WO2020232627A1 - Determining signal-to-interference ratios - Google Patents

Determining signal-to-interference ratios Download PDF

Info

Publication number
WO2020232627A1
WO2020232627A1 PCT/CN2019/087765 CN2019087765W WO2020232627A1 WO 2020232627 A1 WO2020232627 A1 WO 2020232627A1 CN 2019087765 W CN2019087765 W CN 2019087765W WO 2020232627 A1 WO2020232627 A1 WO 2020232627A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
signal
interference
state information
channel state
Prior art date
Application number
PCT/CN2019/087765
Other languages
French (fr)
Inventor
Chenxi Zhu
Wei Ling
Bingchao LIU
Lingling Xiao
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2019/087765 priority Critical patent/WO2020232627A1/en
Publication of WO2020232627A1 publication Critical patent/WO2020232627A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the subject matter disclosed herein relates generally to wireless communications and more particularly relates to determining signal-to-interference ratios.
  • HARQ-ACK may represent collectively the Positive Acknowledge ( “ACK” ) and the Negative Acknowledge ( “NAK” ) .
  • ACK means that a TB is correctly received while NAK means a TB is erroneously received.
  • multiple TRPs may be used. In such networks, measurements may be made on signals sent by the TRPs.
  • the method includes transmitting information indicating resources for determining a set of signal-to- interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the method includes receiving a report determined based on the information.
  • An apparatus for determining signal-to-interference ratios includes a transmitter that transmits information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the apparatus includes a receiver that receives a report determined based on the information.
  • a method for determining signal-to-interference ratios includes receiving information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the method includes transmitting a report determined based on the information.
  • An apparatus for determining signal-to-interference ratios includes a receiver that receives information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the apparatus includes a transmitter that transmits a report determined based on the information.
  • Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for determining signal-to-interference ratios
  • Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining signal-to-interference ratios
  • Figure 3 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining signal-to-interference ratios
  • Figure 4 is a schematic block diagram illustrating one embodiment of a system for multi TRP communication
  • Figure 5 is a schematic block diagram illustrating one embodiment of resources used to compute a signal-to-interference ratio
  • Figure 6 is a schematic block diagram illustrating another embodiment of a system for multi TRP communication
  • Figure 7 is a schematic flow chart diagram illustrating one embodiment of a method for determining signal-to-interference ratios.
  • Figure 8 is a schematic flow chart diagram illustrating another embodiment of a method for determining signal-to-interference ratios.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing the code.
  • the storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an erasable programmable read-only memory ( “EPROM” or Flash memory) , a portable compact disc read-only memory (CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • Figure 1 depicts an embodiment of a wireless communication system 100 for determining signal-to-interference ratios.
  • the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
  • the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , IoT devices, or the like.
  • the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.
  • the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art.
  • the remote units 102 may communicate directly with one or more of the network units 104 via UL communication signals and/or the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
  • the network units 104 may be distributed over a geographic region.
  • a network unit 104 may also be referred to as an access point, an access terminal, a base, a base station, a Node-B, an eNB, a gNB, a Home Node-B, a RAN, a relay node, a device, a network device, an IAB node, a donor IAB node, or by any other terminology used in the art.
  • the network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks.
  • core networks like the Internet and public switched telephone networks, among other networks.
  • the wireless communication system 100 is compliant with the 5G or NG (Next Generation) standard of the 3GPP protocol, wherein the network unit 104 transmits using NG RAN technology. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, among other protocols.
  • the present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • the network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link.
  • the network units 104 transmit DL communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
  • a network unit 104 may transmit information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the network unit 104 may receive a report determined based on the information. Accordingly, a network unit 104 may be used for determining signal-to-interference ratios.
  • a remote unit 102 may receive information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the remote unit 102 may transmit a report determined based on the information. Accordingly, a remote unit 102 may be used for determining signal-to-interference ratios.
  • Figure 2 depicts one embodiment of an apparatus 200 that may be used for determining signal-to-interference ratios.
  • the apparatus 200 includes one embodiment of the remote unit 102.
  • the remote unit 102 may include a processor 202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the remote unit 102 may not include any input device 206 and/or display 208.
  • the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen.
  • the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audible, and/or haptic signals.
  • the display 208 includes an electronic display capable of outputting visual data to a user.
  • the display 208 may include, but is not limited to, an LCD display, an LED display, an OLED display, a projector, or similar display device capable of outputting images, text, or the like to a user.
  • the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like.
  • the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
  • the display 208 includes one or more speakers for producing sound.
  • the display 208 may produce an audible alert or notification (e.g., a beep or chime) .
  • the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback.
  • all or portions of the display 208 may be integrated with the input device 206.
  • the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display.
  • the display 208 may be located near the input device 206.
  • the transmitter 210 is used to provide UL communication signals to the network unit 104 and the receiver 212 is used to receive DL communication signals from the network unit 104.
  • the receiver 212 receives information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the transmitter 210 transmits a report determined based on the information.
  • the remote unit 102 may have any suitable number of transmitters 210 and receivers 212.
  • the transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers.
  • the transmitter 210 and the receiver 212 may be part of a transceiver.
  • Figure 3 depicts one embodiment of an apparatus 300 that may be used for determining signal-to-interference ratios.
  • the apparatus 300 includes one embodiment of the network unit 104.
  • the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312.
  • the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
  • the transmitter 310 transmits information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the receiver 312 receives a report determined based on the information.
  • the network unit 104 may have any suitable number of transmitters 310 and receivers 312.
  • the transmitter 310 and the receiver 312 may be any suitable type of transmitters and receivers.
  • the transmitter 310 and the receiver 312 may be part of a transceiver.
  • FIG. 4 is a schematic block diagram illustrating one embodiment of a system 400 for multi TRP communication.
  • the system 400 includes a first TRP 402 and a second TRP 404 that make concurrent (e.g., simultaneous, overlapping) transmissions to a UE 406 (e.g., having one or more panels) .
  • communications between the first TRP 402 and the UE 406 may include communications 408, such as communications using a CSI-RS1 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS, and communications between the second TRP 404 and the UE 406 may include communications 410, such as communications using a CSI-RS2 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS.
  • CSI-RS1 resource e.g., REs
  • CSI-RS2 resource e.g., REs
  • a ZP-CSI-RS may be a CSI-RS transmitted on resources that are muted (e.g., set to zero power, without a transmitting sequence known to a receiving UE)
  • an NZP-CSI-RS may be a CSI-RS transmitted on resources that are not muted (e.g., non-zero power and with a transmitting sequence known to a receiving UE) .
  • a network unit 104 may configure resources for interference measurement (e.g., for a L1-SINR report) .
  • a remote unit 102 e.g., the UE 406 may calculate one or more interference measurements using the configured resources and report at least one interference measurement to the network unit 104.
  • Figure 5 is a schematic block diagram illustrating one embodiment of resources used to compute a signal-to-interference ratio 500 (e.g., L1-SINR) .
  • a signal power of a channel measurement resource 502 may be determined and an interference power of an interference measurement resource 504 may be determined.
  • the signal-to-interference ratio 500 is the ratio of the signal power to the interference power.
  • the channel measurement resource 502 may be a periodic, a semi-persistent, and/or an aperiodic NZP-CSI-RS resource
  • the interference measurement resource 504 may be a periodic, a semi-persistent, and/or an aperiodic ZP-CSI-RS resource (e.g., also known as a CSI-IM) or NZP-CSI-RS resource.
  • the signal power may be a linear average of received NZP-CSI-RS power.
  • the interference power may be a linear average of a total power in REs carrying an NZP-CSI-RS minus a linear average of received NZP-CSI-RS power, or a linear average of total power in REs carrying an ZP-CSI-RS.
  • a L1-SINR may be defined with the CSI-RS1 resource as the resource for channel measurement, and the CSI-RS2 resource as the resource for interference measurement.
  • the L1-SINR may be represented by an ordered pair (CSI-RS1, CSI-RS2) in which the first resource is for channel measurement and the second resource is for interference measurement.
  • L1-SINR may be determined using a single NZP-CSI-RS resource.
  • the same NZP-CSI-RS resource is used as both a channel measurement resource and an interference measurement resource.
  • the signal power may be an average of received NZP-CSI-RS power
  • the interference power may be a linear average of a total power in REs carrying the NZP-CSI-RS minus a linear average of received NZP-CSI-RS power.
  • resources for L1-SINR computation are configured via RRC, such as in an RRC “CSI-ReportConfig” parameter.
  • one or more (e.g., N ⁇ 1) NZP-CSI-RS resources may be defined for channel measurement, and one or more (e.g., M ⁇ 1) NZP-CSI-RS or ZP-CSI-RS resources may be defined for interference measurement.
  • Each combination of a channel measurement resource and an interference measurement resource may be used for an L1-SINR computation; however, all possible L1-SINR computations may not be valid.
  • FIG. 6 is a schematic block diagram illustrating another embodiment of a system 600 for multi TRP communication.
  • the system 600 includes a first TRP 602 and a second TRP 604 that make concurrent (e.g., simultaneous, overlapping) transmissions to a UE 606 (e.g., having one or more panels) .
  • communications between the first TRP 602 and the UE 606 may include communications 608, such as communications using a CSI-RS11 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS and a CSI-RS12 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS
  • communications between the second TRP 604 and the UE 606 may include communications 610, such as communications using a CSI-RS21 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS
  • the UE 606 may receive communications 612, such as communications using a CSI-RS22 resource (e.g., REs) which may be used for transmitting ZP-CSI-RS.
  • CSI-RS11 resource e.g., REs
  • CSI-RS12 resource e.g., REs
  • communications between the second TRP 604 and the UE 606 may include communications 610, such as communications using a CSI-
  • three NZP-CSI-RS resources e.g., CSI-RS11, CSI-RS12, CSI-RS21
  • one ZP-CSI-RS resource e.g., CSI-RS22
  • any NZP-CSI-RS resource may be used for channel measurement, and any NZP-CSI-RS or ZP-CSI-RS resource to be used for interference measurement. From these CSI-RS resources, there may be up to 16 combinations of CSI-RS resource pairs, but not all of the CSI-RS resource pairs may be valid.
  • CSI-RS resource pair may not be valid may include the following: 1) A ZP-CSI-RS resource cannot be used for channel measurement. This excludes combinations like (CSI-RS22, CSI-RS-XX) in which the first resource in the pair is a channel measurement resource and the second resource in the pair is an interference measurement resource.
  • the first resource in the pair is invalid (e.g., a ZP-CSI-RS resource) , then it doesn’t matter what the second resource in the pair is; 2) Only one NZP-CSI-RS resource can be transmitted from a TRP panel (e.g., a TRP for a single-panel TRP, or a panel of a TRP for a multi-panel TRP) at any time. If two NZP-CSI-RS resources are from a same TRP panel, such as CSI-RS11 and CSI-RS12, they cannot both be used for determining a L1-SINR. Accordingly, combinations like (CSI-RS11, CSI-RS12) and (CSI-RS12, CSI-RS11) are invalid.
