域において14個の連続するOFDMシンボルと周波数領域において12*Nmax個の連続するサブキャリアとから定義される。Nmaxは、後述するサブキャリア間隔設定μにより決定されるリソースブロックの最大数である。つまり、リソースグリッドは、(14*12*Nmax,μ)個のリソースエレメントから構成される。ECP(Extended CP)の場合、サブキャリア間隔60kHzにおいてのみサポートされるので、1つの物理リソースブロックは、例えば、時間領域において12(1スロットに含まれるOFDMシンボル数)*4(1サブフレームに含まれるスロット数)=48個の連続するOFDMシンボルと、周波数領域において12*Nmax,μ個の連続するサブキャリアとにより定義される。つまり、リソースグリッドは、(48*12*Nmax,μ)個のリソースエレメントから構成される。
 リソースブロックとして、参照リソースブロック、共通リソースブロック、物理リソースブロック、仮想リソースブロックが定義される。1リソースブロックは、周波数領域で連続する12サブキャリアとして定義される。参照リソースブロックは、全てのサブキャリアにおいて共通であり、例えば15kHzのサブキャリア間隔でリソースブロックを構成し、昇順に番号が付されてよい。参照リソースブロックインデックス0におけるサブキャリアインデックス0は、参照ポイントAと称されてよい(単に“参照ポイント”と称されてもよい)。共通リソースブロックは、参照ポイントAから各サブキャリア間隔設定μにおいて0から昇順で番号が付されるリソースブロックである。上述のリソースグリッドはこの共通リソースブロックにより定義される。物理リソースブロックは、後述する帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックであり、物理リソースブロックは、帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックである。ある物理上りリンクチャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。(TS38.211より)
 次に、サブキャリア間隔設定μについて説明する。上述のようにNRでは、複数のOFDMヌメロロジーがサポートされる。あるBWPにおいて、サブキャリア間隔設定μ(μ=0,1,...,5)と、サイクリックプレフィックス長は、下りリンクのBWPに対して上位レイヤ(上位層)で与えられ、上りリンクのBWPにおいて上位レイヤで与えられる。ここで、μが与えられると、サブキャリア間隔Δfは、Δf=2^μ・15(kHz)で与えられる。
 サブキャリア間隔設定μにおいて、スロットは、サブフレーム内で0からN^{subframe,μ}_{slot}-1に昇順に数えられ、フレーム内で0からN^{frame,μ}_{slot}-1に昇順に数えられる。スロット設定およびサイクリックプレフィックスに基づいてN^{slot}_{symb}の連続するOFDMシンボルがスロット内にある。N^{slot}_{symb}は14である。サブフレーム内のスロットn^{μ}_{s}のスタートは、同じサブフレーム内のn^{μ}_{s} N^{slot}_{symb}番目のOFDMシンボルのスタートと時間でアラインされている。
 次に、サブフレーム、スロット、ミニスロットについて説明する。図3は、サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。同図のように、3種類の時間ユニットが定義される。サブフレームは、サブキャリア間隔によらず1msであり、スロットに含まれるOFDMシンボル数は7または14であり、スロット長はサブキャリア間隔により異なる。ここで、サブキャリア間隔が15kHzの場合、1サブフレームには14OFDMシンボル含まれる。下りリンクスロットはPDSCHマッピングタイプAと称されてよい。上りリンクスロットはPUSCHマッピングタイプAと称されてよい。
 ミニスロット(サブスロットと称されてもよい)は、スロットに含まれるOFDMシンボル数よりも少ないOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。また、ミニスロットを割り当てることを、ノンスロットベースのスケジューリングと称してもよい。また、ミニスロットをスケジューリングされることを参照信号とデータのスタート位置の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。下りリンクミニスロットはPDSCHマッピングタイプBと称されてよい。上りリンクミニスロットはPUSCHマッピングタイプBと称されてよい。
 図4は、スロットフォーマットの一例を示す図である。ここでは、サブキャリア間隔15kHzにおいてスロット長が1msの場合を例として示している。同図において、Dは下りリンク、Uは上りリンクを示している。同図に示されるように、ある時間区間内(例えば、システムにおいて1つのUEに対して割り当てなければならない最小の時間区間)においては、
・下りリンクシンボル
・フレキシブルシンボル
・上りリンクシンボル
のうち1つまたは複数を含んでよい。なお、これらの割合はスロットフォーマットとして予め定められてもよい。また、スロット内に含まれる下りリンクのOFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてもよい。また、スロット内に含まれる上りリンクのOFDMシンボルまたはDFT-S-OFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてよい。なお、スロットをスケジューリングされることを参照信号とスロット境界の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。
 端末装置1は、下りリンクシンボルまたはフレキシブルシンボルで下りリンク信号または下りリンクチャネルを受信してよい。端末装置1は、上りリンクシンボルまたはフレキシブルシンボルで上りリンク信号または下りリンクチャネルを送信してよい。
 図4(a)は、ある時間区間(例えば、1UEに割当可能な時間リソースの最小単位、またはタイムユニットなどとも称されてよい。また、時間リソースの最小単位を複数束ねてタイムユニットと称されてもよい。)で、全て下りリンク送信に用いられている例であり、図4(b)は、最初の時間リソースで例えばPDCCHを介して上りリンクのスケジューリングを行い、PDCCHの処理遅延及び下りから上りの切り替え時間、送信信号の生成を含むフレキシブルシンボルを介して上りリンク信号を送信する。図4(c)は、最初の時間リソースでPDCCHおよび/または下りリンクのPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介してPUSCHまたはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号はHARQ-ACKおよび/またはCSI、すなわちUCIの送信に用いられてよい。図4(d)は、最初の時間リソースでPDCCHおよび/またはPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンクのPUSCHおよび/またはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号は上りリンクデータ、すなわちUL-SCHの送信に用いられてもよい。図4(e)は、全て上りリンク送信(PUSCHまたはPUCCH)に用いられている例である。
 上述の下りリンクパート、上りリンクパートは、LTEと同様複数のOFDMシンボルで構成されてよい。
 図5は、ビームフォーミングの一例を示した図である。複数のアンテナエレメントは1つの送信ユニット(TXRU: Transceiver unit)10に接続され、アンテナエレメント毎の位相シフタ11によって位相を制御し、アンテナエレメント12から送信することで送信信号に対して任意の方向にビームを向けることができる。典型的には、TXRUがアンテナポートとして定義されてよく、端末装置1においてはアンテナポートのみが定義されてよい。位相シフタ11を制御することで任意の方向に指向性を向けることができるため、基地局装置3は端末装置1に対して利得の高いビームを用いて通信することができる。
 以下、帯域部分(BWP)について説明する。BWPは、キャリアBWPとも称される。BWPは、下りリンクと上りリンクのそれぞれに設定されてよい。BWPは、共通リソースブロックの連続するサブセットから選択された連続する物理リソースの集合として定義される。端末装置1は、ある時間に1つの下りリンクキャリアBWPが活性化される4つまでのBWPを設定されうる。端末装置1は、ある時間に1つの上りリンクキャリアBWPが活性化される4つまでのBWPを設定されうる。キャリアアグリゲーションの場合には、BWPは各サービングセルで設定されてもよい。このとき、あるサービングセルにおいてBWPが1つ設定されていることを、BWPが設定されていないと表現されてもよい。また、BWPが2つ以上設定されていることをBWPが設定されていると表現されてもよい。
 <MAC entity 動作> 
