WO2021142655A1 - Determining a length of sounding reference signal symbols - Google Patents

Determining a length of sounding reference signal symbols Download PDF

Info

Publication number
WO2021142655A1
WO2021142655A1 PCT/CN2020/072217 CN2020072217W WO2021142655A1 WO 2021142655 A1 WO2021142655 A1 WO 2021142655A1 CN 2020072217 W CN2020072217 W CN 2020072217W WO 2021142655 A1 WO2021142655 A1 WO 2021142655A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
sounding reference
signal symbols
symbol
symbols
Prior art date
Application number
PCT/CN2020/072217
Other languages
French (fr)
Inventor
Chenxi Zhu
Bingchao LIU
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2020/072217 priority Critical patent/WO2021142655A1/en
Publication of WO2021142655A1 publication Critical patent/WO2021142655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals

Definitions

  • the subject matter disclosed herein relates generally to wireless communications and more particularly relates to determining a length of sounding reference signal symbols.
  • HARQ-ACK may represent collectively the Positive Acknowledge ( “ACK” ) and the Negative Acknowledge ( “NAK” ) .
  • ACK means that a TB is correctly received while NAK means a TB is erroneously received.
  • multiple sounding reference signal symbols may be used.
  • the method includes determining a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • An apparatus for determining a length of sounding reference signal symbols includes a processor that determines a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • a method for determining a number of frequency hops includes determining a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  • An apparatus for determining a number of frequency hops includes a processor that determines a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  • Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for determining a length of sounding reference signal symbols
  • Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining a length of sounding reference signal symbols
  • Figure 3 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining a length of sounding reference signal symbols
  • Figure 4 is a schematic block diagram illustrating one embodiment of an SRS pattern in which frequency hopping is performed before antenna switching
  • Figure 5 is a schematic block diagram illustrating another embodiment of an SRS pattern in which frequency hopping is performed before antenna switching
  • Figure 6 is a schematic block diagram illustrating a further embodiment of an SRS pattern in which frequency hopping is performed before antenna switching;
  • Figure 7 is a schematic block diagram illustrating one embodiment of an SRS pattern in which antenna switching is performed before frequency hopping
  • Figure 8 is a schematic block diagram illustrating another embodiment of an SRS pattern in which antenna switching is performed before frequency hopping
  • Figure 9 is a schematic block diagram illustrating a further embodiment of an SRS pattern in which antenna switching is performed before frequency hopping;
  • Figure 10 is a schematic block diagram illustrating one embodiment of minimizing a total guard period for an SRS pattern
  • Figure 11 is a schematic block diagram illustrating another embodiment of minimizing a total guard period for an SRS pattern
  • Figure 12 is a schematic flow chart diagram illustrating one embodiment of a method for determining a length of sounding reference signal symbols.
  • Figure 13 is a schematic flow chart diagram illustrating one embodiment of a method for determining a number of frequency hops.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing the code.
  • the storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • Figure 1 depicts an embodiment of a wireless communication system 100 for determining a length of sounding reference signal symbols.
  • the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
  • the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , IoT devices, or the like.
  • the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.
  • the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art.
  • the remote units 102 may communicate directly with one or more of the network units 104 via UL communication signals and/or the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
  • the network units 104 may be distributed over a geographic region.
  • a network unit 104 may also be referred to as an access point, an access terminal, a base, a base station, a Node-B, an eNB, a gNB, a Home Node-B, a RAN, a relay node, a device, a network device, an IAB node, a donor IAB node, or by any other terminology used in the art.
  • the network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks.
  • core networks like the Internet and public switched telephone networks, among other networks.
  • the wireless communication system 100 is compliant with the 5G or NG (Next Generation) standard of the 3GPP protocol, wherein the network unit 104 transmits using NG RAN technology. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, among other protocols.
  • the present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • the network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link.
  • the network units 104 transmit DL communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
  • a remote unit 102 and/or a network unit 104 may determine a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols. Accordingly, a remote unit 102 and/or a network unit 104 may be used for determining a length of sounding reference signal symbols.
  • a remote unit 102 and/or a network unit 104 may determine a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols. Accordingly, a remote unit 102 and/or a network unit 104 may be used for determining a number of frequency hops.
  • Figure 2 depicts one embodiment of an apparatus 200 that may be used for determining a length of sounding reference signal symbols.
  • the apparatus 200 includes one embodiment of the remote unit 102.
  • the remote unit 102 may include a processor 202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the remote unit 102 may not include any input device 206 and/or display 208.
  • the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 may determine a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols. In various embodiments, the processor 202 may determine a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  • the processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen.
  • the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audible, and/or haptic signals.
  • the display 208 includes an electronic display capable of outputting visual data to a user.
  • the display 208 may include, but is not limited to, an LCD display, an LED display, an OLED display, a projector, or similar display device capable of outputting images, text, or the like to a user.
  • the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like.
  • the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
  • the display 208 includes one or more speakers for producing sound.
  • the display 208 may produce an audible alert or notification (e.g., a beep or chime) .
  • the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback.
  • all or portions of the display 208 may be integrated with the input device 206.
  • the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display.
  • the display 208 may be located near the input device 206.
  • the remote unit 102 may have any suitable number of transmitters 210 and receivers 212.
  • the transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers.
  • the transmitter 210 and the receiver 212 may be part of a transceiver.
  • Figure 3 depicts one embodiment of an apparatus 300 that may be used for determining a length of sounding reference signal symbols.
  • the apparatus 300 includes one embodiment of the network unit 104.
  • the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312.
  • the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
  • the processor 302 determines a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols. In various embodiments, the processor 302 determines a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols. Although only one transmitter 310 and one receiver 312 are illustrated, the network unit 104 may have any suitable number of transmitters 310 and receivers 312. The transmitter 310 and the receiver 312 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 310 and the receiver 312 may be part of a transceiver.
  • SRS in addition to a legacy SRS may be used for DL efficiency enhancement.
  • the additional SRS may be transmitted in any symbol other than a last symbol in a subframe that includes the additional SRS. As may be appreciated, if a legacy SRS is used, it is generally transmitted in the last symbol (e.g., OFDM symbol) in a subframe.
  • both legacy SRS and additional SRS symbols may be configured for the same UE in one or more of the following configurations: 1) if legacy SRS is aperiodic, the UE may transmit one of legacy SRS or additional SRS symbols in the same subframe; 2) if legacy SRS is periodic, the UE may transmit legacy SRS and additional SRS symbols in the same or different subframes; and 3) if legacy SRS is aperiodic, the UE may transmit legacy SRS and additional SRS symbols in the same subframes.
  • a triggering mechanism may be included.
  • repetition, frequency hopping, and/or antenna switching may be supported within a subframe.
  • a guard symbol may be inserted between frequency hops and/or antenna switches to allow enough time for an RF transmission chain to make an adjustment between the frequencies and/or the antennas.
  • a guard symbol may be inserted between a last additional SRS symbol in a subframe and a legacy SRS symbol in the subframe.