  • the UE 606 may not know that CSI-RS11 and CSI-RS12 are transmitted from the same TRP panel and cannot be transmitted simultaneously; 3) The gNB does not plan to use a pair (CSI-RS-A, CSI-RS-B) for channel and interference measurement. As may be appreciated, this may be subject to a gNB implementation and may be arbitrarily determined; 4) While a ZP-CSI-RS may not be explicitly defined to be transmitted by a TRP or panel, a gNB may have a TRP to transmit a NZP-CSI-RS in the same resource to act as interference.
  • L1-SINR (CSI-RS11, CSI-RS21) may not necessarily be the inverse of L1-SINR (CSI-RS21, CSI-RS11) .
  • an NZP-CSI-RS resource only defines the RE resources and sequence used for the NZP-CSI-RS transmission.
  • L1-SINR (CSI-RS11, CSI-RS21)
  • L1-SINR (CSI-RS21, CSI-RS11)
  • X being the channel measurement resource
  • Y being the interference measurement resource
  • the example information illustrated in Table 1 may need to be communicated to the UE 606 from the gNB, and a UE 606 may need to communicate which combinations were used for a report including one or more L1-SINR.
  • the gNB may transmit a bitmap to the UE 606, such as in the RRC “CSI-ReportConfig” parameter.
  • the bitmap may indicate, a 1 for a valid pair of CSI-RS, and a 0 for an invalid pair of CSI-RS.
  • a two-dimensional ( “2D” ) bitmap may be constructed as follows: 1) In a dimension representing CSI-RS resources for channel measurement, all the NZP-CSI-RS resources may be listed in ascending order based on their CSI-ResourceConfigID (e.g., CSI-RS11, CSI-RS12, CSI-RS21, CSI-RS22, etc. ) ; 2) In a dimension representing the CSI-RS resources for interference measurement, all the ZP-CSI-RS and NZP-CSI-RS resources may be listed in ascending order of their CSI-ResourceConfigID; 3) A 1 represents an allowed combination of (CSI-RS for channel measurement, CSI-RS for interference measurement) .
  • Table 2 One example of such a 2D bitmap is shown in Table 2 based on Table 1.
  • This 2D bitmap may be represented by a one-dimensional ( “1D” ) bit string by placing bits from the 2D bitmap into the 1D bitmap in a row-by-row manner (e.g., from the top row to the bottom row) , or in a column-by-column manner (e.g., from the left column to the right column) .
  • 1D one-dimensional
  • the 1D bit string of Table 2 is [1 0 1 1 0 1 1 1 1 1 1] .
  • the 1D bit string of Table 2 is [1 0 1 0 1 1 1 1 1 1] .
  • the bits with the same CSI-RS for both channel measurement and interference measurement may be excluded.
  • the 1D bitmap for the row-by-row manner is [0 1 1 0 1 1 1 1] and for the column-by-column manner is [0 1 0 1 1 1 1 1] .
  • the UE 606 may report N L1-SINRs that are above a certain threshold, or the highest N L1-SINR values. Because each L1-SINR is measured from a pair of CSI-RS resources, the UE 606 may need to report an ID of the CSI-RS for channel measurement, and an ID of the CSI-RS for interference measurement, together with the L1-SINR value. In some embodiments, the report may be made as (L1-SINR, CRI for channel measurement, CRI for interference measurement) , where CRI is a CSI-RS resource ID of a corresponding CSI-RS resource.
  • the UE 606 reports L1-SINR of (CSI-RS11, CSI-RS21) and (CSI-RS12, CSI-RS22) , it may report in a CSI report [ (L1-SINR (CSI-RS11, CSI-RS21) , CRI of CSI-RS11, CRI of CSI-RS21) , (L1-SINR (CSI-RS12, CSI-RS22) , CRI of CSI-RS12, CRI of CSI-RS22) ] .
  • a CSI report may be made in a format (L1-SINR, index value) , where the index value points to a pair of CSI-RS resources used in an L1-SINR bitmap configuration configured at the UE 606, such as described herein.
  • the UE 606 is to report the L1-SINR of (CSI-RS11, CSI-RS21) and (CSI-RS12, CSI-RS22) , it can report as (L1-SINR (CSI-RS11, CSI-RS21) , 2) , (L1-SINR (CSI-RS12, CSI-RS22) , 7) in the CSI report it sends to the UE 606 (e.g., assuming the bitmap index starts from 0) .
  • an index value corresponding to a bitmap may exclude all values that are zero and only use one values. Accordingly, for the example above, the same L1-SINR report may be made as follows: (L1-SINR (CSI-RS11, CSI-RS21) , 1) , (L1-SINR (CSI-RS12, CSI-RS22) , 5) because they are the 1st and 5th non-zero values in the bitmap (e.g., with the index starting from 0) . In various embodiments, a delta of L1-SINR may be reported instead of an computed L1-SINR.
  • the first time an L1-SINR is reported it may be a computed L1-SINR (e.g., original L1-SINR) , and on subsequent reports of the same L1-SINR, the delta of the L1-SINR may be reported (e.g., current L1-SINR) .
  • L1-SINR e.g., original L1-SINR
  • the delta of the L1-SINR may be reported (e.g., current L1-SINR) .
  • the delta of L1-SINR may be based on the original L1-SINR (e.g., current L1-SINR-original L1-SINR, or original L1-SINR-current L1-SINR) , or the delta of L1-SINR may be based on the immediately prior L1-SINR (e.g., current L1-SINR-prior L1-SINR, or prior L1-SINR-current L1-SINR) .
  • Reporting of CSI-RS resource indices e.g., either as a pair of CSI-RSs or an index corresponding to the bitmap
  • CSI-RS resource indices e.g., either as a pair of CSI-RSs or an index corresponding to the bitmap
  • Figure 7 is a schematic flow chart diagram illustrating one embodiment of a method 700 for determining signal-to-interference ratios.
  • the method 700 is performed by an apparatus, such as the network unit 104.
  • the method 700 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 700 may include transmitting 702 information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the method 700 includes receiving 704 a report determined based on the information.
  • the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  • the predetermined value may be a special code, a predefined index, or some other predetermined value that indicates that there is no signal-to-interference ratio of the set of signal-to-interference ratios that is above the threshold.
  • the at least one signal-to-interference ratio is determined based on the information.
  • the information is transmitted using radio resource control signaling.
  • the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the first channel state information reference signal resource comprises a non-zero-power resource.
  • the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  • the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  • a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  • the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  • Figure 8 is a schematic flow chart diagram illustrating another embodiment of a method 800 for determining signal-to-interference ratios.
  • the method 800 is performed by an apparatus, such as the remote unit 102.
  • the method 800 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 800 may include receiving 802 information indicating resources for determining a set of signal-to-interference ratios.
  • the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement.
  • the method 800 includes transmitting 804 a report determined based on the information.
  • the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  • the predetermined value may be a special code, a predefined index, or some other predetermined value that indicates that there is no signal-to-interference ratio of the set of signal-to-interference ratios that is above the threshold.
  • the at least one signal-to-interference ratio is determined based on the information.
  • the information is received using radio resource control signaling.
  • the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the first channel state information reference signal resource comprises a non-zero-power resource.
  • the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof. In certain embodiments, the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource. In some embodiments, the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  • a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  • the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  • the method 800 further comprises determining the set of signal-to-interference ratios based on the information.
  • the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios.
  • the method 800 further comprises measuring a plurality of signal-to-interference ratios and selecting at least one signal-to-interference ratio from the plurality of signal-to-interference ratios.
  • selecting the at least one signal-to-interference ratio comprises selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
  • the threshold is defined in a specification or signaled in a radio resource control message.
  • the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to- interference ratio of the set of signal-to-interference ratios.
  • the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
  • the index values are based on the information indicating the resources.
  • the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap.
  • the index values correspond to non-zero elements in the bitmap.
  • a method comprises: transmitting information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and receiving a report determined based on the information.
  • the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  • the at least one signal-to-interference ratio is determined based on the information.
  • the information is transmitted using radio resource control signaling.
  • the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the first channel state information reference signal resource comprises a non-zero-power resource.
  • the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  • the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  • a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  • the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  • an apparatus comprises: a transmitter that transmits information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and a receiver that receives a report determined based on the information.
  • the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  • the at least one signal-to-interference ratio is determined based on the information.
  • the information is transmitted using radio resource control signaling.
  • the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the first channel state information reference signal resource comprises a non-zero-power resource.
  • the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  • the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  • a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  • the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  • a method comprises: receiving information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and transmitting a report determined based on the information.
  • the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  • the at least one signal-to-interference ratio is determined based on the information.
  • the information is received using radio resource control signaling.
  • the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the first channel state information reference signal resource comprises a non-zero-power resource.
  • the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  • the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  • a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  • the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  • the method further comprises determining the set of signal-to-interference ratios based on the information.
  • the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios.
  • the method further comprises measuring a plurality of signal-to-interference ratios and selecting at least one signal-to-interference ratio from the plurality of signal-to-interference ratios.
  • selecting the at least one signal-to-interference ratio comprises selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
  • the threshold is defined in a specification or signaled in a radio resource control message.
  • the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to-interference ratio of the set of signal-to-interference ratios.
  • the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
  • the index values are based on the information indicating the resources.
  • the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap.
  • the index values correspond to non-zero elements in the bitmap.
  • an apparatus comprises: a receiver that receives information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and a transmitter that transmits a report determined based on the information.
  • the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  • the at least one signal-to-interference ratio is determined based on the information.
  • the information is received using radio resource control signaling.
  • the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the first channel state information reference signal resource comprises a non-zero-power resource.
  • the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  • the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  • the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  • a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  • the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  • the apparatus further comprises a processor that determines the set of signal-to-interference ratios based on the information.
  • the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios.
  • the apparatus further comprises a processor that measures a plurality of signal-to-interference ratios and selects at least one signal-to-interference ratio from the plurality of signal-to-interference ratios.
  • the processor selecting the at least one signal-to-interference ratio comprises the processor selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
  • the threshold is defined in a specification or signaled in a radio resource control message.
  • the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to-interference ratio of the set of signal-to-interference ratios.
  • the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
  • the index values are based on the information indicating the resources.
  • the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap.
  • the index values correspond to non-zero elements in the bitmap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatuses, methods, and systems are disclosed for determining signal-to-interference ratios. One method (700) includes transmitting (702) information indicating resources for determining a set of signal-to-interference ratios. For each signal-to-interference ratio of the set of signal-to-interference ratios the resources include: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. The method (700) includes receiving (704) a report determined based on the information.