 活性化されたサービングセルにおいて、常に一つのアクティブな(活性化された)BWPがある。あるサービングセルに対するBWP切り替え(BWP switching)は、インアクティブな(非活性化された)BWPを活性化(activate)し、アクティブな(活性化された)BWPを非活性化(deactivate)するために使用される。あるサービングセルに対するBWP切り替え(BWP switching)は、下りリンク割り当てまたは上りリンクグラントを示すPDCCHによって制御される。あるサービングセルに対するBWP切り替え(BWP switching)は、さらに、BWPインアクティブタイマー(BWP inactivity timer)や、ランダムアクセスプロシージャの開始時にMACエンティティ自身によって制御されてもよい。SpCell(PCellまたはPSCell)の追加または、SCellの活性化において、一つのBWPが、下りリンク割り当てまたは上りリンクグラントを示すPDCCHを受信することなしに初期的にアクティブである。初期的にアクティブなBWPは、基地局装置3から端末装置1に送られるRRCメッセージで指定されるかもしれない。あるサービングセルに対するアクティブなBWPは、基地局装置3から端末装置1に送られるRRCまたはPDCCHで指定される。アンペアードスペクトラム(Unpaired spectrum)(TDDバンドなど)では、DL BWPとUL BWPはペアされていて、BWP切り替えは、ULとDLに対して共通である。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、アクティブなBWPにおいて、端末装置1のMACエンティティは、ノーマル処理を適用する。ノーマル処理には、UL-SCHを送信する、RACHを送信する、PDCCHをモニタする、PUCCHを送信する、SRSを送信する、およびDL-SCHを受信することを含む。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、インアクティブなBWPにおいて、端末装置1のMACエンティティは、UL-SCHを送信しない、RACHを送信しない、PDCCHをモニタしない、PUCCHを送信しない、SRSを送信しない、およびDL-SCHを受信しない。あるサービングセルが非活性化された場合、アクティブなBWPは、存在しないようにしてもよい(例えば、アクティブなBWPは非活性化される)。
 <RRC 動作>
 RRCメッセージ(報知されるシステム情報や、専用RRCメッセージで送られる情報)に含まれるBWPインフォメーションエレメント(IE)は、BWPを設定するのに使われる。基地局装置3から送信されたRRCメッセージは、端末装置1によって受信される。それぞれのサービングセルに対して、ネットワーク(基地局装置3など)は、少なくとも下りリンクのBWPと1つ(もしサービングセルが上りリンクと設定された場合など)または2つ(付録のアップリンク(supplementary uplink)が使われる場合など)の上りリンクBWPを含む少なくとも初期BWP(initial BWP)を、端末装置1に対して、設定する。さらに、ネットワークは、追加の上りリンクBWPや下りリンクBWPをあるサービングセルに対して設定するかもしれない。BWP設定は、上りリンクパラメータと下りリンクパラメータに分けられる。また、BWP設定は、共通(common)パラメータと専用(dedicated)パラメータに分けられる。共通パラメータ(BWP上りリンク共通IEやBWP下りリンク共通IEなど)は、セル特有である。プライマリセルの初期BWPの共通パラメータは、システム情報でも提供される。他のすべてのサービングセルに対しては、ネットワークは専用信号で共通パラメータを提供する。BWPは、BWP IDで識別される。初期BWPは、BWP IDが0である。他のBWPのBWP IDは、1から4までの値を取る。
 上りリンクBWPの専用パラメータは、SRS設定を含む。上りリンクBWPの専用パラメータに対応する上りリンクBWPが、その上りリンクBWPの専用パラメータに含まれるSRS設定に対応する一つまたは複数のSRSに関連付けられる。
 端末装置1は、1つのプライマリセルと15までのセカンダリセルが設定されてよい。
 端末装置1により使用されるCSIを報告する時間及び周波数リソースは、基地局装置3により制御される。CSIは、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、CRI(CSI-RS Resource Indicator)、LI(Layer Indication)、RI(rank indication)および/またはL1-RSRP(Layer-1 Reference Signal Received Power)の各インデックスを含む。CQI、PMI、CRI、LI、RI、L1-RSRPのために、端末装置1は、N(Nは1以上)のCSI報告に関する設定、M(Mは1以上)のCSI参照信号(CSI-RS)のリソースに関する設定、L(Lは1以上)のリンクを含む1つのCSI測定に関する設定を上位レイヤにより設定される。CSI測定に関する設定は、CSI報告に関する設定のリストと、CSIリソースに関する設定のリストと、リンクの設定のリストと、トリガ状態のリストを含む。以下、それぞれについて説明する。
 CSI報告に関する設定の各々は、1つの下りリンクのBWP(上位レイヤのBWPアイデンティティ)に関連付けられ、CSI報告に関する設定の各々は、報告されるパラメータは以下のものを含む。
・CSI報告に関する設定を識別するための1つのアイデンティティ
・時間領域の動作(例えば、周期的(periodic)、セミパーシステント、または非周期(Aperiodic))
・報告されるCSIパラメータ(例えば、CRI、RI、PMI、CQIなど)
・周波数領域の設定(広帯域CQIまたはサブバンドCQIを設定する情報、広帯域PMIまたはサブバンドPMIを設定する情報がそれぞれ含まれる)
・CSI測定の制限の設定(measurement restriction configuration、チャネル測定と干渉測定のそれぞれに対して設定されてよい)
・コードブック設定(CSIのタイプ(タイプ1かタイプ2かを示す情報)とコードブックサブセット制限の設定)
・1報告あたりのCQIの最大数(1コードワードか2コードワードかを示す情報であってよい)
・CQIテーブルの想定(64QAMまでを含むCQIテーブル、256QAMまでを含むCQIテーブル、URLLCなど)
 CSIリソースに関する設定の各々は、S(Sは1以上)のCSI-RSリソースセットに関する情報を含み、各CSI-RSリソースセットは、複数のCSI-RSリソース(チャネル測定または干渉測定のためのNZPCSI-RSと、干渉測定のためのCSI-IM(Interference Measurement)リソース)と、L1-RSRP計算のために使用されるSS/PBCHブロックのリソースに関する設定を含む。ここで、NZP CSI-RSリソースとは、予め仕様で定義された生成方法に従って系列が生成され、CSI-RSがマッピングされるリソースエレメントにマップされるCSI-RSである。また、CSIリソースに関する設定の各々は、上位レイヤで識別された(identified)BWPに置かれ、1つのCSI報告に関する設定に紐づけられたすべてのCSIリソースに関する設定は、同じBWPである。
 次に、上述のチャネル測定と干渉測定について説明する。チャネル測定は、CSI測定のために下りリンクの所望信号またはチャネルまたは空間多重を想定した場合の各レイヤまたは各コードワードの品質に関する量を測定することであり、干渉測定は、CSI測定のために下りリンクの干渉信号またチャネルまたは空間多重を想定した場合の各レイヤまたはコードワードにおける干渉の量を測定することである。ここでレイヤとは、空間多重されるPDSCHの数である。
 なお、L1-RSRP計算のために使用されるSS/PBCHブロックのリソースに関する設定(ssb-Resources)は、CSIリソースに関する設定の各々に含まれてもよい。
 また、CSIリソースに関する設定の各々に、CSI―RSリソースの時間領域の動作が含まれてよい。また、各CSI-RSリソースセットに関する設定に、CSI―RSリソースの時間領域の動作が含まれてもよい。
 各リンクの設定は、CSI報告に関する設定のインディケーションと、CSI設定のインディケーションと、チャネル測定か干渉測定のどちらを測定するかを示すインディケーションを含む。また、各リンクの設定は、1つまたは複数の非周期なCSI報告のためのCSI報告に関する設定を動的に選択するための複数のトリガ状態を含んでよい。
 各トリガ状態は、1つまたは複数のCSI報告に関する設定に関連付けられ、各CSI報告に関する設定は、1つまたは複数の周期的またはセミパーシステントまたは非周期のCSI参照信号に関する設定に紐づけられている。ここで、紐づけられたCSIリソースに関する設定の数により端末装置は下記を想定してよい。
・1つのCSIリソースに関する設定が設定された場合、そのリソース設定はL1-RSRP計算のためのチャネル測定のためである
・2つのCSIリソースに関する設定が設定された場合、1つめのCSIリソースに関する設定はチャネル測定のためであり、2つめのCSIリソースに関する設定は、CSI-IMまたはNZP CSI-RSリソース上での干渉測定のためである。
・3つのCSIリソースに関する設定が設定された場合、1つめのCSIリソースに関する設定はチャネル測定のためであり、2つめのCSIリソースに関する設定は、CSI-IMリソース上での干渉測定のためであり、3つめのCSIリソースに関する設定はNZP CSI-RSリソース上での干渉測定のためである。