  • time domain allocation of additional SRS may be defined in terms of a starting OFDM symbol, and a duration of additional SRS symbols including potential guard symbols may be specified in TS 36.211 as follows: 1) an additional SRS spans one or more OFDM symbols in the time domain, where: a) the starting OFDM symbol l 0 within the subframe is given by the higher-layer parameter additionalSRS-startPos; b) the duration N in number of OFDM symbols, including potential guard symbols, is given by the higher-layer parameter additionalSRS-duration; 2) mapping to physical resources shall be done according to clause 5.5.3.2.1 with the following exceptions: a) frequency hopping between OFDM symbols is supported; b) where l is the index of the OFDM symbol number carrying additional SRS within the subframe not counting guard symbol (s) , and R ⁇ ⁇ 1, 2, 3, 4, 6, 7, 8, 9, 12, 13 ⁇ is the repetition factor given by the higher-layer parameter additionalSRS-RepNum; c) B SRS is given by the higher-layer parameter additionalS
  • guard symbol for antenna switching and/or frequency hopping.
  • guard symbol for frequency hopping GS FH and a guard symbol for antenna switching GS AS may be independently configured by RRC, there are four different possible combinations as shown in Table 1.
  • Equation 1 and/or Equation 1: Simplified may be used if frequency hopping is performed before antenna switching.
  • a required number of additional SRS symbols N may be calculated according to Equation 1 and/or Equation 1: Simplified.
  • N is the number of additional SRS symbols (e.g., a length of a set of SRS symbols)
  • R is a number of SRS symbol repetitions for the additional SRS symbols
  • N AS is a number of antenna switches for the additional SRS symbols
  • N FH is a number of frequency hops for the additional SRS symbols
  • GS AS is a number of guard symbols for antenna switching
  • GS FH is a number of guard symbols for frequency hopping.
  • N R*N AS *N FH + (N AS *GS AS -1) *GS AS + (N FH *GS FH -1) *GS FH *N AS
  • Equation 1 Simplified
  • N R*N AS *N FH + (N AS -1) *GS AS + (N FH -1) *GS FH *N AS
  • Equation 2 and/or Equation 2: Simplified may be used if antenna switching is performed before frequency hopping.
  • a required number of additional SRS symbols N may be calculated according to Equation 2 and/or Equation 2: Simplified.
  • N R*N AS *N FH + (N FH *GS FH -1) *GS FH + (N AS *GS AS -1) *GS AS *N FH
  • Equation 2 Simplified
  • N R*N AS *N FH + (N FH -1) *GS FH + (N AS -1) *GS AS *N FH
  • Equation 3 and/or Equation 3 Simplified may be used to minimize a total guard period for frequency hopping and/or antenna switching based on configured GS AS and GS FH .
  • N R*N AS *N FH + (N AS *GS AS -1) *GS AS * (1-GS FH ) + (N FH *GS FH -1) *GS FH * (1-GS AS ) + (N AS *N FH -1) *GS AS *GS FH
  • Equation 3 Simplified
  • N R*N AS *N FH + (N AS -1) *GS AS * (1-GS FH ) + (N FH -1) *GS FH * (1-GS AS ) + (N AS *N FH -1) *GS AS *GS FH
  • a number of antenna switches N AS may be determined by RRC configuration such that the number of antenna switches is: a) 2 if there are 1 transmitter and 2 receivers configured or if a number of pairs is configured as 2 for 2 transmitters and 4 receivers; b) 3 if the number of pairs is configured as 3 for 2 transmitters and 4 receivers; and/or c) 4 for 1 transmitter and 4 receivers.
  • Equation 3 and/or Equation 3 Simplified, if a total number of additional SRS symbols N is given, a number of frequency hops N FH may be derived, or if the number of frequency hops N FH is given, the total number of additional SRS symbols N may be derived.
  • FIG. 4 through 11 Various examples of SRS patterns are illustrated in Figures 4 through 11. For the examples provided in Figures 4 through 6, two hop frequency hopping and two hop antenna switching are concurrently configured and frequency hopping is performed before antenna switching. As may be appreciated, a different number of additional SRS symbols may be required for different configurations of the values of GS AS and GS FH .
  • Figure 4 is a schematic block diagram illustrating one embodiment of an SRS pattern 400 in which frequency hopping is performed before antenna switching.
  • a first symbol 402, a second symbol 404, a third symbol 406, a fourth symbol 408, a fifth symbol 410, a sixth symbol 412, a seventh symbol 414, an eighth symbol 416, a ninth symbol 418, a tenth symbol 420, an eleventh symbol 422, a twelfth symbol 424, and a thirteenth symbol 426 are illustrated over a first frequency 428 and a second frequency 430.
  • a first SRS symbol 432 and a second SRS symbol 434 are transmitted as the first symbol 402 and the second symbol 404 in the first frequency 428 by a first antenna.
  • a first guard symbol 436 is transmitted as the third symbol 406.
  • a third SRS symbol 438 and a fourth SRS symbol 440 are transmitted as the fourth symbol 408 and the fifth symbol 410 in the second frequency 430 by the first antenna.
  • a second guard symbol 442 is transmitted as the sixth symbol 412.
  • a fifth SRS symbol 444 and a sixth SRS symbol 446 are transmitted as the seventh symbol 414 and the eighth symbol 416 in the first frequency 428 by the second antenna.
  • a third guard symbol 448 is transmitted as the ninth symbol 418.
  • a seventh SRS symbol 450 and an eighth SRS symbol 452 are transmitted as the tenth symbol 420 and the eleventh symbol 422 in the second frequency 430 by the second antenna.
  • Figure 5 is a schematic block diagram illustrating another embodiment of an SRS pattern 500 in which frequency hopping is performed before antenna switching.
  • a first symbol 502, a second symbol 504, a third symbol 506, a fourth symbol 508, a fifth symbol 510, a sixth symbol 512, a seventh symbol 514, an eighth symbol 516, a ninth symbol 518, a tenth symbol 520, an eleventh symbol 522, a twelfth symbol 524, and a thirteenth symbol 526 are illustrated over a first frequency 528 and a second frequency 530.
  • a first SRS symbol 532 and a second SRS symbol 534 are transmitted as the first symbol 502 and the second symbol 504 in the first frequency 528 by a first antenna.
  • a first guard symbol 536 is transmitted as the third symbol 506.
  • a third SRS symbol 538 and a fourth SRS symbol 540 are transmitted as the fourth symbol 508 and the fifth symbol 510 in the second frequency 530 by the first antenna.
  • a second guard symbol 546 is transmitted as the eighth symbol 516.
  • a seventh SRS symbol 548 and an eighth SRS symbol 550 are transmitted as the ninth symbol 518 and the tenth symbol 520 in the second frequency 530 by the second antenna.
  • Figure 6 is a schematic block diagram illustrating a further embodiment of an SRS pattern 600 in which frequency hopping is performed before antenna switching.
  • a first symbol 602, a second symbol 604, a third symbol 606, a fourth symbol 608, a fifth symbol 610, a sixth symbol 612, a seventh symbol 614, an eighth symbol 616, a ninth symbol 618, a tenth symbol 620, an eleventh symbol 622, a twelfth symbol 624, and a thirteenth symbol 626 are illustrated over a first frequency 628 and a second frequency 630.
  • a first SRS symbol 632 and a second SRS symbol 634 are transmitted as the first symbol 602 and the second symbol 604 in the first frequency 628 by a first antenna.
  • a third SRS symbol 636 and a fourth SRS symbol 638 are transmitted as the third symbol 606 and the fourth symbol 608 in the second frequency 630 by the first antenna.