Description

DETERMINING SIGNAL-TO-INTERFERENCE RATIOS FIELD
The subject matter disclosed herein relates generally to wireless communications and more particularly relates to determining signal-to-interference ratios.
BACKGROUND
The following abbreviations are herewith defined, at least some of which are referred to within the following description: Third Generation Partnership Project ( “3GPP” ) , 5G QoS Indicator ( “5QI” ) , Acknowledge Mode ( “AM” ) , Backhaul ( “BH” ) , Broadcast Multicast ( “BM” ) , Buffer Occupancy ( “BO” ) , Base Station ( “BS” ) , Buffer Status Report ( “BSR” ) , Bandwidth ( “BW” ) , Bandwidth Part ( “BWP” ) , Component Carrier ( “CC” ) , Code Division Multiplexing ( “CDM” ) , Control Element ( “CE” ) , Coordinated Multipoint ( “CoMP” ) , Categories of Requirements ( “CoR” ) , Control Resource Set ( “CORESET” ) , Control Plane ( “CP” ) , CSI-RS Resource Indicator ( “CRI” ) , Cell RNTI ( “C-RNTI” ) , Channel State Information ( “CSI” ) , CSI IM ( “CSI-IM” ) , CSI RS ( “CSI-RS” ) , Channel Quality Indicator ( “CQI” ) , Central Unit ( “CU” ) , Codeword ( “CW” ) , Downlink Assignment Index ( “DAI” ) , Downlink Control Information ( “DCI” ) , Downlink ( “DL” ) , Demodulation Reference Signal ( “DMRS” or “DM-RS” ) , Data Radio Bearer ( “DRB” ) , Dedicated Short-Range Communications ( “DSRC” ) , Distributed Unit ( “DU” ) , Enhanced Mobile Broadband ( “eMBB” ) , Evolved Node B ( “eNB” ) , Enhanced Subscriber Identification Module ( “eSIM” ) , Enhanced ( “E” ) , Frequency Division Duplex ( “FDD” ) , Frequency Division Multiple Access ( “FDMA” ) , Frequency Range ( “FR” ) , 450 MHz –6000 MHz ( “FR1” ) , 24250 MHz –52600 MHz ( “FR2” ) , Hybrid Automatic Repeat Request ( “HARQ” ) , Integrated Access Backhaul ( “IAB” ) , Identity or Identifier or Identification ( “ID” ) , Interference Measurement ( “IM” ) , International Mobile Subscriber Identity ( “IMSI” ) , Internet-of-Things ( “IoT” ) , Internet Protocol ( “IP” ) , Joint Transmission ( “JT” ) , Level 1 ( “L1” ) , L1 SINR ( “L1-SINR” ) , Logical Channel ( “LCH” ) , Logical Channel Group ( “LCG” ) , Logical Channel ID ( “LCID” ) , Logical Channel Prioritization ( “LCP” ) , Long Term Evolution ( “LTE” ) , Levels of Automation ( “LoA” ) , Medium Access Control ( “MAC” ) , Modulation Coding Scheme ( “MCS” ) , Multiple Input Multiple Output ( “MIMO” ) , Mobile-Termination ( “MT” ) , Machine Type Communication ( “MTC” ) , Multi-User ( “MU” ) , Multi-User MIMO ( “MU-MIMO” ) , Negative-Acknowledgment ( “NACK” ) or ( “NAK” ) , Next Generation ( “NG” ) , Next Generation Node B ( “gNB” ) , New Radio ( “NR” ) , Non-Zero Power ( “NZP” ) , NZP CSI-RS ( “NZP-CSI-RS” ) , Orthogonal Frequency Division Multiplexing ( “OFDM” ) , Peak-to-Average Power Ratio ( “PAPR” ) , Physical Broadcast Channel ( “PBCH” ) , Physical Downlink Control Channel  ( “PDCCH” ) , Physical Downlink Shared Channel ( “PDSCH” ) , Policy Control Function ( “PCF” ) , Packet Data Convergence Protocol ( “PDCP” ) , Packet Data Network ( “PDN” ) , Protocol Data Unit ( “PDU” ) , Public Land Mobile Network ( “PLMN” ) , Precoding Matrix Indicator ( “PMI” ) , ProSe Per Packet Priority ( “PPPP” ) , ProSe Per Packet Reliability ( “PPPR” ) , Physical Resource Block ( “PRB” ) , Packet Switched ( “PS” ) , Physical Sidelink Control Channel ( “PSCCH” ) , Physical Sidelink Shared Channel ( “PSSCH” ) , Phase Tracking RS ( “PTRS” or “PT-RS” ) , Physical Uplink Shared Channel ( “PUSCH” ) , Quasi Co-Located ( “QCL” ) , Quality of Service ( “QoS” ) , Random Access Channel ( “RACH” ) , Radio Access Network ( “RAN” ) , Radio Access Technology ( “RAT” ) , Resource Element ( “RE” ) , Rank Indicator ( “RI” ) , Radio Link Control ( “RLC” ) , Radio Link Failure ( “RLF” ) , Radio Network Temporary Identifier ( “RNTI” ) , Resource Pool ( “RP” ) , Radio Resource Control ( “RRC” ) , Reference Signal ( “RS” ) , Reference Signal Received Power ( “RSRP” ) , Reference Signal Received Quality ( “RSRQ” ) , Receive ( “RX” ) , Secondary Cell ( “SCell” ) , Sub Carrier Spacing ( “SCS” ) , Service Data Unit ( “SDU” ) , Subscriber Identity Module ( “SIM” ) , Signal-to-Interference Ratio ( “SINR” ) , Sidelink ( “SL” ) , Sequence Number ( “SN” ) , Scheduling Request ( “SR” ) , SRS Resource Indicator ( “SRI” ) , Sounding Reference Signal ( “SRS” ) , Synchronization Signal ( “SS” ) , SS/PBCH Block ( “SSB” ) , Transmission Control Information ( “TCI” ) , Time Division Duplex ( “TDD” ) , Temporary Mobile Subscriber Identity ( “TMSI” ) , Transmitted Precoding Matrix Indicator ( “TPMI” ) , Transmission Reception Point ( “TRP” ) , Transmit ( “TX” ) , User Entity/Equipment (Mobile Terminal) ( “UE” ) , Universal Integrated Circuit Card ( “UICC” ) , Uplink ( “UL” ) , Unacknowledged Mode ( “UM” ) , Universal Mobile Telecommunications System ( “UMTS” ) , User Plane ( “UP” ) , Universal Subscriber Identity Module ( “USIM” ) , Universal Terrestrial Radio Access Network ( “UTRAN” ) , Vehicle to Everything ( “V2X” ) , Voice Over IP ( “VoIP” ) , Visited Public Land Mobile Network ( “VPLMN” ) , Vehicle RNTI ( “V-RNTI” ) , Worldwide Interoperability for Microwave Access ( “WiMAX” ) , Zero Power ( “ZP” ) , and ZP CSI-RS ( “ZP-CSI-RS” ) . As used herein, “HARQ-ACK” may represent collectively the Positive Acknowledge ( “ACK” ) and the Negative Acknowledge ( “NAK” ) . ACK means that a TB is correctly received while NAK means a TB is erroneously received.
In certain wireless communications networks, multiple TRPs may be used. In such networks, measurements may be made on signals sent by the TRPs.
BRIEF SUMMARY
Methods for determining signal-to-interference ratios are disclosed. Apparatuses and systems also perform the functions of the apparatus. In one embodiment, the method includes transmitting information indicating resources for determining a set of signal-to- interference ratios. In such an embodiment, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the method includes receiving a report determined based on the information.
An apparatus for determining signal-to-interference ratios, in one embodiment, includes a transmitter that transmits information indicating resources for determining a set of signal-to-interference ratios. In such an embodiment, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In some embodiments, the apparatus includes a receiver that receives a report determined based on the information.
In one embodiment, a method for determining signal-to-interference ratios includes receiving information indicating resources for determining a set of signal-to-interference ratios. In such an embodiment, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the method includes transmitting a report determined based on the information.
An apparatus for determining signal-to-interference ratios, in one embodiment, includes a receiver that receives information indicating resources for determining a set of signal-to-interference ratios. In such an embodiment, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the apparatus includes a transmitter that transmits a report determined based on the information.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for determining signal-to-interference ratios;
Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining signal-to-interference ratios;
Figure 3 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining signal-to-interference ratios;
Figure 4 is a schematic block diagram illustrating one embodiment of a system for multi TRP communication;
Figure 5 is a schematic block diagram illustrating one embodiment of resources used to compute a signal-to-interference ratio;
Figure 6 is a schematic block diagram illustrating another embodiment of a system for multi TRP communication;
Figure 7 is a schematic flow chart diagram illustrating one embodiment of a method for determining signal-to-interference ratios; and
Figure 8 is a schematic flow chart diagram illustrating another embodiment of a method for determining signal-to-interference ratios.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain of the functional units described in this specification may be labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or  more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing the code. The storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an erasable programmable read-only memory ( “EPROM” or Flash memory) , a portable compact disc read-only memory ( “CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or  server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment, ” “an embodiment, ” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment, ” “in an embodiment, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” unless expressly specified otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of the embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. The code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, of the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
Figure 1 depicts an embodiment of a wireless communication system 100 for determining signal-to-interference ratios. In one embodiment, the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
In one embodiment, the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , IoT devices, or the like. In some embodiments, the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art. The remote units 102 may communicate directly with one or more of the network units 104 via UL communication signals and/or the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