 CSI測定のために、端末装置1は、下記を想定してよい。
・干渉測定のために設定された各NZP CSI-RSポートは干渉の送信レイヤに対応すること、
・NZP CSI-RSポート上のすべての干渉の送信レイヤが、関連付けられたEPRE(Energy per resource element)が考慮されていること、および
・チャネル測定のためのNZP CSI-RSリソース、または干渉測定のためのCSI-RSリソース、または干渉測定のためのCSI-IMリソース上に他の干渉信号があること
 ここで、EPREは、リソースエレメントあたりのNZP CSI-RSのエネルギーを表す。具体的には、基地局装置3は、NZP CSI-RSのEPREに対するPDSCH EPREの比(Pc)、NZP CSI-RSのEPREに対するPDCCH EPREの比(Pc-PDCCH)、NZP CSI-RSのEPREに対するSS/PBCHブロックのEPREの比(Pc_SS)がそれぞれ設定される。これにより、CSI-RS EPREを設定されたエネルギーの比からCSI測定にEPREを考慮することができる。
 端末装置1はCSI報告に際して、あるスロットがCSIの各インデックス算出に有効なダウンリンクスロットかを判定しても良い。より具体的には、あるスロットが以下の条件を満たすときに有効なダウンリンクスロットと判定する。
・上位レイヤ設定により少なくとも1シンボル以上の下りリンクシンボルまたはフレキシブルシンボルを含む、かつ
・端末装置1にとってモビリティ測定用のギャップ区間でない、かつ
・少なくとも一回以上のチャネル測定か干渉測定用のCSIリソースの送信機会がある。
 ここで、空間パラメータの切り替えに伴い、当該のスロットに割り当てられたPDSCHの受信に用いる空間パラメータが、CSI測定のために端末装置1に設定したNZP CSI-RSの空間パラメータと異なり得る。具体的には、CSI測定にてNZP CSI-RSリソースとQCL想定を設定した参照信号と、PDSCH DMRSにQCL想定を設定または指示された参照信号とが異なってもよい。このとき端末装置1はPDSCHを受信するための空間パラメータへの切り替えを行い、当該スロットでのNZP CSI-RSリソースの受信にも同一の空間パラメータを適用する動作となる。このため、予め設定されたNZP CSI-RSリソースの受信に用いる空間パラメータとは異なる空間パラメータを適用する動作となるため、事前に期待されたCSIの各インデックスの算出は行えない事となる。このため、端末装置1は、空間パラメータの切り替えに伴い、当該のスロットに割り当てられたPDSCHの受信に用いる空間パラメータが、有効なスロットか判定するスロットにおけるCSI参照信号の空間パラメータと異なる場合には、当該スロットは有効なスロットでないものと判定する。
 端末装置1は、NZP CSI-RSリソースの時間領域の動作が周期的またはセミパーシステントである場合、前述の有効でないスロットを含めず、過去に観測した有効なスロットにおけるNZP CSI-RSリソースを用いて、CSIの各インデックスであるCQI、PMI、CRI、LI、RI、L1-RSRPの少なくとも一つを算出し、報告する。
 CSI-RSリソースセットの時間領域の動作が非周期であるCSI-RSリソースセットのために、1つまたは複数のコンポーネントキャリアでのチャネル測定および/または干渉測定のための1つまたは複数のCSI報告に関する設定および/または1つまたは複数のCSI-RSリソースセットのためのトリガ状態が上位レイヤで設定される。非周期のCSI報告のトリガのために、1つのCSIトリガ状態のセットが上位レイヤのパラメータで設定され、CSIトリガ状態は、DL BWPのいずれか1つの候補に関連付けられる。端末装置1は、活性化されていない下りリンクBWPのためのCSI報告をトリガされることを期待しない。各トリガ状態は、DCI(例えば、DCIフォーマット0_1)に含まれるCSIリクエストフィールドを用いて開始される。
 端末装置1は、NZP CSI-RSリソースの時間領域の動作が非周期的である場合、前述の有効でないスロットでのCSI算出を指示された場合には、CSI算出および報告を実施しない一方、チャネル状態情報要求を含んだDCIフォーマット0_1の指示に沿って上りデータ信号を生成し送信する。このときの上りデータ信号は、下りリンクデータへのHARQ応答信号または上りリンクデータとしてよい。また端末装置1は、前述の有効でないスロットでのCSI算出を指示された場合には、当該のDCIが有効でないと判断し、上りグラントを無視して、上りリンク信号を送信しないこととしてもよい。
 端末装置1により使用されるSRSを送信する時間及び周波数リソースは、基地局装置3により制御される。より具体的には、前述のBWPに関し上位レイヤにより付与される設定は、SRSに関する設定を含む。SRSに関する設定は、SRSリソースの設定と、SRSリソースセットに関する設定と、トリガ状態の設定を含む。以下、それぞれについて説明する。
 一つまたは複数のSRSリソースが設定された場合について説明する。基地局装置3は、端末装置1に対して複数のSRSリソースを設定する。複数のSRSリソースは、上りリンクスロットの後方の複数シンボルに関連付けられる。例えば、4つSRSリソースが設定され、スロットの後方の4シンボルのうち、それぞれのシンボルに各SRSリソースが関連付けられているとする。端末装置1は、SRSシンボルに送信ビーム(送信フィルタ)を用いて送信する。
 一例として、4つのSRSシンボル(それぞれS1、S2、S3、S4と表記する)を用いてSRSリソース(それぞれSRSリソース#1,#2,#3,#4と表記する)が設定された場合を説明する。S1がSRSリソース#1に関連付けられたSRSリソース、S2がSRSリソース#2に関連付けられたSRSリソース、S3がSRSリソース#3に関連付けられたSRSリソース、S4がSRSリソース#4に関連付けられたSRSリソースとし、端末装置1は、この設定に基づいてそれぞれのリソースでそれぞれ送信ビームを適用してSRSを送信する。
 端末装置1は、SRSリソース毎に異なる送信アンテナポートを用いて送信してよい。例えば、S1ではアンテナポート10、S2ではアンテナポート11、S3ではアンテナポート12、S4ではアンテナポート13を用いてSRSを送信してよい。
 端末装置1は、SRSリソース毎に複数の送信アンテナポートまたは送信アンテナポートグループを用いて送信してよい。例えば、S1ではアンテナポート10および11、S2ではアンテナポート12および13を用いて送信してよい。
 SRSリソースの設定には、空間関係情報(Spatial Relation Info)を含む。空間関係情報は、別途適用した受信または送信フィルタ設定を、サウンディング参照信号の送信フィルタに適用し、ビーム利得を獲得するための情報である。別途適用した受信または送信フィルタ設定の特定のため、受信または送信する信号として同期信号のブロック、CSI参照信号、サウンディング参照信号、のいずれかを設定する。
 またSRSリソースの設定には、空間関係情報に加え、下記の情報エレメントの少なくとも1つまたは複数を含んでよい。
(1)サウンディング参照信号を送信するシンボルに関する情報またはインデックス
(2)サウンディング参照信号を送信するアンテナポートに関する情報
(3)サウンディング参照信号の周波数ホッピングパターン
 端末装置1は、1つまたは複数のSRSリソース設定を含むSRSリソースセットが設定されても良い。
 SRSリソースセット設定は、セットに含まれるSRSリソースに適用する送信電力制御に関する情報に加え、対応CSI参照信号(associatedCSI-RS)の情報を含んでも良い。
 SRSリソース設定および/またはSRSリソースセット設定には、時間領域の動作を設定する情報を含んでも良い。時間領域の動作を設定する情報は、周期的(periodic)、セミパーシステント(semi-persistent)、非周期(aperiodic)のいずれかを設定する。
 基地局装置3は、設定した各SRSリソースのうち、1つまたは複数を選択してPUSCHの送信のためにSRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、設定された各SRSリソースのうち、SRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1は、指定されたSRSリソースに関連付けられたDMRS(demodulation reference signal)の一つまたは複数のアンテナポート、および/またはPUSCHの一つまたは複数のアンテナポートを用いて、PUSCH送信を行う。例えば、端末装置1は4つのSRSリソースで送信ビーム#1~#4を用いてSRSを送信し、基地局装置3からSRIとしてSRSリソース#2が指示された場合、端末装置1は、送信ビーム#2を用いてPUSCHを送信してもよい。また、複数のSRSリソースが指示された場合には、指示されたSRIに関連付けられたSRSリソースで用いた複数の送信ビームを用いてMIMO空間多重(MIMO SM:Multiple Input Multiple Output Spatial Multiplexing)によりPUSCHを送信してもよい。