  • a first guard symbol 640 is transmitted as the fifth symbol 610.
  • a fifth SRS symbol 642 and a sixth SRS symbol 644 are transmitted as the sixth symbol 612 and the seventh symbol 614 in the first frequency 628 by the second antenna.
  • a seventh SRS symbol 646 and an eighth SRS symbol 648 are transmitted as the eighth symbol 616 and the ninth symbol 618 in the second frequency 630 by the second antenna.
  • two hop frequency hopping and two hop antenna switching are concurrently configured and antenna switching is performed before frequency hopping.
  • a different number of additional SRS symbols may be required for different configuration of the values of GS AS and GS FH .
  • Figure 7 is a schematic block diagram illustrating one embodiment of an SRS pattern 700 in which antenna switching is performed before frequency hopping.
  • a first symbol 702, a second symbol 704, a third symbol 706, a fourth symbol 708, a fifth symbol 710, a sixth symbol 712, a seventh symbol 714, an eighth symbol 716, a ninth symbol 718, a tenth symbol 720, an eleventh symbol 722, a twelfth symbol 724, and a thirteenth symbol 726 are illustrated over a first frequency 728 and a second frequency 730.
  • a first SRS symbol 732 and a second SRS symbol 734 are transmitted as the first symbol 702 and the second symbol 704 in the first frequency 728 by a first antenna.
  • a first guard symbol 736 is transmitted as the third symbol 706.
  • a third SRS symbol 738 and a fourth SRS symbol 740 are transmitted as the fourth symbol 708 and the fifth symbol 710 in the first frequency 728 by a second antenna.
  • a second guard symbol 742 is transmitted as the sixth symbol 712.
  • a fifth SRS symbol 744 and a sixth SRS symbol 746 are transmitted as the seventh symbol 714 and the eighth symbol 716 in the second frequency 730 by the first antenna.
  • a third guard symbol 748 is transmitted as the ninth symbol 718.
  • a seventh SRS symbol 750 and an eighth SRS symbol 752 are transmitted as the tenth symbol 720 and the eleventh symbol 722 in the second frequency 730 by the second antenna.
  • Figure 8 is a schematic block diagram illustrating another embodiment of an SRS pattern 800 in which antenna switching is performed before frequency hopping.
  • a first symbol 802, a second symbol 804, a third symbol 806, a fourth symbol 808, a fifth symbol 810, a sixth symbol 812, a seventh symbol 814, an eighth symbol 816, a ninth symbol 818, a tenth symbol 820, an eleventh symbol 822, a twelfth symbol 824, and a thirteenth symbol 826 are illustrated over a first frequency 828 and a second frequency 830.
  • a first SRS symbol 832 and a second SRS symbol 834 are transmitted as the first symbol 802 and the second symbol 804 in the first frequency 828 by a first antenna.
  • a third SRS symbol 836 and a fourth SRS symbol 838 are transmitted as the third symbol 806 and the fourth symbol 808 in the first frequency 828 by a second antenna.
  • a first guard symbol 840 is transmitted as the fifth symbol 810.
  • a fifth SRS symbol 842 and a sixth SRS symbol 844 are transmitted as the sixth symbol 812 and the seventh symbol 814 in the second frequency 830 by the first antenna.
  • a seventh SRS symbol 846 and an eighth SRS symbol 848 are transmitted as the eighth symbol 816 and the ninth symbol 818 in the second frequency 830 by the second antenna.
  • Figure 9 is a schematic block diagram illustrating a further embodiment of an SRS pattern 900 in which antenna switching is performed before frequency hopping.
  • a first symbol 902, a second symbol 904, a third symbol 906, a fourth symbol 908, a fifth symbol 910, a sixth symbol 912, a seventh symbol 914, an eighth symbol 916, a ninth symbol 918, a tenth symbol 920, an eleventh symbol 922, a twelfth symbol 924, and a thirteenth symbol 926 are illustrated over a first frequency 928 and a second frequency 930.
  • a first SRS symbol 932 and a second SRS symbol 934 are transmitted as the first symbol 902 and the second symbol 904 in the first frequency 928 by a first antenna.
  • a first guard symbol 936 is transmitted as the third symbol 906.
  • a third SRS symbol 938 and a fourth SRS symbol 940 are transmitted as the fourth symbol 908 and the fifth symbol 910 in the first frequency 928 by a second antenna..
  • a fifth SRS symbol 942 and a sixth SRS symbol 944 are transmitted as the sixth symbol 912 and the seventh symbol 914 in the second frequency 930 by the first antenna.
  • a second guard symbol 946 is transmitted as the eighth symbol 916.
  • a seventh SRS symbol 948 and an eighth SRS symbol 950 are transmitted as the ninth symbol 918 and the tenth symbol 920 in the second frequency 930 by the second antenna.
  • Figure 10 is a schematic block diagram illustrating one embodiment of minimizing a total guard period for an SRS pattern 1000.
  • GS AS 0
  • GS FH 1
  • antenna switching is performed before frequency hopping
  • N 9
  • a first symbol 1002, a second symbol 1004, a third symbol 1006, a fourth symbol 1008, a fifth symbol 1010, a sixth symbol 1012, a seventh symbol 1014, an eighth symbol 1016, a ninth symbol 1018, a tenth symbol 1020, an eleventh symbol 1022, a twelfth symbol 1024, and a thirteenth symbol 1026 are illustrated over a first frequency 1028 and a second frequency 1030.
  • a first SRS symbol 1032 and a second SRS symbol 1034 are transmitted as the first symbol 1002 and the second symbol 1004 in the first frequency 1028 by a first antenna.
  • a third SRS symbol 1036 and a fourth SRS symbol 1038 are transmitted as the third symbol 1006 and the fourth symbol 1008 in the first frequency 1028 by a second antenna.
  • a first guard symbol 1040 is transmitted as the fifth symbol 1010.
  • a fifth SRS symbol 1042 and a sixth SRS symbol 1044 are transmitted as the sixth symbol 1012 and the seventh symbol 1014 in the second frequency 1030 by the first antenna.
  • a seventh SRS symbol 1046 and an eighth SRS symbol 1048 are transmitted as the eighth symbol 1016 and the ninth symbol 1018 in the second frequency 1030 by the second antenna.
  • Figure 11 is a schematic block diagram illustrating another embodiment of minimizing a total guard period for an SRS pattern 1100.
  • frequency hopping is performed before antenna switching
  • N 9.
  • a first symbol 1102, a second symbol 1104, a third symbol 1106, a fourth symbol 1108, a fifth symbol 1110, a sixth symbol 1112, a seventh symbol 1114, an eighth symbol 1116, a ninth symbol 1118, a tenth symbol 1120, an eleventh symbol 1122, a twelfth symbol 1124, and a thirteenth symbol 1126 are illustrated over a first frequency 1128 and a second frequency 1130.
  • a first SRS symbol 1132 and a second SRS symbol 1134 are transmitted as the first symbol 1102 and the second symbol 1104 in the first frequency 1128 by a first antenna.
  • a third SRS symbol 1136 and a fourth SRS symbol 1138 are transmitted as the third symbol 1106 and the fourth symbol 1108 in the second frequency 1130 by the first antenna.
  • a first guard symbol 1140 is transmitted as the fifth symbol 1110.