The network units 104 may be distributed over a geographic region. In certain embodiments, a network unit 104 may also be referred to as an access point, an access terminal, a base, a base station, a Node-B, an eNB, a gNB, a Home Node-B, a RAN, a relay node, a device, a network device, an IAB node, a donor IAB node, or by any other terminology used in the art. The network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks. These and other elements of radio access and core networks are not illustrated but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with the 5G or NG (Next Generation) standard of the 3GPP protocol, wherein the network unit 104 transmits using NG RAN technology. More generally, however, the wireless communication  system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, among other protocols. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link. The network units 104 transmit DL communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
In various embodiments, a network unit 104 may transmit information indicating resources for determining a set of signal-to-interference ratios. In such embodiments, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the network unit 104 may receive a report determined based on the information. Accordingly, a network unit 104 may be used for determining signal-to-interference ratios.
In some embodiments, a remote unit 102 may receive information indicating resources for determining a set of signal-to-interference ratios. In such embodiments, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the remote unit 102 may transmit a report determined based on the information. Accordingly, a remote unit 102 may be used for determining signal-to-interference ratios.
Figure 2 depicts one embodiment of an apparatus 200 that may be used for determining signal-to-interference ratios. The apparatus 200 includes one embodiment of the remote unit 102. Furthermore, the remote unit 102 may include a processor 202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212. In some embodiments, the input device 206 and the display 208 are combined into a single device, such as a touchscreen. In certain embodiments, the remote unit 102 may not include any input device 206 and/or display 208. In various embodiments, the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing  unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein. The processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display. In some embodiments, the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen. In some embodiments, the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual, audible, and/or haptic signals. In some embodiments, the display 208 includes an electronic display capable of outputting visual data to a user. For example, the display 208 may include, but is not limited to, an LCD display, an LED display, an OLED display, a projector, or similar display device capable of outputting images, text, or the like to a user. As another, non-limiting, example, the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like. Further, the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
In certain embodiments, the display 208 includes one or more speakers for producing sound. For example, the display 208 may produce an audible alert or notification (e.g., a beep or chime) . In some embodiments, the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback. In some embodiments, all or portions of  the display 208 may be integrated with the input device 206. For example, the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display. In other embodiments, the display 208 may be located near the input device 206.
The transmitter 210 is used to provide UL communication signals to the network unit 104 and the receiver 212 is used to receive DL communication signals from the network unit 104. In one embodiment, the receiver 212 receives information indicating resources for determining a set of signal-to-interference ratios. In such an embodiment, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the transmitter 210 transmits a report determined based on the information.
Although only one transmitter 210 and one receiver 212 are illustrated, the remote unit 102 may have any suitable number of transmitters 210 and receivers 212. The transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 210 and the receiver 212 may be part of a transceiver.
Figure 3 depicts one embodiment of an apparatus 300 that may be used for determining signal-to-interference ratios. The apparatus 300 includes one embodiment of the network unit 104. Furthermore, the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
In various embodiments, the transmitter 310 transmits information indicating resources for determining a set of signal-to-interference ratios. In such embodiments, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the receiver 312 receives a report determined based on the information. Although only one transmitter 310 and one receiver 312 are illustrated, the network unit 104 may have any suitable number of transmitters 310 and receivers 312. The transmitter 310 and the receiver 312 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 310 and the receiver 312 may be part of a transceiver.
Figure 4 is a schematic block diagram illustrating one embodiment of a system 400 for multi TRP communication. The system 400 includes a first TRP 402 and a second TRP 404 that make concurrent (e.g., simultaneous, overlapping) transmissions to a UE 406 (e.g., having one or more panels) . In one embodiment, communications between the first TRP 402 and the UE 406 may include communications 408, such as communications using a CSI-RS1 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS, and communications between the second TRP 404 and the UE 406 may include communications 410, such as communications using a CSI-RS2 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS. It should be noted that while the system 400 includes only two TRPs, other embodiments of the system 400 may include any suitable number of TRPs. As described herein, a ZP-CSI-RS may be a CSI-RS transmitted on resources that are muted (e.g., set to zero power, without a transmitting sequence known to a receiving UE) , while an NZP-CSI-RS may be a CSI-RS transmitted on resources that are not muted (e.g., non-zero power and with a transmitting sequence known to a receiving UE) .
In some embodiments, a network unit 104 (e.g., the first TRP 402, the second TRP 404, etc. ) may configure resources for interference measurement (e.g., for a L1-SINR report) . Moreover, a remote unit 102 (e.g., the UE 406) may calculate one or more interference measurements using the configured resources and report at least one interference measurement to the network unit 104.
Figure 5 is a schematic block diagram illustrating one embodiment of resources used to compute a signal-to-interference ratio 500 (e.g., L1-SINR) . To compute the signal-to-interference ratio 500, a signal power of a channel measurement resource 502 may be determined and an interference power of an interference measurement resource 504 may be determined. The signal-to-interference ratio 500 is the ratio of the signal power to the interference power. The channel measurement resource 502 may be a periodic, a semi-persistent, and/or an aperiodic NZP-CSI-RS resource, and the interference measurement resource 504 may be a periodic, a semi-persistent, and/or an aperiodic ZP-CSI-RS resource (e.g., also known as a CSI-IM) or NZP-CSI-RS resource. In certain embodiments, the signal power may be a linear average of received NZP-CSI-RS power. In various embodiments, the interference power may be a linear average of a total power in REs carrying an NZP-CSI-RS minus a linear average of received NZP-CSI-RS power, or a linear average of total power in REs carrying an ZP-CSI-RS. In relation to Figure 4, a L1-SINR may be defined with the CSI-RS1 resource as the resource for channel measurement, and the CSI-RS2 resource as the resource for interference measurement.  The L1-SINR may be represented by an ordered pair (CSI-RS1, CSI-RS2) in which the first resource is for channel measurement and the second resource is for interference measurement.
In some embodiments, L1-SINR may be determined using a single NZP-CSI-RS resource. In such embodiments, the same NZP-CSI-RS resource is used as both a channel measurement resource and an interference measurement resource. Accordingly, the signal power may be an average of received NZP-CSI-RS power, and the interference power may be a linear average of a total power in REs carrying the NZP-CSI-RS minus a linear average of received NZP-CSI-RS power.
In certain embodiments, resources for L1-SINR computation are configured via RRC, such as in an RRC “CSI-ReportConfig” parameter. In such embodiments, one or more (e.g., N ≥ 1) NZP-CSI-RS resources may be defined for channel measurement, and one or more (e.g., M ≥ 1) NZP-CSI-RS or ZP-CSI-RS resources may be defined for interference measurement. Each combination of a channel measurement resource and an interference measurement resource may be used for an L1-SINR computation; however, all possible L1-SINR computations may not be valid.
Figure 6 is a schematic block diagram illustrating another embodiment of a system 600 for multi TRP communication. The system 600 includes a first TRP 602 and a second TRP 604 that make concurrent (e.g., simultaneous, overlapping) transmissions to a UE 606 (e.g., having one or more panels) . In one embodiment, communications between the first TRP 602 and the UE 606 may include communications 608, such as communications using a CSI-RS11 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS and a CSI-RS12 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS, communications between the second TRP 604 and the UE 606 may include communications 610, such as communications using a CSI-RS21 resource (e.g., REs) which may be used for transmitting NZP-CSI-RS, and the UE 606 may receive communications 612, such as communications using a CSI-RS22 resource (e.g., REs) which may be used for transmitting ZP-CSI-RS. It should be noted that while the system 600 includes only two TRPs, other embodiments of the system 600 may include any suitable number of TRPs.