 基地局装置3は、設定した各SRSリソースのうち、1つまたは複数を選択してPUCCHの送信のためにSRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。PUCCHに関連付けられたSRSリソースを特定するための情報が、下りリンクリソース割り当てを行うDCIに含められる。端末装置1は、下りリンクリソース割り当てを行うDCIに基づいて、PDSCHをデコードし、下りリンクリソース割り当てを行うDCIで示されたPUCCHリソースで、HARQ-ACKを送信する。端末装置1は、設定された各SRSリソースのうち、SRI(SRS Resource Index)、SRSリソースに関連付けられたインデックス、またはSRIに関連付けられたインデックスをDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1は、指定されたSRSリソースに関連付けられたDMRS(demodulation reference signal)の一つまたは複数のアンテナポート、および/またはPUCCHの一つまたは複数のアンテナポートを用いて、PUCCH送信を行う。
 基地局装置3は、各SRSリソースのうち時間領域の動作を周期的と設定したSRSリソースにつき、周期およびオフセットの情報を関連付け、DCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、各SRSリソースのうち時間領域の動作を周期的と設定したSRSリソースにつき、SRSリソースに関連付けられた、送信周期およびオフセットの情報を用いて、周期的にSRS送信を行う。
 基地局装置3は、各SRSリソースのうち時間領域の動作をセミパーシステントと設定したSRSリソースにつき、周期およびオフセットの情報を関連付け、DCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。 基地局装置3は、各SRSリソースのうち時間領域の動作をセミパーシステントと設定したSRSリソースにつき、SRSリソースの活性化/非活性化をDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、設定された各SRSリソースのうち時間領域の動作をセミパーシステントと設定したSRSリソースにつき、SRSリソースの活性化/非活性化をDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1は活性化の指示を受信した際、指定されたSRSリソースに関連づけられた、SRSを送信するシンボルに関する情報またはインデックス、および/またはSRSを送信するアンテナポートに関する情報、および/またはSRSの周波数ホッピングパターンの情報を用いて、指定されたSRSリソースに関連付けられた、周期およびオフセットの情報を用いて、周期的にSRS送信を行う。端末装置1は非活性化の指示を受信した際、指定されたSRSリソースのSRS送信を停止する。
 基地局装置3は、各SRSリソースのうち時間領域の動作を非周期的と設定したSRSリソースにつき、SRS送信要求をDCIまたはMAC CE、RRCシグナリングにより端末装置1に指示してよい。端末装置1は、設定された各SRSリソースのうち時間領域の動作を非周期的と設定したSRSリソースにつき、SRS送信要求をDCIまたはMAC CE、RRCシグナリングにより基地局装置3から受信してもよい。端末装置1はSRS送信要求を受信した際、指定されたSRSリソースに関連づけられた、SRSを送信するシンボルに関する情報またはインデックス、および/またはSRSを送信するアンテナポートに関する情報、および/またはSRSの周波数ホッピングパターンの情報を用いて、指定されたSRSリソースに関連付けられた、周期およびオフセットの情報を用い、SRS送信を行う。SRS送信要求は、1つまたは複数のトリガ状態を含み、各SRSリソース設定および/または各SRSリソースセット設定のうち時間領域の動作を非周期的と設定した、各SRSリソース設定および/または各SRSリソースセット設定は、1つまたは複数のトリガ状態に関連付けられる。
 次に、トリガ状態の設定を説明する。各トリガ状態は、1つまたは複数のSRSリソースセットに関する設定に関連付けられている。
 時間領域の動作が非周期であるSRSリソースセットのために、1つまたは複数のコンポーネントキャリアでの上りリンクチャネル状態情報(CSI)および/またはチャネルサウンディングおよび/またはビームマネジメントのための、1つまたは複数のSRSリソースセットにおけるSRS送信のためのトリガ状態が上位レイヤで設定される。非周期のSRSリソースセットにおけるSRS送信のトリガのために、1つのSRSトリガ状態のセットが上位レイヤのパラメータで設定される。各トリガ状態は、DCI(例えば、DCIフォーマット0_1、DCIフォーマット1_1、DCIフォーマット2_3)に含まれるSRS要求フィールドを用いて指示される。
 このとき、端末装置は、下記の動作を行う。
 ・SRS要求フィールドの値が0の場合、SRS送信は要求されない
 ・SRS要求フィールドの値が1または2または3の場合、対応するトリガ状態に関連付けられたSRSリソースセットに関する設定に基づいて、SRS送信を行う。このとき端末装置は、SRSリソースセットから、SRSリソースに関する設定に含まれる設定情報に基づいてSRSを送信する。
 各SRSリソースセットに関する設定には、時間領域の動作を設定する情報、空間関係情報に関する信号のインデックスまたはアイデンティティを含む。
 つづいて、あるサービングセル#1におけるSRSに関するRRCの設定およびSRS要求フィールドの一例を示す。ここではサービングセルに設定されているBWPの数が2であるとする。サービングセル#1のSRSに関する情報に、サービングセル#1におけるBWPインデックス#1に関する設定のリストが設定されており、リスト内に、SRSリソースセットに関する設定が4つ設定されている。そのうち、非周期なSRSリソースセットの設定は、SRSリソースセットに関する設定#1~#3とする。
 SRSリソースセットに関する設定#1は、トリガ状態#1に関連付けられ、SRSリソースセットに関する設定#2は、トリガ状態#2に関連付けられ、SRSリソースセットに関する設定#3は、トリガ状態#3に関連付けられている。SRS要求フィールドの“00”はSRSを送信しない。“01”にトリガ状態#0、“10”にトリガ状態#1、“11”にトリガ状態#2がそれぞれ関連付けられている。
 端末装置1は、RRCで設定されたSRSに関する設定と、DCIに含まれるSRS要求フィールドの値に基づいて関連付けられたSRSリソースセットに関する設定に基づいて、SRSを送信する。このとき、端末装置1は、SRSに関する設定に関連付けられたSRSリソースセットに関する設定から、SRSに関する設定に含まれる設定情報に基づいてSRSを送信する。
 また、各SRSに関する設定は、サービングセル内のBWPと関連付けられている。一例として、SRS設定#1は、BWPインデックス#1に関連付けられてもよい。
 ここで、上述の例ではSRS要求フィールドの1つの値に、1つのSRSリソースセットに関する設定が設定されたが、複数のSRSリソースセットが関連付けられるようにしてもよい。
 ある2つのサービングセルにおけるRRCで設定されるSRSの設定およびSRS要求フィールドの例を示す。ここで、時間動作が非周期であるSRSリソースセットに関する設定の各々は、トリガ状態が関連付けられている。
 端末装置1は、SRS要求フィールドの値として10が指示された場合には、サービングセル#1におけるSRSリソースセットを送信する。すなわち、SRS要求フィールドの値(情報)は複数のトリガ状態のうちの1つを示し、複数のトリガ状態の各々は、サービングセルごとに設定され、1つまたは複数のSRSリソースセットの設定に関連付けられる。なお、SRS要求フィールドの値はSRS要求フィールドに含まれる情報と換言されてもよい。
 ここで、SRS設定#2のBWPインデックスとして、設定されたBWPの実際のインデックスではなく“active”が設定されている。これは、活性化されたBWPと関連付けられていることを意味する。例えば、端末装置1に対して、あるスロットにおいてBWPインデックス#1を示すBWPが活性化されている場合、SRS設定#2は活性化されているBWPインデックス#1に対応する設定であり、端末装置1は対応するBWP#1のSRSリソースセットを送信する。すなわち、PDCCHのDCIに含まれるSRS要求フィールドは、トリガ状態を含み、各トリガ状態は1つまたは複数のSRSリソースセットに関する設定に関連付けられ、SRS設定は、サービングセルcの活性化されたBWPに関連付けられるように設定されてもよい。
 続いて、2つのサービングセルが設定された場合の例を示す。ここでは、サービングセル数として2つが設定され、各セルで、非周期のSRSリソースセットに関する設定にトリガ状態が割り当てられる例を示す。SRS要求フィールドには複数の非周期のSRSリソースセットに関する設定が関連付けられてもよく、サービングセル#1のトリガ状態#0と、サービングセル#2のトリガ状態#0がコードポイント“01”に設定されることとする。