  • a fifth SRS symbol 1142 and a sixth SRS symbol 1144 are transmitted as the sixth symbol 1112 and the seventh symbol 1114 in the first frequency 1128 by the second antenna.
  • a seventh SRS symbol 1146 and an eighth SRS symbol 1148 are transmitted as the eighth symbol 1116 and the ninth symbol 1118 in the second frequency 1130 by the second antenna.
  • a number of frequency hops N FH is given by or if frequency hopping is enabled and 1 if frequency hopping is not enabled.
  • BW SRS is a total configured bandwidth for additional SRS
  • BW hop is a subband bandwidth per hop. It should be noted that in various embodiments, a floor () operation is used for and a ceiling () operation is used for
  • a guard symbol GS SS may be used between additional SRS symbols and a legacy SRS symbol at the end of the same subframe.
  • the guard symbol GS SS is not included in a total length of additional SRS symbols N.
  • a network may configure a starting OFDM symbol l 0 for the additional SRS as shown in Equation 4.
  • a network may configure N and l 0 to satisfy Equation 3 and Equation 4.
  • a UE may not expect to receive a configuration of N and l 0 such that l 0 >13-N-GS SS .
  • a dropping rule may be defined for additional SRS symbols if a UE receives a l 0 >13-N-GS SS .
  • a UE may derive it from N FH as
  • Figure 12 is a schematic flow chart diagram illustrating one embodiment of a method 1200 for determining a length of sounding reference signal symbols.
  • the method 1200 is performed by an apparatus, such as the remote unit 102 and/or the network unit 104.
  • the method 1200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 1200 may include determining 1202 a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • the set of sounding reference signal symbols includes at least one guard symbol.
  • the method 1200 further comprises determining whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the set of sounding reference signal symbols, wherein the last symbol in the subframe is not part of the set of sounding reference signal symbols.
  • determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
  • the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol.
  • the method 1200 further comprises, in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determining one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard.
  • a user equipment determines the length of the set of sounding reference signal symbols.
  • a network unit determines the length of the set of sounding reference signal symbols.
  • the method 1200 further comprises configuring a time domain resource for the set of sounding reference signal symbols.
  • configuring the time domain resource for the set of sounding reference signal symbols comprises configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
  • configuring the time domain resource for the set of sounding reference signal symbols comprises configuring the time domain resource for the set of sounding reference signal symbols based on: the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; the number of frequency hops corresponding to the set of sounding reference signal symbols; the number of antenna switches corresponding to the set of sounding reference signal symbols; and the guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • the method 1200 further comprises determining the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols. In one embodiment, the method 1200 further comprises determining a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
  • Figure 13 is a schematic flow chart diagram illustrating one embodiment of a method 1300 for determining a number of frequency hops.
  • the method 1300 is performed by an apparatus, such as the remote unit 102 and/or the network unit 104.
  • the method 1300 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 1300 may include determining 1302 a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  • the method 1300 further comprises determining a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.
  • a method comprises: determining a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • the set of sounding reference signal symbols includes at least one guard symbol.
  • the method further comprises determining whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the set of sounding reference signal symbols, wherein the last symbol in the subframe is not part of the set of sounding reference signal symbols.
  • determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
  • the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol.
  • the method further comprises, in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determining one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard.
  • a user equipment determines the length of the set of sounding reference signal symbols.
  • a network unit determines the length of the set of sounding reference signal symbols.
  • the method further comprises configuring a time domain resource for the set of sounding reference signal symbols.
  • configuring the time domain resource for the set of sounding reference signal symbols comprises configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
  • configuring the time domain resource for the set of sounding reference signal symbols comprises configuring the time domain resource for the set of sounding reference signal symbols based on: the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; the number of frequency hops corresponding to the set of sounding reference signal symbols; the number of antenna switches corresponding to the set of sounding reference signal symbols; and the guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • the method further comprises determining the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols.
  • the method further comprises determining a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
  • an apparatus comprises: a processor that determines a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • the set of sounding reference signal symbols includes at least one guard symbol.
  • the processor determines whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the set of sounding reference signal symbols, and the last symbol in the subframe is not part of the set of sounding reference signal symbols.
  • the processor determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises the processor determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
  • the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol.
  • the processor in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determines one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard.
  • a user equipment determines the length of the set of sounding reference signal symbols.
  • a network unit determines the length of the set of sounding reference signal symbols.
  • the processor configures a time domain resource for the set of sounding reference signal symbols.
  • the processor configuring the time domain resource for the set of sounding reference signal symbols comprises the processor configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
  • the processor configuring the time domain resource for the set of sounding reference signal symbols comprises the processor configuring the time domain resource for the set of sounding reference signal symbols based on: the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; the number of frequency hops corresponding to the set of sounding reference signal symbols; the number of antenna switches corresponding to the set of sounding reference signal symbols; and the guard symbol configuration corresponding to the set of sounding reference signal symbols.
  • the processor determines the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols.
  • the processor determines a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
  • a method comprises: determining a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  • the method further comprises determining a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.
  • an apparatus comprises: a processor that determines a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  • the processor determines a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatuses, methods, and systems are disclosed for determining a length of sounding reference signal symbols. One method (1200) includes determining (1202) a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.

Description

DETERMINING A LENGTH OF SOUNDING REFERENCE SIGNAL SYMBOLS FIELD
The subject matter disclosed herein relates generally to wireless communications and more particularly relates to determining a length of sounding reference signal symbols.