In certain embodiments, three NZP-CSI-RS resources (e.g., CSI-RS11, CSI-RS12, CSI-RS21) and one ZP-CSI-RS resource (e.g., CSI-RS22) are defined for the UE 606. As may be appreciated, it is possible for any NZP-CSI-RS resource to be used for channel measurement, and any NZP-CSI-RS or ZP-CSI-RS resource to be used for interference measurement. From these CSI-RS resources, there may be up to 16 combinations of CSI-RS resource pairs, but not all of the CSI-RS resource pairs may be valid. Various reasons (e.g., rules for invalidity) why a  CSI-RS resource pair may not be valid may include the following: 1) A ZP-CSI-RS resource cannot be used for channel measurement. This excludes combinations like (CSI-RS22, CSI-RS-XX) in which the first resource in the pair is a channel measurement resource and the second resource in the pair is an interference measurement resource. As shown in Table 1, if the first resource in the pair is invalid (e.g., a ZP-CSI-RS resource) , then it doesn’t matter what the second resource in the pair is; 2) Only one NZP-CSI-RS resource can be transmitted from a TRP panel (e.g., a TRP for a single-panel TRP, or a panel of a TRP for a multi-panel TRP) at any time. If two NZP-CSI-RS resources are from a same TRP panel, such as CSI-RS11 and CSI-RS12, they cannot both be used for determining a L1-SINR. Accordingly, combinations like (CSI-RS11, CSI-RS12) and (CSI-RS12, CSI-RS11) are invalid. However, as may be appreciated, the UE 606 may not know that CSI-RS11 and CSI-RS12 are transmitted from the same TRP panel and cannot be transmitted simultaneously; 3) The gNB does not plan to use a pair (CSI-RS-A, CSI-RS-B) for channel and interference measurement. As may be appreciated, this may be subject to a gNB implementation and may be arbitrarily determined; 4) While a ZP-CSI-RS may not be explicitly defined to be transmitted by a TRP or panel, a gNB may have a TRP to transmit a NZP-CSI-RS in the same resource to act as interference. From the UE 606 point of view, because it only knows the resource as ZP-CSI-RS, it can only measure the total power in these REs as interference. This may put additional constraints to how a ZP-CSI-RS resource may be paired with a NZP-CSI-RS for L1-RSRP measurement, but such constraint may not be visible to the UE 606.
It should be noted that for two NZP-CSI-RS resources, such as CSI-RS-11 and CSI-RS-21, L1-SINR (CSI-RS11, CSI-RS21) may not necessarily be the inverse of L1-SINR (CSI-RS21, CSI-RS11) . This is because an NZP-CSI-RS resource only defines the RE resources and sequence used for the NZP-CSI-RS transmission. Unless the NZP-CSI-RS resource is defined as “repetition = ON, ” a gNB may transmit an NZP-CSI-RS resource with different TX beams at different instances. The consequence of this may be that even L1-SINR (CSI-RS11, CSI-RS21) may be different in different reporting instances. Unless both CSI-RS11 and CSI-RS21 are configured as “repetition = ON, ” L1-SINR (CSI-RS11, CSI-RS21) and L1-SINR (CSI-RS21, CSI-RS11) are not necessarily the inverse of each other. As used herein, an ordered pair for determining L1-SINR is shown as (X, Y) , with X being the channel measurement resource and Y being the interference measurement resource.
By applying the rules for invalidity described above, instead of 16 possible combinations of resources for determining L1-SINR, there may only be 7 possible combinations of resources for determining L1-SINR plus 3 resources that can be used as the channel  measurement resource and the interference measurement resource. In Table 1, possible L1-SINR combinations are shown. For the shown possible L1-SINR combinations, it is assumed that a gNB does not arbitrarily disallows any valid pair.
Table 1
Figure PCTCN2019087765-appb-000001
As may be appreciated, the example information illustrated in Table 1 may need to be communicated to the UE 606 from the gNB, and a UE 606 may need to communicate which combinations were used for a report including one or more L1-SINR. In one embodiment, the gNB may transmit a bitmap to the UE 606, such as in the RRC “CSI-ReportConfig” parameter. The bitmap may indicate, a 1 for a valid pair of CSI-RS, and a 0 for an invalid pair of CSI-RS.
A two-dimensional ( “2D” ) bitmap may be constructed as follows: 1) In a dimension representing CSI-RS resources for channel measurement, all the NZP-CSI-RS resources may be listed in ascending order based on their CSI-ResourceConfigID (e.g., CSI-RS11, CSI-RS12, CSI-RS21, CSI-RS22, etc. ) ; 2) In a dimension representing the CSI-RS resources for interference measurement, all the ZP-CSI-RS and NZP-CSI-RS resources may be listed in ascending order of their CSI-ResourceConfigID; 3) A 1 represents an allowed combination of (CSI-RS for channel measurement, CSI-RS for interference measurement) . One example of such a 2D bitmap is shown in Table 2 based on Table 1.
Table 2
Figure PCTCN2019087765-appb-000002
Figure PCTCN2019087765-appb-000003
This 2D bitmap may be represented by a one-dimensional ( “1D” ) bit string by placing bits from the 2D bitmap into the 1D bitmap in a row-by-row manner (e.g., from the top row to the bottom row) , or in a column-by-column manner (e.g., from the left column to the right column) .
For the row-by-row manner, the 1D bit string of Table 2 is [1 0 1 1 0 1 1 1 1 1 1 1] .
For the column-by-column manner, the 1D bit string of Table 2 is [1 0 1 0 1 1 1 1 1 1 1 1] .
In another embodiment, if an L1-SINR cannot be defined by a single NZP-CSI-RS resource, the bits with the same CSI-RS for both channel measurement and interference measurement may be excluded. In such an embodiment, the 1D bitmap for the row-by-row manner is [0 1 1 0 1 1 1 1 1] and for the column-by-column manner is [0 1 0 1 1 1 1 1 1] .
In certain embodiments, in each reporting instances in PUCCH or PUSCH, the UE 606 may report N L1-SINRs that are above a certain threshold, or the highest N L1-SINR values. Because each L1-SINR is measured from a pair of CSI-RS resources, the UE 606 may need to report an ID of the CSI-RS for channel measurement, and an ID of the CSI-RS for interference measurement, together with the L1-SINR value. In some embodiments, the report may be made as (L1-SINR, CRI for channel measurement, CRI for interference measurement) , where CRI is a CSI-RS resource ID of a corresponding CSI-RS resource. For example, if the UE 606 reports L1-SINR of (CSI-RS11, CSI-RS21) and (CSI-RS12, CSI-RS22) , it may report in a CSI report [ (L1-SINR (CSI-RS11, CSI-RS21) , CRI of CSI-RS11, CRI of CSI-RS21) , (L1-SINR (CSI-RS12, CSI-RS22) , CRI of CSI-RS12, CRI of CSI-RS22) ] .
In some embodiments, a CSI report may be made in a format (L1-SINR, index value) , where the index value points to a pair of CSI-RS resources used in an L1-SINR bitmap configuration configured at the UE 606, such as described herein. For example, if the bitmap configuration is given as [1 0 1 1 0 1 1 1 1 1 1 1] (e.g., the 1D bit string of Table 2 in the row-by-row manner) , and the UE 606 is to report the L1-SINR of (CSI-RS11, CSI-RS21) and (CSI-RS12, CSI-RS22) , it can report as (L1-SINR (CSI-RS11, CSI-RS21) , 2) , (L1-SINR (CSI-RS12, CSI-RS22) , 7) in the CSI report it sends to the UE 606 (e.g., assuming the bitmap index starts from 0) .
In certain embodiments, an index value corresponding to a bitmap may exclude all values that are zero and only use one values. Accordingly, for the example above, the same L1-SINR report may be made as follows: (L1-SINR (CSI-RS11, CSI-RS21) , 1) , (L1-SINR (CSI-RS12, CSI-RS22) , 5) because they are the 1st and 5th non-zero values in the bitmap (e.g., with the index starting from 0) . In various embodiments, a delta of L1-SINR may be reported instead of an computed L1-SINR. In such embodiments, the first time an L1-SINR is reported it may be a computed L1-SINR (e.g., original L1-SINR) , and on subsequent reports of the same L1-SINR, the delta of the L1-SINR may be reported (e.g., current L1-SINR) . The delta of L1-SINR may be based on the original L1-SINR (e.g., current L1-SINR-original L1-SINR, or original L1-SINR-current L1-SINR) , or the delta of L1-SINR may be based on the immediately prior L1-SINR (e.g., current L1-SINR-prior L1-SINR, or prior L1-SINR-current L1-SINR) . Reporting of CSI-RS resource indices (e.g., either as a pair of CSI-RSs or an index corresponding to the bitmap) with the delta of L1-SINR may be as described herein.
Figure 7 is a schematic flow chart diagram illustrating one embodiment of a method 700 for determining signal-to-interference ratios. In some embodiments, the method 700 is performed by an apparatus, such as the network unit 104. In certain embodiments, the method 700 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 700 may include transmitting 702 information indicating resources for determining a set of signal-to-interference ratios. In such an embodiment, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the method 700 includes receiving 704 a report determined based on the information.
In various embodiments, the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value. The predetermined value may be a special code, a predefined index, or some other predetermined value that indicates that there is no signal-to-interference ratio of the set of signal-to-interference ratios that is above the threshold. In some embodiments, the at least one signal-to-interference ratio is determined based on the information.
In certain embodiments, the information is transmitted using radio resource control signaling. In some embodiments, the first channel state information reference signal  resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In various embodiments, the first channel state information reference signal resource comprises a non-zero-power resource. In one embodiment, the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof. In certain embodiments, the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
In some embodiments, the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource. In various embodiments, a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource. In one embodiment, the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