 ここで、あるスロットにおいて、端末装置1に対してSRS要求フィールドの値として“10”が指示された場合、端末装置1はサービングセル#1のBWP#1のSRSリソースセットと、サービングセル#2のBWP#1のSRSリソースセットを送信する。このとき、サービングセル#1のBWP#1とサービングセル#2のBWP#1がともに活性化されている場合、端末装置1はサービングセル#1のBWP#1とサービングセル#2のBWP#1のSRSリソースセットを送信する。
 また、サービングセル#1のBWP#1が活性化されており、サービングセル#2のBWP#2が活性化されている場合、末装置1はサービングセル#1のBWP#1のCSIを報告する。このように、複数のサービングセルが設定され、SRS要求フィールドの値により指示された各サービングセルのSRSリソースセットを送信する。すなわち、端末装置1は、SRS要求フィールドを含むDCIを運ぶPDCCHを受信し、SRS要求フィールドに基づいて複数のサービングセルにおけるBWPのSRS送信要求がトリガされた場合に、活性化されているBWPインデックスが示すBWPのCSI報告を送信する。このとき、SRS要求フィールドはトリガ状態を示し、トリガ状態は、複数の状態のうち1つを示す。複数の状態の各々の状態は、サービングセル毎に設定され、1つまたは複数のSRSリソースセットに関する設定および1つまたは複数のSRSリソースセットに関する設定および各サービングセルにおけるBWPインデックスに関連付けられる。
 上述の例では、各サービングセルのSRSリソースセットに関する設定がBWPインデックスに関する設定に常に関連付けられている場合を示したが、BWPが1つの場合には関連付ける情報が設定されなくてよい。この場合、サービングセルの帯域幅に基づいてSRSリソースセットを送信してよい。
 また、上述の例ではSRSリソースセットに関する設定にトリガ状態のインデックスを示す情報を含んだが、SRSリソースセットに関する設定がトリガ状態のリストを含み、各トリガ状態がどのSRSリソースセットに関する設定を含むかが設定されてもよい。
 以下、サウンディング参照信号送信に適用する空間ドメイン送信フィルタについて説明する。
 前述のように、基地局装置3は端末装置1に対し、あるSRSリソースセットの設定に対応CSI参照信号(associatedCSI-RS)を設定することができる。あるCSI参照信号を対応CSI参照信号として設定された端末装置1は、各種下りリンク信号を受信する。端末装置1は、各種下りリンク信号のうち、SRSの設定によりSRSリソースセットに関連づけられた対応CSI参照信号を特定し、対応CSI参照信号を受信した際に適用した空間ドメイン受信フィルタを特定する。さらに端末装置1は、当該のSRSリソースセットを送信する際に、前記空間ドメイン受信フィルタを空間ドメイン送信フィルタとして適用し、SRSリソースセットを送信する。また、時間動作が非周期であるSRSリソースセットに対する空間関係情報の設定として、空間関係情報を設定するCSI参照信号に時間領域の動作を非周期的と設定したNZP CSI-RSリソースを設定してもよく、SRS要求のDCIによりNZP CSI-RSリソースの送信指示としてもよい。
 次に、空間パラメータの切り替えを勘案した空間ドメイン受信フィルタの特定およびSRSリソース送信について説明する。空間パラメータの切り替えに伴い、当該のスロットに割り当てられたPDSCHの受信に用いる空間パラメータが、SRS設定で端末装置1に設定した対応CSI参照信号の空間パラメータと異なり得る。具体的には、SRS設定にてNZP CSI-RSリソースとQCL想定を設定した参照信号と、PDSCH DMRSにQCL想定を設定または指示された参照信号とが異なってもよい。このとき端末装置1はPDSCHを受信するための空間パラメータへの切り替えを行い、当該スロットでのNZP CSI-RSリソースの受信にも同一の空間パラメータを適用する動作となる。このため、予め設定されたNZP CSI-RSリソースの受信に用いる空間パラメータとは異なる空間パラメータを適用する動作となるため、事前に期待された空間ドメイン送信フィルタの算出は行えない事となる。
 端末装置1は、SRS設定にてNZP CSI-RSリソースとQCL想定を設定した参照信号と、PDSCH DMRSにQCL想定を設定または指示された参照信号とが異なる場合、過去のSRSリソースの送信に適用した空間ドメイン送信フィルタを用いて、SRSリソースを送信する。また端末装置1は、SRS設定にてNZP CSI-RSリソースとQCL想定を設定した参照信号と、PDSCH DMRSにQCL想定を設定または指示された参照信号とが異なる場合、SRSリソースの送信を行わず、次回のCSI参照信号の受信タイミング以降にSRSリソースを送信することとしてもよい。
 本実施形態の一態様は、LTEやLTE-A/LTE-A Proといった無線アクセス技術(RAT: Radio Access Technology)とのキャリアアグリゲーションまたはデュアルコネクティビティにおいてオペレーションされてもよい。このとき、一部またはすべてのセルまたはセルグループ、キャリアまたはキャリアグループ(例えば、プライマリセル(PCell: Primary Cell)、セカンダリセル(SCell: Secondary Cell)、プライマリセカンダリセル(PSCell)、MCG(Master Cell Group)、SCG(Secondary Cell Group)など)で用いられてもよい。また、単独でオペレーションするスタンドアローンで用いられてもよい。デュアルコネクティビティオペレーションにおいては、SpCell(Special Cell)は、MACエンティティがMCGに関連付けられているか、SCGに関連付けられているかに応じて、それぞれ、MCGのPCellまたは、SCGのPSCellと称する。デュアルコネクティビティオペレーションでなければ、SpCell(Special Cell)は、PCellと称する。SpCell(Special Cell)は、PUCCH送信と、競合ベースランダムアクセスをサポートする。
 以下、本実施形態における装置の構成について説明する。ここでは、下りリンクの無線伝送方式として、CP-OFDM、上りリンクの無線伝送方式としてCP-OFDMまたはDFTS-OFDM(SC-FDM)を適用する場合の例を示している。
 図7は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、上位層処理部101、制御部103、受信部105、送信部107と送受信アンテナ109を含んで構成される。また、上位層処理部101は、無線リソース制御部1011、スケジューリング情報解釈部1013、チャネル状態情報報告制御部1015、および、サウンディング参照信号制御部1017を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057と測定部1059を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077と上りリンク参照信号生成部1079を含んで構成される。
 上位層処理部101は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行う。
 上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報の管理をする。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。
 上位層処理部101が備えるスケジューリング情報解釈部1013は、受信部105を介して受信したDCI(スケジューリング情報)の解釈をし、前記DCIを解釈した結果に基づき、受信部105、および送信部107の制御を行うために制御情報を生成し、制御部103に出力する。
 CSI報告制御部1015は、測定部1059に、CSI参照リソースに関連するチャネル状態情報(RI/PMI/CQI/CRI)を導き出すよう指示する。CSI報告制御部1015は、送信部107に、RI/PMI/CQI/CRIを送信するよう指示をする。CSI報告制御部1015は、測定部1059がCQIを算出する際に用いる設定をセットする。
 サウンディング参照信号制御部1017は、上りリンク参照信号生成部1079に、SRSリソース設定に関連する情報を導き出すよう指示する。サウンディング参照信号制御部1017は、送信部107に、SRSリソースを送信するよう指示をする。サウンディング参照信号制御部1017は、上りリンク参照信号生成部1079がSRSを生成する際に用いる設定をセットする。またサウンディング参照信号制御部1017は、制御部103に、空間関係情報および/または対応CSI参照信号の情報を出力する。またサウンディング参照信号制御部1017は、受信部105より入力された空間ドメイン受信フィルタを、送信部107に出力する。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行う制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行う。また制御部103は、サウンディング参照信号制御部1017から入力された空間関係情報および/または対応CSI参照信号の情報を、受信部105および/または送信部107に出力する。受信部105は、制御部103から入力された空間関係情報および/または対応CSI参照信号の情報に対応する下りリンク信号を受信する際に用いた空間ドメイン受信フィルタを、サウンディング参照信号制御部1017に出力する。