BACKGROUND
The following abbreviations are herewith defined, at least some of which are referred to within the following description: Third Generation Partnership Project ( “3GPP” ) , 5G QoS Indicator ( “5QI” ) , Acknowledge Mode ( “AM” ) , Backhaul ( “BH” ) , Broadcast Multicast ( “BM” ) , Buffer Occupancy ( “BO” ) , Base Station ( “BS” ) , Buffer Status Report ( “BSR” ) , Bandwidth ( “BW” ) , Bandwidth Part ( “BWP” ) , Component Carrier ( “CC” ) , Code Division Multiplexing ( “CDM” ) , Control Element ( “CE” ) , Coordinated Multipoint ( “CoMP” ) , Categories of Requirements ( “CoR” ) , Control Resource Set ( “CORESET” ) , Cyclic Prefix ( “CP” ) , Cyclic Prefix OFDM ( “CP-OFDM” ) , CSI-RS Resource Indicator ( “CRI” ) , Cell RNTI ( “C-RNTI” ) , Channel State Information ( “CSI” ) , CSI IM ( “CSI-IM” ) , CSI RS ( “CSI-RS” ) , Channel Quality Indicator ( “CQI” ) , Central Unit ( “CU” ) , Codeword ( “CW” ) , Downlink Assignment Index ( “DAI” ) , Downlink Control Information ( “DCI” ) , Downlink ( “DL” ) , Discrete Fourier Transform Spread OFDM ( “DFT-s-OFDM” ) , Demodulation Reference Signal ( “DMRS” or “DM-RS” ) , Data Radio Bearer ( “DRB” ) , Dedicated Short-Range Communications ( “DSRC” ) , Distributed Unit ( “DU” ) , Enhanced Mobile Broadband ( “eMBB” ) , Evolved Node B ( “eNB” ) , Enhanced Subscriber Identification Module ( “eSIM” ) , Enhanced ( “E” ) , Frequency Division Duplex ( “FDD” ) , Frequency Division Multiple Access ( “FDMA” ) , Frequency Range ( “FR” ) , 450 MHz –6000 MHz ( “FR1” ) , 24250 MHz –52600 MHz ( “FR2” ) , Hybrid Automatic Repeat Request ( “HARQ” ) , High-Definition Multimedia Interface ( “HDMI” ) , Integrated Access Backhaul ( “IAB” ) , Identity or Identifier or Identification ( “ID” ) , Information Element ( “IE” ) , Interference Measurement ( “IM” ) , International Mobile Subscriber Identity ( “IMSI” ) , Internet-of-Things ( “IoT” ) , Internet Protocol ( “IP” ) , Joint Transmission ( “JT” ) , Level 1 ( “L1” ) , L1 RSRP ( “L1-RSRP” ) , L1 SINR ( “L1-SINR” ) , Logical Channel ( “LCH” ) , Logical Channel Group ( “LCG” ) , Logical Channel ID ( “LCID” ) , Logical Channel Prioritization ( “LCP” ) , Layer Indicator ( “LI” ) , Long Term Evolution ( “LTE” ) , Levels of Automation ( “LoA” ) , Medium Access Control ( “MAC” ) , Modulation Coding Scheme ( “MCS” ) , Multi DCI ( “M-DCI” ) , Master Information Block ( “MIB” ) , Multiple Input Multiple Output ( “MIMO” ) , Mobile-Termination ( “MT” ) , Machine Type Communication ( “MTC” ) , Multi PDSCH ( “Multi-PDSCH” ) , Multi TRP ( “M-TRP” ) , Multi-User ( “MU” ) , Multi-User MIMO ( “MU-MIMO” ) , Minimum Mean Square Error  ( “MMSE” ) , Negative-Acknowledgment ( “NACK” ) or ( “NAK” ) , Next Generation ( “NG” ) , Next Generation Node B ( “gNB” ) , New Radio ( “NR” ) , Non-Zero Power ( “NZP” ) , NZP CSI-RS ( “NZP-CSI-RS” ) , Orthogonal Frequency Division Multiplexing ( “OFDM” ) , Peak-to-Average Power Ratio ( “PAPR” ) , Physical Broadcast Channel ( “PBCH” ) , Physical Downlink Control Channel ( “PDCCH” ) , Physical Downlink Shared Channel ( “PDSCH” ) , PDSCH Configuration ( “PDSCH-Config” ) , Policy Control Function ( “PCF” ) , Packet Data Convergence Protocol ( “PDCP” ) , Packet Data Network ( “PDN” ) , Protocol Data Unit ( “PDU” ) , Public Land Mobile Network ( “PLMN” ) , Precoding Matrix Indicator ( “PMI” ) , ProSe Per Packet Priority ( “PPPP” ) , ProSe Per Packet Reliability ( “PPPR” ) , Physical Resource Block ( “PRB” ) , Packet Switched ( “PS” ) , Physical Sidelink Control Channel ( “PSCCH” ) , Physical Sidelink Shared Channel ( “PSSCH” ) , Phase Tracking RS ( “PTRS” or “PT-RS” ) , Physical Uplink Control Channel ( “PUCCH” ) , Physical Uplink Shared Channel ( “PUSCH” ) , Quasi Co-Located ( “QCL” ) , Quality of Service ( “QoS” ) , Random Access Channel ( “RACH” ) , Radio Access Network ( “RAN” ) , Radio Access Technology ( “RAT” ) , Resource Element ( “RE” ) , Radio Frequency ( “RF” ) , Rank Indicator ( “RI” ) , Radio Link Control ( “RLC” ) , Radio Link Failure ( “RLF” ) , Radio Network Temporary Identifier ( “RNTI” ) , Resource Pool ( “RP” ) , Radio Resource Control ( “RRC” ) , Reference Signal ( “RS” ) , Reference Signal Received Power ( “RSRP” ) , Reference Signal Received Quality ( “RSRQ” ) , Receive ( “RX” ) , Single Carrier Frequency Domain Spread Spectrum ( “SC-FDSS” ) , Secondary Cell ( “SCell” ) , Sub Carrier Spacing ( “SCS” ) , Single DCI ( “S-DCI” ) , Service Data Unit ( “SDU” ) , Subscriber Identity Module ( “SIM” ) , Signal-to-Interference Ratio ( “SINR” ) , Sidelink ( “SL” ) , Sequence Number ( “SN” ) , Scheduling Request ( “SR” ) , SRS Resource Indicator ( “SRI” ) , Sounding Reference Signal ( “SRS” ) , Synchronization Signal ( “SS” ) , SS/PBCH Block ( “SSB” ) , Transport Block ( “TB” ) , Transmission Configuration Indicator ( “TCI” ) , Time Division Duplex ( “TDD” ) , Temporary Mobile Subscriber Identity ( “TMSI” ) , Transmitted Precoding Matrix Indicator ( “TPMI” ) , Transmission Reception Point ( “TRP” ) , Technical Standard ( “TS” ) , Transmit ( “TX” ) , User Entity/Equipment (Mobile Terminal) ( “UE” ) , Universal Integrated Circuit Card ( “UICC” ) , Uplink ( “UL” ) , Unacknowledged Mode ( “UM” ) , Universal Mobile Telecommunications System ( “UMTS” ) , LTE Radio Interface ( “Uu interface” ) , User Plane ( “UP” ) , Universal Subscriber Identity Module ( “USIM” ) , Universal Terrestrial Radio Access Network ( “UTRAN” ) , Vehicle to Everything ( “V2X” ) , Voice Over IP ( “VoIP” ) , Visited Public Land Mobile Network ( “VPLMN” ) , Vehicle RNTI ( “V-RNTI” ) , Worldwide Interoperability for Microwave Access ( “WiMAX” ) , Zero Forcing ( “ZF” ) , Zero Power ( “ZP” ) , and ZP CSI-RS ( “ZP-CSI-RS” ) . As used herein, “HARQ-ACK” may represent  collectively the Positive Acknowledge ( “ACK” ) and the Negative Acknowledge ( “NAK” ) . ACK means that a TB is correctly received while NAK means a TB is erroneously received.
In certain wireless communications networks, multiple sounding reference signal symbols may be used.