Figure 8 is a schematic flow chart diagram illustrating another embodiment of a method 800 for determining signal-to-interference ratios. In some embodiments, the method 800 is performed by an apparatus, such as the remote unit 102. In certain embodiments, the method 800 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 800 may include receiving 802 information indicating resources for determining a set of signal-to-interference ratios. In such an embodiment, for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement. In certain embodiments, the method 800 includes transmitting 804 a report determined based on the information.
In various embodiments, the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value. The predetermined value may be a special code, a predefined index, or some other predetermined  value that indicates that there is no signal-to-interference ratio of the set of signal-to-interference ratios that is above the threshold. In some embodiments, the at least one signal-to-interference ratio is determined based on the information.
In certain embodiments, the information is received using radio resource control signaling. In some embodiments, the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof. In various embodiments, the first channel state information reference signal resource comprises a non-zero-power resource.
In one embodiment, the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof. In certain embodiments, the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource. In some embodiments, the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
In various embodiments, a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource. In one embodiment, the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof. In certain embodiments, the method 800 further comprises determining the set of signal-to-interference ratios based on the information.
In some embodiments, the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios. In various embodiments, the method 800 further comprises measuring a plurality of signal-to-interference ratios and selecting at least one signal-to-interference ratio from the plurality of signal-to-interference ratios. In one embodiment, selecting the at least one signal-to-interference ratio comprises selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
In certain embodiments, the threshold is defined in a specification or signaled in a radio resource control message. In some embodiments, the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to- interference ratio of the set of signal-to-interference ratios. In various embodiments, the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
In one embodiment, the index values are based on the information indicating the resources. In certain embodiments, the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap. In some embodiments, the index values correspond to non-zero elements in the bitmap.
In one embodiment, a method comprises: transmitting information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and receiving a report determined based on the information.
In various embodiments, the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
In some embodiments, the at least one signal-to-interference ratio is determined based on the information.
In certain embodiments, the information is transmitted using radio resource control signaling.
In some embodiments, the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In various embodiments, the first channel state information reference signal resource comprises a non-zero-power resource.
In one embodiment, the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In certain embodiments, the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
In some embodiments, the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
In various embodiments, a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
In one embodiment, the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
In one embodiment, an apparatus comprises: a transmitter that transmits information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and a receiver that receives a report determined based on the information.
In various embodiments, the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
In some embodiments, the at least one signal-to-interference ratio is determined based on the information.
In certain embodiments, the information is transmitted using radio resource control signaling.
In some embodiments, the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In various embodiments, the first channel state information reference signal resource comprises a non-zero-power resource.
In one embodiment, the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In certain embodiments, the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
In some embodiments, the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
In various embodiments, a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
In one embodiment, the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
In one embodiment, a method comprises: receiving information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and transmitting a report determined based on the information.
In various embodiments, the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
In some embodiments, the at least one signal-to-interference ratio is determined based on the information.
In certain embodiments, the information is received using radio resource control signaling.
In some embodiments, the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In various embodiments, the first channel state information reference signal resource comprises a non-zero-power resource.
In one embodiment, the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In certain embodiments, the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
In some embodiments, the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
In various embodiments, a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
In one embodiment, the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
In certain embodiments, the method further comprises determining the set of signal-to-interference ratios based on the information.
In some embodiments, the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios.
In various embodiments, the method further comprises measuring a plurality of signal-to-interference ratios and selecting at least one signal-to-interference ratio from the plurality of signal-to-interference ratios.
In one embodiment, selecting the at least one signal-to-interference ratio comprises selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
In certain embodiments, the threshold is defined in a specification or signaled in a radio resource control message.
In some embodiments, the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to-interference ratio of the set of signal-to-interference ratios.
In various embodiments, the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
In one embodiment, the index values are based on the information indicating the resources.
In certain embodiments, the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap.
In some embodiments, the index values correspond to non-zero elements in the bitmap.
In one embodiment, an apparatus comprises: a receiver that receives information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise: a first channel state information reference signal resource for channel measurement; and a second channel state information reference signal resource for interference measurement; and a transmitter that transmits a report determined based on the information.
In various embodiments, the report comprises: in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and, in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
In some embodiments, the at least one signal-to-interference ratio is determined based on the information.
In certain embodiments, the information is received using radio resource control signaling.
In some embodiments, the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In various embodiments, the first channel state information reference signal resource comprises a non-zero-power resource.
In one embodiment, the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
In certain embodiments, the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
In some embodiments, the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
In various embodiments, a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
In one embodiment, the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
In certain embodiments, the apparatus further comprises a processor that determines the set of signal-to-interference ratios based on the information.
In some embodiments, the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios.
In various embodiments, the apparatus further comprises a processor that measures a plurality of signal-to-interference ratios and selects at least one signal-to-interference ratio from the plurality of signal-to-interference ratios.
In one embodiment, the processor selecting the at least one signal-to-interference ratio comprises the processor selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
In certain embodiments, the threshold is defined in a specification or signaled in a radio resource control message.
In some embodiments, the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to-interference ratio of the set of signal-to-interference ratios.
In various embodiments, the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
In one embodiment, the index values are based on the information indicating the resources.
In certain embodiments, the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap.
In some embodiments, the index values correspond to non-zero elements in the bitmap.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (64)