 無線受信部1057は、送受信アンテナ109を介して受信した下りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去し、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 多重分離部1055は、抽出した信号を下りリンクのPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部1055は、測定部1059から入力された伝搬路の推定値から、PDCCHおよびPUSCHの伝搬路の補償を行う。また、多重分離部1055は、分離した下りリンク参照信号を測定部1059に出力する。
 復調部1053は、下りリンクのPDCCHに対して、復調を行い、復号化部1051へ出力する。復号化部1051は、PDCCHの復号を試み、復号に成功した場合、復号した下りリンク制御情報と下りリンク制御情報が対応するRNTIとを上位層処理部101に出力する。
 復調部1053は、PDSCHに対して、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM、256QAM等の下りリンクグラントで通知された変調方式の復調を行い、復号化部1051へ出力する。復号化部1051は、下りリンク制御情報で通知された伝送または原符号化率に関する情報に基づいて復号を行い、復号した下りリンクデータ(トランスポートブロック)を上位層処理部101へ出力する。
 測定部1059は、多重分離部1055から入力された下りリンク参照信号から、下りリンクのパスロスの測定、チャネル測定、および/または、干渉測定を行う。測定部1059は、測定結果に基づいて算出したCSI、および、測定結果を上位層処理部101へ出力する。また、測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。
 送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ109を介して基地局装置3に送信する。また、送信部107は、サウンディング参照信号制御部1017から入力された空間ドメイン受信フィルタを、多重部1075へ出力する。
 符号化部1071は、上位層処理部101から入力された上りリンク制御情報、および、上りリンクデータを符号化する。変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の変調方式で変調する。
 上りリンク参照信号生成部1079は、基地局装置3を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称する。)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。また、上りリンク参照信号生成部は、SRSリソースの送信に際し適用した空間ドメイン送信フィルタを、多重部1075に出力する。
 多重部1075は、PUSCHのスケジューリングに用いられる情報に基づき、空間多重されるPUSCHのレイヤの数を決定し、MIMO空間多重(MIMO SM: Multiple Input Multiple Output Spatial Multiplexing)を用いることにより同一のPUSCHで送信される複数の上りリンクデータを、複数のレイヤにマッピングし、このレイヤに対してプレコーディング(precoding)を行う。
 多重部1075は、制御部103から入力された制御信号に従って、PUSCHの変調シンボルを離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部1075は、PUCCHおよび/またはPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部1075は、PUCCHおよび/またはPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。また、多重部1075は、送信部107より入力された空間ドメイン受信フィルタまたは上りリンク参照信号生成部1079より入力された空間ドメイン送信フィルタを用い、上りリンクデータおよび上りリンク参照信号に対してプレコーディング(precoding)を行う。
 無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDM方式の変調を行い、SC-FDM変調されたSC-FDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ109に出力して送信する。
 図8は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011、スケジューリング部3013、チャネル状態情報報告制御部3015、および、サウンディング参照信号制御部3017を含んで構成される。また、受信部305は、復号化部3051、復調部3053、多重分離部3055、無線受信部3057と測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077と下りリンク参照信号生成部3079を含んで構成される。
 上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行う。また、上位層処理部301は、受信部305、および送信部307の制御を行うために制御情報を生成し、制御部303に出力する。
 上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、送信部307に出力する。また、無線リソース制御部3011は、端末装置1各々の各種設定情報の管理をする。
 上位層処理部301が備えるスケジューリング部3013は、受信したCSIおよび測定部3059から入力された伝搬路の推定値やチャネルの品質などから、物理チャネル(PDSCHまたはPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHまたはPUSCH)の伝送符号化率および変調方式および送信電力などを決定する。スケジューリング部3013は、スケジューリング結果に基づき、受信部305、および送信部307の制御を行うために制御情報を生成し、制御部303に出力する。スケジューリング部3013は、スケジューリング結果に基づき、物理チャネル(PDSCHまたはPUSCH)のスケジューリングに用いられる情報(例えば、DCI(フォーマット))を生成する。
 上位層処理部301が備えるチャネル状態情報報告制御部3015は、端末装置1のCSI報告を制御する。サウンディング参照信号制御部3017は、端末装置1がSRSを生成する際に用いる設定を、送信部307を介して、端末装置1に送信する。また上位層処理部301が備えるサウンディング参照信号制御部3017は、端末装置1のSRS送信を制御する。サウンディング参照信号制御部3017は、端末装置1がSRSを生成する際に用いる設定を、送信部307を介して、端末装置1に送信する。
 制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行う制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行う。
 受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ309を介して端末装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。無線受信部3057は、送受信アンテナ309を介して受信された上りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 無線受信部3057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去する。無線受信部3057は、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部3055に出力する。
 多重分離部1055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。尚、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各端末装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行われる。また、多重分離部3055は、測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行う。また、多重分離部3055は、分離した上りリンク参照信号を測定部3059に出力する。
 復調部3053は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK(Binary Phase Shift Keying)、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置1各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行う。復調部3053は、端末装置1各々に上りリンクグラントで予め通知した空間多重される系列の数と、この系列に対して行うプリコーディングを指示する情報に基づいて、MIMO SMを用いることにより同一のPUSCHで送信された複数の上りリンクデータの変調シンボルを分離する。