BRIEF SUMMARY
Methods for determining a length of sounding reference signal symbols are disclosed. Apparatuses and systems also perform the functions of the methods. In one embodiment, the method includes determining a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
An apparatus for determining a length of sounding reference signal symbols, in one embodiment, includes a processor that determines a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
A method for determining a number of frequency hops includes determining a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
An apparatus for determining a number of frequency hops, in one embodiment, includes a processor that determines a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for determining a length of sounding reference signal symbols;
Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining a length of sounding reference signal symbols;
Figure 3 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for determining a length of sounding reference signal symbols;
Figure 4 is a schematic block diagram illustrating one embodiment of an SRS pattern in which frequency hopping is performed before antenna switching;
Figure 5 is a schematic block diagram illustrating another embodiment of an SRS pattern in which frequency hopping is performed before antenna switching;
Figure 6 is a schematic block diagram illustrating a further embodiment of an SRS pattern in which frequency hopping is performed before antenna switching;
Figure 7 is a schematic block diagram illustrating one embodiment of an SRS pattern in which antenna switching is performed before frequency hopping;
Figure 8 is a schematic block diagram illustrating another embodiment of an SRS pattern in which antenna switching is performed before frequency hopping;
Figure 9 is a schematic block diagram illustrating a further embodiment of an SRS pattern in which antenna switching is performed before frequency hopping;
Figure 10 is a schematic block diagram illustrating one embodiment of minimizing a total guard period for an SRS pattern;
Figure 11 is a schematic block diagram illustrating another embodiment of minimizing a total guard period for an SRS pattern;
Figure 12 is a schematic flow chart diagram illustrating one embodiment of a method for determining a length of sounding reference signal symbols; and
Figure 13 is a schematic flow chart diagram illustrating one embodiment of a method for determining a number of frequency hops.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable  code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain of the functional units described in this specification may be labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing the code. The storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples (anon-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an  erasable programmable read-only memory ( “EPROM” or Flash memory) , a portable compact disc read-only memory ( “CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment, ” “an embodiment, ” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment, ” “in an embodiment, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” unless expressly specified otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so  forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of the embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. The code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other  steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, of the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
Figure 1 depicts an embodiment of a wireless communication system 100 for determining a length of sounding reference signal symbols. In one embodiment, the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
In one embodiment, the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , IoT devices, or the like. In some embodiments, the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art. The remote units 102 may communicate directly with one or more of the network units 104 via UL communication signals and/or the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
The network units 104 may be distributed over a geographic region. In certain embodiments, a network unit 104 may also be referred to as an access point, an access terminal,  a base, a base station, a Node-B, an eNB, a gNB, a Home Node-B, a RAN, a relay node, a device, a network device, an IAB node, a donor IAB node, or by any other terminology used in the art. The network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks. These and other elements of radio access and core networks are not illustrated but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with the 5G or NG (Next Generation) standard of the 3GPP protocol, wherein the network unit 104 transmits using NG RAN technology. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, among other protocols. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link. The network units 104 transmit DL communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
In various embodiments, a remote unit 102 and/or a network unit 104 may determine a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols. Accordingly, a remote unit 102 and/or a network unit 104 may be used for determining a length of sounding reference signal symbols.
In some embodiments, a remote unit 102 and/or a network unit 104 may determine a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols. Accordingly, a remote unit 102 and/or a network unit 104 may be used for determining a number of frequency hops.
Figure 2 depicts one embodiment of an apparatus 200 that may be used for determining a length of sounding reference signal symbols. The apparatus 200 includes one embodiment of the remote unit 102. Furthermore, the remote unit 102 may include a processor  202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212. In some embodiments, the input device 206 and the display 208 are combined into a single device, such as a touchscreen. In certain embodiments, the remote unit 102 may not include any input device 206 and/or display 208. In various embodiments, the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein. In certain embodiments, the processor 202 may determine a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols. In various embodiments, the processor 202 may determine a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols. The processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as  a touchscreen or similar touch-sensitive display. In some embodiments, the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen. In some embodiments, the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual, audible, and/or haptic signals. In some embodiments, the display 208 includes an electronic display capable of outputting visual data to a user. For example, the display 208 may include, but is not limited to, an LCD display, an LED display, an OLED display, a projector, or similar display device capable of outputting images, text, or the like to a user. As another, non-limiting, example, the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like. Further, the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
In certain embodiments, the display 208 includes one or more speakers for producing sound. For example, the display 208 may produce an audible alert or notification (e.g., a beep or chime) . In some embodiments, the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback. In some embodiments, all or portions of the display 208 may be integrated with the input device 206. For example, the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display. In other embodiments, the display 208 may be located near the input device 206.
Although only one transmitter 210 and one receiver 212 are illustrated, the remote unit 102 may have any suitable number of transmitters 210 and receivers 212. The transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 210 and the receiver 212 may be part of a transceiver.
Figure 3 depicts one embodiment of an apparatus 300 that may be used for determining a length of sounding reference signal symbols. The apparatus 300 includes one embodiment of the network unit 104. Furthermore, the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
In some embodiments, the processor 302 determines a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols. In various embodiments, the processor 302 determines a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols. Although only one transmitter 310 and one receiver 312 are illustrated, the network unit 104 may have any suitable number of transmitters 310 and receivers 312. The transmitter 310 and the receiver 312 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 310 and the receiver 312 may be part of a transceiver.
In various embodiments, SRS in addition to a legacy SRS (e.g., additional SRS, trigger type 2 SRS) may be used for DL efficiency enhancement. The additional SRS may be transmitted in any symbol other than a last symbol in a subframe that includes the additional SRS. As may be appreciated, if a legacy SRS is used, it is generally transmitted in the last symbol (e.g., OFDM symbol) in a subframe.
In some embodiments, both legacy SRS and additional SRS symbols may be configured for the same UE in one or more of the following configurations: 1) if legacy SRS is aperiodic, the UE may transmit one of legacy SRS or additional SRS symbols in the same subframe; 2) if legacy SRS is periodic, the UE may transmit legacy SRS and additional SRS symbols in the same or different subframes; and 3) if legacy SRS is aperiodic, the UE may transmit legacy SRS and additional SRS symbols in the same subframes. In such embodiments, a triggering mechanism may be included.
In certain embodiments, repetition, frequency hopping, and/or antenna switching may be supported within a subframe. In some embodiments, if configured, a guard symbol may be inserted between frequency hops and/or antenna switches to allow enough time for an RF transmission chain to make an adjustment between the frequencies and/or the antennas. In various embodiments, if configured, a guard symbol may be inserted between a last additional SRS symbol in a subframe and a legacy SRS symbol in the subframe.
In certain embodiments, time domain allocation of additional SRS may be defined in terms of a starting OFDM symbol, and a duration of additional SRS symbols including potential guard symbols may be specified in TS 36.211 as follows: 1) an additional SRS spans one or more OFDM symbols in the time domain, where: a) the starting OFDM symbol l 0 within  the subframe is given by the higher-layer parameter additionalSRS-startPos; b) the duration N in number of OFDM symbols, including potential guard symbols, is given by the higher-layer parameter additionalSRS-duration; 2) mapping to physical resources shall be done according to clause 5.5.3.2.1 with the following exceptions: a) frequency hopping between OFDM symbols is supported; b) 
Figure PCTCN2020072217-appb-000001
where l is the index of the OFDM symbol number carrying additional SRS within the subframe not counting guard symbol (s) , and R ∈ {1, 2, 3, 4, 6, 7, 8, 9, 12, 13} is the repetition factor given by the higher-layer parameter additionalSRS-RepNum; c) B SRS is given by the higher-layer parameter additionalSRS-Bandwidth; d) b hop is given by the higher-layer parameter additionalSRS-HoppingBandwidth; e) n RRC is given by the higher-layer parameter freqDomainPosition-additionalSRS; f) N ap is given by the higher-layer parameter additionalSRS-AntennaPort; g) 
Figure PCTCN2020072217-appb-000002
is given by the higher-layer parameter additionalSRS-cyclicShift; h) K TC is given by the higher-layer parameter additionalSRS-transmissionCombNum; i) 
Figure PCTCN2020072217-appb-000003
is given by the higher-layer parameter additionalSRS-transmissionComb; and 3) guard symbols may be required between frequency hops and antenna switches.