  1. A method comprising:
    transmitting information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise:
    a first channel state information reference signal resource for channel measurement; and
    a second channel state information reference signal resource for interference measurement; and
    receiving a report determined based on the information.
  2. The method of claim 1, wherein the report comprises:
    in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and
    in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  3. The method of claim 2, wherein the at least one signal-to-interference ratio is determined based on the information.
  4. The method of claim 1, wherein the information is transmitted using radio resource control signaling.
  5. The method of claim 1, wherein the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  6. The method of claim 1, wherein the first channel state information reference signal resource comprises a non-zero-power resource.
  7. The method of claim 1, wherein the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  8. The method of claim 1, wherein the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  9. The method of claim 1, wherein the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  10. The method of claim 9, wherein a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  11. The method of claim 1, wherein the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel  state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  12. An apparatus comprising:
    a transmitter that transmits information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise:
    a first channel state information reference signal resource for channel measurement; and
    a second channel state information reference signal resource for interference measurement; and
    a receiver that receives a report determined based on the information.
  13. The apparatus of claim 12, wherein the report comprises:
    in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and
    in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  14. The apparatus of claim 13, wherein the at least one signal-to-interference ratio is determined based on the information.
  15. The apparatus of claim 12, wherein the information is transmitted using radio resource control signaling.
  16. The apparatus of claim 12, wherein the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  17. The apparatus of claim 12, wherein the first channel state information reference signal resource comprises a non-zero-power resource.
  18. The apparatus of claim 12, wherein the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  19. The apparatus of claim 12, wherein the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  20. The apparatus of claim 12, wherein the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  21. The apparatus of claim 20, wherein a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  22. The apparatus of claim 12, wherein the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel  state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  23. A method comprising:
    receiving information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise:
    a first channel state information reference signal resource for channel measurement; and
    a second channel state information reference signal resource for interference measurement; and
    transmitting a report determined based on the information.
  24. The method of claim 23, wherein the report comprises:
    in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and
    in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  25. The method of claim 24, wherein the at least one signal-to-interference ratio is determined based on the information.
  26. The method of claim 23, wherein the information is received using radio resource control signaling.
  27. The method of claim 23, wherein the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  28. The method of claim 23, wherein the first channel state information reference signal resource comprises a non-zero-power resource.
  29. The method of claim 23, wherein the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  30. The method of claim 23, wherein the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  31. The method of claim 23, wherein the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  32. The method of claim 31, wherein a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  33. The method of claim 23, wherein the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel  state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  34. The method of claim 23, further comprising determining the set of signal-to-interference ratios based on the information.
  35. The method of claim 23, wherein the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios.
  36. The method of claim 23, further comprising measuring a plurality of signal-to-interference ratios and selecting at least one signal-to-interference ratio from the plurality of signal-to-interference ratios.
  37. The method of claim 36, wherein selecting the at least one signal-to-interference ratio comprises selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
  38. The method of claim 37, wherein the threshold is defined in a specification or signaled in a radio resource control message.
  39. The method of claim 23, wherein the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to-interference ratio of the set of signal-to-interference ratios.
  40. The method of claim 39, wherein the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
  41. The method of claim 40, wherein the index values are based on the information indicating the resources.
  42. The method of claim 41, wherein the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap.
  43. The method of claim 42, wherein the index values correspond to non-zero elements in the bitmap.
  44. An apparatus comprising:
    a receiver that receives information indicating resources for determining a set of signal-to-interference ratios, wherein for each signal-to-interference ratio of the set of signal-to-interference ratios the resources comprise:
    a first channel state information reference signal resource for channel measurement; and
    a second channel state information reference signal resource for interference measurement; and
    a transmitter that transmits a report determined based on the information.
  45. The apparatus of claim 44, wherein the report comprises:
    in response to at least one signal-to-interference ratio of the set of signal-to-interference ratios being above a threshold, the at least one signal-to-interference ratio; and
    in response to no signal-to-interference ratios of the set of signal-to-interference ratios being above the threshold, a predetermined value.
  46. The apparatus of claim 45, wherein the at least one signal-to-interference ratio is determined based on the information.
  47. The apparatus of claim 44, wherein the information is received using radio resource control signaling.
  48. The apparatus of claim 44, wherein the first channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  49. The apparatus of claim 44, wherein the first channel state information reference signal resource comprises a non-zero-power resource.
  50. The apparatus of claim 44, wherein the second channel state information reference signal resource comprises a periodic resource, a semi-persistent resource, an aperiodic resource, or some combination thereof.
  51. The apparatus of claim 44, wherein the second channel state information reference signal resource comprises a non-zero-power resource or a zero-power resource.
  52. The apparatus of claim 44, wherein the first channel state information reference signal resource and the second channel state information reference signal resource comprise one non-zero-power resource.
  53. The apparatus of claim 52, wherein a signal-to-interference ratio using the one non-zero-power resource is determined by dividing a signal power by an interference power, the signal power is an average received power of the one non-zero-power resource, and the interference power is a remaining power of the one non-zero-power resource.
  54. The apparatus of claim 44, wherein the information comprises a first list of channel state information reference signals for channel measurement, a second list of channel state information reference signals for interference measurement, a bitmap indicating channel state information reference signal combinations for determining a signal-to-interference ratio, or some combination thereof.
  55. The apparatus of claim 44, further comprising a processor that determines the set of signal-to-interference ratios based on the information.
  56. The apparatus of claim 44, wherein the set of signal-to-interference ratios comprises a subset of measured signal-to-interference ratios.
  57. The apparatus of claim 44, further comprising a processor that measures a plurality of signal-to-interference ratios and selects at least one signal-to-interference ratio from the plurality of signal-to-interference ratios.
  58. The apparatus of claim 57, wherein the processor selecting the at least one signal-to-interference ratio comprises the processor selecting signal-to-interference ratios of the plurality of signal-to-interference ratios that are above a threshold.
  59. The apparatus of claim 58, wherein the threshold is defined in a specification or signaled in a radio resource control message.
  60. The apparatus of claim 44, wherein the report indicates a channel state information reference signal resource used for channel measurement and a channel state information reference signal resource used for interference measurement for each signal-to-interference ratio of the set of signal-to-interference ratios.
  61. The apparatus of claim 60, wherein the channel state information reference signal resource used for channel measurement and the channel state information reference signal resource used for interference measurement are indicated using index values.
  62. The apparatus of claim 61, wherein the index values are based on the information indicating the resources.
  63. The apparatus of claim 62, wherein the information indicating the resources comprises a bitmap, and the index values are determined based on the bitmap.
  64. The apparatus of claim 63, wherein the index values correspond to non-zero elements in the bitmap.
PCT/CN2019/087765 2019-05-21 2019-05-21 Determining signal-to-interference ratios WO2020232627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087765 WO2020232627A1 (en) 2019-05-21 2019-05-21 Determining signal-to-interference ratios