 復号化部3051は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、又は自装置が端末装置1に上りリンクグラントで予め通知した伝送または原符号化率で復号を行い、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号化部3051は、上位層処理部301から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行う。測定部3059は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。
 送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力された下りリンク制御情報、下りリンクデータを符号化、および変調し、PDCCH、PDSCH、および下りリンク参照信号を多重または別々の無線リソースで、送受信アンテナ309を介して端末装置1に信号を送信する。
 符号化部3071は、上位層処理部301から入力された下りリンク制御情報、および下りリンクデータを符号化する。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の変調方式で変調する。
 下りリンク参照信号生成部3079は、基地局装置3を識別するための物理セル識別子(PCI)などを基に予め定められた規則で求まる、端末装置1が既知の系列を下りリンク参照信号として生成する。
 多重部3075は、空間多重されるPDSCHのレイヤの数に応じて、1つのPDSCHで送信される1つまたは複数の下りリンクデータを、1つまたは複数のレイヤにマッピングし、該1つまたは複数のレイヤに対してプレコーディング(precoding)を行う。多重部3075は、下りリンク物理チャネルの信号と下りリンク参照信号を送信アンテナポート毎に多重する。多重部3075は、送信アンテナポート毎に、下りリンク物理チャネルの信号と下りリンク参照信号をリソースエレメントに配置する。
 無線送信部3077は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行い、OFDM変調されたOFDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ309に出力して送信する。
 (1)より具体的には、本発明の第1の態様における端末装置1は、第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信する受信部を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
 (2)本発明の第2の態様における端末装置1において、前記第1のサービングセルの上りリンクグラントを示す第1のPDCCHを受信する受信部を備え、前記第1のチャネル状態情報算出用参照信号は、周期的またはセミパーシステントまたは非周期的の送信方法が適用され、前記第1のPDCCHにて前記第1のチャネル状態情報算出用参照信号を用いる第1のチャネル状態報告要求を受信し、前記第1のチャネル状態報告要求に対応したスロットが有効なダウンリンクスロットでない場合に、チャネル状態報告を含めず第1の上りリンク信号を送信する。
 (3)本発明の第3の態様における端末装置1において、前記第1のサービングセルの上りリンクグラントを示す第1のPDCCHを受信する受信部を備え、前記第1のチャネル状態情報算出用参照信号は、周期的またはセミパーシステントまたは非周期的の送信方法が適用され、前記第1のPDCCHにて前記第1のチャネル状態情報算出用参照信号を用いる第1のチャネル状態報告要求を受信し、前記第1のチャネル状態報告要求に対応したスロットが有効なダウンリンクスロットでない場合に、前記第1のPDCCHで指示された上りリンク信号を送信しない。
 (4)本発明の第4の態様における基地局装置3は、第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信する送信部と、PDSCHを送信する送信部と、を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて参照されたCQIインデックスを受信する。
 (5)本発明の第5の態様における通信方法は、端末装置の通信方法であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信しPDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
 (6)本発明の第6の態様における通信方法は、基地局装置の通信方法であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信し、PDSCHを送信し、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されるCQIインデックスを受信する。
 (7)本発明の第7の態様における集積回路は、端末装置に実装される集積回路であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信する受信手段と、PDSCHを受信する受信手段と、を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて、CQIインデックスを算出する。
 (8)本発明の第8の態様における集積回路は、基地局装置に実装される集積回路であって、第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信する送信手段と、PDSCHを送信する送信手段と、を備え、PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、前記CSI参照リソースに基づいて算出されるCQIインデックスを受信する。
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。
 なお、本発明に関わる実施形態では、基地局装置と端末装置で構成される通信システムに適用される例を記載したが、D2D(Device to Device)のような、端末同士が通信を行うシステムにおいても適用可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。

Claims (11)

  1.  端末装置であって、
     第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信する受信部を備え、
     PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、
     あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
     前記CSI参照リソースに基づいて、CQIインデックスを算出する、
     端末装置。
  2.  前記第1および/または第2のQCL想定は、受信空間パラメータである、請求項1に記載の端末装置。
  3.  前記第1のチャネル状態情報算出用参照信号は、周期的またはセミパーシステントの送信方法が適用される、請求項1または2に記載の端末装置。
  4.  請求項1または2に記載の端末装置であって、
     前記第1のサービングセルの上りリンクグラントを示す第1のPDCCHを受信する受信部、
     とを備え、
     前記第1のチャネル状態情報算出用参照信号は、周期的またはセミパーシステントまたは非周期的の送信方法が適用され、前記第1のPDCCHにて前記第1のチャネル状態情報算出用参照信号を用いる第1のチャネル状態報告要求を受信し、
     前記第1のチャネル状態報告要求に対応したスロットが有効なダウンリンクスロットでない場合に、チャネル状態報告を含めず第1の上りリンク信号を送信する、
     端末装置。
  5.  前記第1の上りリンク信号はPDSCHへのHARQ応答信号または上りリンクデータとする、請求項4に記載の端末装置。
  6.  請求項1または2に記載の端末装置であって、
     前記第1のサービングセルの上りリンクグラントを示す第1のPDCCHを受信する受信部を備え、前記第1のチャネル状態情報算出用参照信号は、周期的またはセミパーシステントまたは非周期的の送信方法が適用され、前記第1のPDCCHにて前記第1のチャネル状態情報算出用参照信号を用いる第1のチャネル状態報告要求を受信し、
     前記第1のチャネル状態報告要求に対応したスロットが有効なダウンリンクスロットでない場合に、
     前記第1のPDCCHで指示された上りリンク信号を送信しない、
     端末装置。
  7.  基地局装置であって、
     第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信する送信部と、PDSCHを送信する送信部と、
     を備え、
     PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、
     あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