In some embodiments, there may be an independent configuration of guard symbol for antenna switching and/or frequency hopping.
In various embodiments, because a guard symbol for frequency hopping GS FH and a guard symbol for antenna switching GS AS may be independently configured by RRC, there are four different possible combinations as shown in Table 1.
Table 1
Figure PCTCN2020072217-appb-000004
As may be appreciated, the equations described herein may work for all 4 cases shown in Table 1.
In certain embodiments, Equation 1 and/or Equation 1: Simplified may be used if frequency hopping is performed before antenna switching. In such embodiments, a required  number of additional SRS symbols N (including guard symbols) may be calculated according to Equation 1 and/or Equation 1: Simplified. In the equations used herein, N is the number of additional SRS symbols (e.g., a length of a set of SRS symbols) , R is a number of SRS symbol repetitions for the additional SRS symbols, N AS is a number of antenna switches for the additional SRS symbols, N FH is a number of frequency hops for the additional SRS symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
Equation 1
N=R*N AS*N FH + (N AS*GS AS-1) *GS AS + (N FH*GS FH-1) *GS FH *N AS
Equation 1: Simplified
N= R*N AS*N FH + (N AS -1) *GS AS + (N FH -1) *GS FH *N AS
In various embodiments, Equation 2 and/or Equation 2: Simplified may be used if antenna switching is performed before frequency hopping. In such embodiments, a required number of additional SRS symbols N (including guard symbols) may be calculated according to Equation 2 and/or Equation 2: Simplified.
Equation 2
N=R*N AS*N FH + (N FH*GS FH-1) *GS FH + (N AS*GS AS-1) *GS AS *N FH
Equation 2: Simplified
N=R*N AS*N FH + (N FH -1) *GS FH + (N AS -1) *GS AS *N FH
In some embodiments, Equation 3 and/or Equation 3: Simplified may be used to minimize a total guard period for frequency hopping and/or antenna switching based on configured GS AS and GS FH.
Equation 3
N=R*N AS*N FH + (N AS*GS AS-1) *GS AS* (1-GS FH) + (N FH*GS FH-1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH
Equation 3: Simplified
N=R*N AS*N FH + (N AS -1) *GS AS* (1-GS FH) + (N FH -1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH
Equation 3 and/or Equation 3: Simplified may operate with the following assumptions: 1) if GS FH=1 and GS AS=0, antenna switching should be performed before frequency hopping; 2) if GS FH=0 and GS AS=1, frequency hopping should be performed before antenna switching; and 3) if GS FH=1 and GS AS=1 or GS FH=0 and GS AS=0, frequency hopping could be performed before antenna switching or antenna switching could be performed before frequency hopping.
In certain embodiments, a number of antenna switches N AS may be determined by RRC configuration such that the number of antenna switches is: a) 2 if there are 1 transmitter and 2 receivers configured or if a number of pairs is configured as 2 for 2 transmitters and 4 receivers; b) 3 if the number of pairs is configured as 3 for 2 transmitters and 4 receivers; and/or c) 4 for 1 transmitter and 4 receivers.
With Equation 3 and/or Equation 3: Simplified, if a total number of additional SRS symbols N is given, a number of frequency hops N FH may be derived, or if the number of frequency hops N FH is given, the total number of additional SRS symbols N may be derived.
In various embodiments, a configured start OFDM symbol l 0 and a duration of additional SRS symbols N may satisfy the following equation: l 0+N<=13.
Various examples of SRS patterns are illustrated in Figures 4 through 11. For the examples provided in Figures 4 through 6, two hop frequency hopping and two hop antenna switching are concurrently configured and frequency hopping is performed before antenna switching. As may be appreciated, a different number of additional SRS symbols may be required for different configurations of the values of GS AS and GS FH.
Figure 4 is a schematic block diagram illustrating one embodiment of an SRS pattern 400 in which frequency hopping is performed before antenna switching. In this embodiment, GS AS=1, GS FH=1, and N=11. A first symbol 402, a second symbol 404, a third symbol 406, a fourth symbol 408, a fifth symbol 410, a sixth symbol 412, a seventh symbol 414, an eighth symbol 416, a ninth symbol 418, a tenth symbol 420, an eleventh symbol 422, a twelfth symbol 424, and a thirteenth symbol 426 are illustrated over a first frequency 428 and a second frequency 430.
In Figure 4, a first SRS symbol 432 and a second SRS symbol 434 are transmitted as the first symbol 402 and the second symbol 404 in the first frequency 428 by a first antenna. A first guard symbol 436 is transmitted as the third symbol 406. The first guard symbol 436 is a  frequency hopping guard symbol used because GS FH=1. A third SRS symbol 438 and a fourth SRS symbol 440 are transmitted as the fourth symbol 408 and the fifth symbol 410 in the second frequency 430 by the first antenna. A second guard symbol 442 is transmitted as the sixth symbol 412. The second guard symbol 442 is an antenna switching guard symbol used because GS AS=1. A fifth SRS symbol 444 and a sixth SRS symbol 446 are transmitted as the seventh symbol 414 and the eighth symbol 416 in the first frequency 428 by the second antenna. A third guard symbol 448 is transmitted as the ninth symbol 418. The third guard symbol 448 is a frequency hopping guard symbol used because GS FH=1. A seventh SRS symbol 450 and an eighth SRS symbol 452 are transmitted as the tenth symbol 420 and the eleventh symbol 422 in the second frequency 430 by the second antenna.
Figure 5 is a schematic block diagram illustrating another embodiment of an SRS pattern 500 in which frequency hopping is performed before antenna switching. In this embodiment, GS AS=0, GS FH=1, and N=10. A first symbol 502, a second symbol 504, a third symbol 506, a fourth symbol 508, a fifth symbol 510, a sixth symbol 512, a seventh symbol 514, an eighth symbol 516, a ninth symbol 518, a tenth symbol 520, an eleventh symbol 522, a twelfth symbol 524, and a thirteenth symbol 526 are illustrated over a first frequency 528 and a second frequency 530.
In Figure 5, a first SRS symbol 532 and a second SRS symbol 534 are transmitted as the first symbol 502 and the second symbol 504 in the first frequency 528 by a first antenna. A first guard symbol 536 is transmitted as the third symbol 506. The first guard symbol 536 is a frequency hopping guard symbol used because GS FH=1. A third SRS symbol 538 and a fourth SRS symbol 540 are transmitted as the fourth symbol 508 and the fifth symbol 510 in the second frequency 530 by the first antenna. A fifth SRS symbol 542 and a sixth SRS symbol 544 are transmitted as the sixth symbol 512 and the seventh symbol 514 in the first frequency 528 by the second antenna. No guard symbol is used for the antenna switching between the first antenna and the second antenna because GS AS=0. A second guard symbol 546 is transmitted as the eighth symbol 516. The second guard symbol 546 is a frequency hopping guard symbol used because GS FH=1. A seventh SRS symbol 548 and an eighth SRS symbol 550 are transmitted as the ninth symbol 518 and the tenth symbol 520 in the second frequency 530 by the second antenna.