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087765 WO2020232627A1 (en) 2019-05-21 2019-05-21 Determining signal-to-interference ratios

Publications (1)

Publication Number Publication Date
WO2020232627A1 true WO2020232627A1 (en) 2020-11-26

Family

ID=73459282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087765 WO2020232627A1 (en) 2019-05-21 2019-05-21 Determining signal-to-interference ratios

Country Status (1)

Country Link
WO (1) WO2020232627A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145948A1 (en) * 2020-12-29 2022-07-07 엘지전자 주식회사 Method for transmitting and receiving csi in wireless communication system, and device therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231656A (en) * 2016-03-24 2017-10-03 北京信威通信技术股份有限公司 Report method, device and the user equipment of channel condition information
US20180262313A1 (en) * 2017-03-08 2018-09-13 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
US20180302889A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231656A (en) * 2016-03-24 2017-10-03 北京信威通信技术股份有限公司 Report method, device and the user equipment of channel condition information
US20180262313A1 (en) * 2017-03-08 2018-09-13 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
US20180302889A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145948A1 (en) * 2020-12-29 2022-07-07 엘지전자 주식회사 Method for transmitting and receiving csi in wireless communication system, and device therefor
US11894901B2 (en) 2020-12-29 2024-02-06 Lg Electronics Inc. Method for transmitting and receiving CSI in wireless communication system and device therefor

Similar Documents

Publication Publication Date Title
US20240195581A1 (en) Data block transmissions
WO2022006864A1 (en) Transmission using dmrs from two code division multiplexing groups
CN114503477B (en) Transmitting feedback for sidelink transmission
WO2022016441A1 (en) Configuring uplink transmission configuration indication states
US20230058765A1 (en) Data transmissions using multiple transmission reception points
US20230136240A1 (en) Channel state information reference signal resource pairs
US11516746B2 (en) Determining a power offset parameter
US20220039156A1 (en) Determining channel statistics for clear channel assessments
WO2022027456A1 (en) Configuring uplink transmission configuration indication power control parameters
WO2022027562A1 (en) Configuring sounding reference signal resource sets
WO2021056530A1 (en) Information for physical downlink shared channel configuration
WO2021179285A1 (en) Channel state information report configuration
WO2020232627A1 (en) Determining signal-to-interference ratios
WO2022061699A1 (en) Downlink control information indicating transmission control indicator states
WO2022082427A1 (en) Frequency offset indication
WO2021035385A1 (en) Using multiple downlink reference signals for channel estimation
US12003444B2 (en) Determining resources for phase tracking reference signals
WO2022061692A1 (en) Multiple downlink control information transmissions
WO2021142655A1 (en) Determining a length of sounding reference signal symbols
WO2020220236A1 (en) Multiplexing feedback responses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929737

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19929737

Country of ref document: EP

Kind code of ref document: A1