    前記CSI参照リソースに基づいて参照されたCQIインデックスを受信する、
     基地局装置。
  8.  端末装置の通信方法であって、
     第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信し
     PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、
     あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
     前記CSI参照リソースに基づいて、CQIインデックスを算出する、
     通信方法。
  9.  基地局装置の通信方法であって、
     第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信し、PDSCHを送信し、
     PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、
     あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
     前記CSI参照リソースに基づいて算出されるCQIインデックスを受信する、
     通信方法。
  10.  端末装置に実装される集積回路であって、
     第1のサービングセルの第1のチャネル状態情報算出用参照信号を受信する受信手段と、PDSCHを受信する受信手段と、
     を備え、
     PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、
     あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
     前記CSI参照リソースに基づいて、CQIインデックスを算出する、
     集積回路。
  11.  基地局装置に実装される集積回路であって、
     第1のサービングセルの第1のチャネル状態情報算出用参照信号を送信する送信手段と、PDSCHを送信する送信手段と、
     を備え、
     PDSCH受信に用いる第1のQCL想定と、前記第1のチャネル状態情報算出用参照信号の受信に用いる第2のQCL想定とが異なるかどうかに基づいて、
     あるスロットが有効なダウンリンクスロットかを判定し、前記有効なダウンリンクスロットに基づいて、CSI参照リソースを判定し、
     前記CSI参照リソースに基づいて算出されるCQIインデックスを受信する、
     集積回路。
PCT/JP2019/029042 2018-08-08 2019-07-24 基地局装置、端末装置、通信方法、および、集積回路 WO2020031700A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018149239A JP2020025215A (ja) 2018-08-08 2018-08-08 基地局装置、端末装置、通信方法、および、集積回路
JP2018-149239 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020031700A1 true WO2020031700A1 (ja) 2020-02-13

Family

ID=69414710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029042 WO2020031700A1 (ja) 2018-08-08 2019-07-24 基地局装置、端末装置、通信方法、および、集積回路

Country Status (2)

Country Link
JP (1) JP2020025215A (ja)
WO (1) WO2020031700A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113315609B (zh) * 2020-02-27 2022-07-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114374485A (zh) * 2020-10-14 2022-04-19 维沃移动通信有限公司 半静态调度配置方法、装置及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180219606A1 (en) * 2017-02-01 2018-08-02 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5g next radio systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180219606A1 (en) * 2017-02-01 2018-08-02 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5g next radio systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project, Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15", 3GPP TS 38.214 V15.2.0, June 2018 (2018-06-01), pages 1 - 2,25-27,32-37, XP051474491 *
ERICSSON: "CSI reporting offline session notes Tuesday morning", 3GPP TSG RAN WG1 #93 RI-1807694, 25 May 2018 (2018-05-25), pages 1 - 13, XP051463322 *
ERICSSON: "On simultaneous reception of physical and reference signals across CCs", 3GPP TSG RAN WG1 #93 R1-1806219, 25 May 2018 (2018-05-25), pages 1 - 5, XP051441428 *
SHARP: "Remaining issues on CSI-reporting", 3GPP TSG RAN WG1 #95 RI-1813197, 16 November 2018 (2018-11-16), pages 1 - 12, XP051555192 *

Also Published As

Publication number Publication date
JP2020025215A (ja) 2020-02-13

Similar Documents

Publication Publication Date Title
CN110214466B (zh) 基站装置、终端装置、通信方法和集成电路
US11317400B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
JP2020057825A (ja) 基地局装置、端末装置、通信方法、および、集積回路
US11303365B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
JP7272748B2 (ja) 端末装置、基地局装置、および通信方法
JP2019050470A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020166672A1 (ja) 基地局装置、端末装置および通信方法
WO2019050031A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JPWO2018123468A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020031701A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020066852A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019189397A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019050000A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2020072421A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020031700A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020066853A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019189396A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019189395A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847113

Country of ref document: EP

Kind code of ref document: A1