Figure 6 is a schematic block diagram illustrating a further embodiment of an SRS pattern 600 in which frequency hopping is performed before antenna switching. In this embodiment, GS AS=1, GS FH=0, and N=9. A first symbol 602, a second symbol 604, a third symbol 606, a fourth symbol 608, a fifth symbol 610, a sixth symbol 612, a seventh symbol 614,  an eighth symbol 616, a ninth symbol 618, a tenth symbol 620, an eleventh symbol 622, a twelfth symbol 624, and a thirteenth symbol 626 are illustrated over a first frequency 628 and a second frequency 630.
In Figure 6, a first SRS symbol 632 and a second SRS symbol 634 are transmitted as the first symbol 602 and the second symbol 604 in the first frequency 628 by a first antenna. No guard symbol is used for the frequency hopping between the first frequency 628 and the second frequency 630 because GS FH=0. A third SRS symbol 636 and a fourth SRS symbol 638 are transmitted as the third symbol 606 and the fourth symbol 608 in the second frequency 630 by the first antenna. A first guard symbol 640 is transmitted as the fifth symbol 610. The first guard symbol 640 is an antenna switching guard symbol used because GS AS=1. A fifth SRS symbol 642 and a sixth SRS symbol 644 are transmitted as the sixth symbol 612 and the seventh symbol 614 in the first frequency 628 by the second antenna. No guard symbol is used for the frequency hopping between the first frequency 628 and the second frequency 630 because GS FH=0. A seventh SRS symbol 646 and an eighth SRS symbol 648 are transmitted as the eighth symbol 616 and the ninth symbol 618 in the second frequency 630 by the second antenna.
For the examples provided in Figures 7 through 9, two hop frequency hopping and two hop antenna switching are concurrently configured and antenna switching is performed before frequency hopping. As may be appreciated, a different number of additional SRS symbols may be required for different configuration of the values of GS AS and GS FH.
Figure 7 is a schematic block diagram illustrating one embodiment of an SRS pattern 700 in which antenna switching is performed before frequency hopping. In this embodiment, GS AS=1, GS FH=1, and N=11. A first symbol 702, a second symbol 704, a third symbol 706, a fourth symbol 708, a fifth symbol 710, a sixth symbol 712, a seventh symbol 714, an eighth symbol 716, a ninth symbol 718, a tenth symbol 720, an eleventh symbol 722, a twelfth symbol 724, and a thirteenth symbol 726 are illustrated over a first frequency 728 and a second frequency 730.
In Figure 7, a first SRS symbol 732 and a second SRS symbol 734 are transmitted as the first symbol 702 and the second symbol 704 in the first frequency 728 by a first antenna. A first guard symbol 736 is transmitted as the third symbol 706. The first guard symbol 736 is an antenna switching guard symbol used because GS AS=1. A third SRS symbol 738 and a fourth SRS symbol 740 are transmitted as the fourth symbol 708 and the fifth symbol 710 in the first frequency 728 by a second antenna. A second guard symbol 742 is transmitted as the sixth symbol 712. The second guard symbol 742 is a frequency hopping guard symbol used because GS FH=1. A fifth SRS symbol 744 and a sixth SRS symbol 746 are transmitted as the seventh  symbol 714 and the eighth symbol 716 in the second frequency 730 by the first antenna. A third guard symbol 748 is transmitted as the ninth symbol 718. The third guard symbol 748 is an antenna switching guard symbol used because GS AS=1. A seventh SRS symbol 750 and an eighth SRS symbol 752 are transmitted as the tenth symbol 720 and the eleventh symbol 722 in the second frequency 730 by the second antenna.
Figure 8 is a schematic block diagram illustrating another embodiment of an SRS pattern 800 in which antenna switching is performed before frequency hopping. In this embodiment, GS AS=0, GS FH=1, and N=9. A first symbol 802, a second symbol 804, a third symbol 806, a fourth symbol 808, a fifth symbol 810, a sixth symbol 812, a seventh symbol 814, an eighth symbol 816, a ninth symbol 818, a tenth symbol 820, an eleventh symbol 822, a twelfth symbol 824, and a thirteenth symbol 826 are illustrated over a first frequency 828 and a second frequency 830.
In Figure 8, a first SRS symbol 832 and a second SRS symbol 834 are transmitted as the first symbol 802 and the second symbol 804 in the first frequency 828 by a first antenna. A third SRS symbol 836 and a fourth SRS symbol 838 are transmitted as the third symbol 806 and the fourth symbol 808 in the first frequency 828 by a second antenna. No guard symbol is used for the antenna switching between the first antenna and the second antenna because GS AS=0. A first guard symbol 840 is transmitted as the fifth symbol 810. The first guard symbol 840 is a frequency hopping guard symbol used because GS FH=1. A fifth SRS symbol 842 and a sixth SRS symbol 844 are transmitted as the sixth symbol 812 and the seventh symbol 814 in the second frequency 830 by the first antenna. A seventh SRS symbol 846 and an eighth SRS symbol 848 are transmitted as the eighth symbol 816 and the ninth symbol 818 in the second frequency 830 by the second antenna. No guard symbol is used for the antenna switching between the first antenna and the second antenna because GS AS=0.
Figure 9 is a schematic block diagram illustrating a further embodiment of an SRS pattern 900 in which antenna switching is performed before frequency hopping. In this embodiment, GS AS=1, GS FH=0, and N=10. A first symbol 902, a second symbol 904, a third symbol 906, a fourth symbol 908, a fifth symbol 910, a sixth symbol 912, a seventh symbol 914, an eighth symbol 916, a ninth symbol 918, a tenth symbol 920, an eleventh symbol 922, a twelfth symbol 924, and a thirteenth symbol 926 are illustrated over a first frequency 928 and a second frequency 930.
In Figure 9, a first SRS symbol 932 and a second SRS symbol 934 are transmitted as the first symbol 902 and the second symbol 904 in the first frequency 928 by a first antenna. A first guard symbol 936 is transmitted as the third symbol 906. The first guard symbol 936 is  an antenna switching guard symbol used because GS AS=1. A third SRS symbol 938 and a fourth SRS symbol 940 are transmitted as the fourth symbol 908 and the fifth symbol 910 in the first frequency 928 by a second antenna.. No guard symbol is used for the frequency hopping between the first frequency 928 and the second frequency 930 because GS FH=0. A fifth SRS symbol 942 and a sixth SRS symbol 944 are transmitted as the sixth symbol 912 and the seventh symbol 914 in the second frequency 930 by the first antenna. A second guard symbol 946 is transmitted as the eighth symbol 916. The second guard symbol 946 is an antenna switching guard symbol used because GS AS=1. A seventh SRS symbol 948 and an eighth SRS symbol 950 are transmitted as the ninth symbol 918 and the tenth symbol 920 in the second frequency 930 by the second antenna.
For the examples provided in Figures 10 and 11, two hop frequency hopping and two hop antenna switching are concurrently configured. To minimize total guard symbol overhead, if GS FH=1 and GS AS=0, antenna switching is performed before frequency hopping, if GS FH=0 and GS AS=1, frequency hopping is performed before antenna switching.
Figure 10 is a schematic block diagram illustrating one embodiment of minimizing a total guard period for an SRS pattern 1000. In this embodiment, GS AS=0, GS FH=1, antenna switching is performed before frequency hopping, and N=9. A first symbol 1002, a second symbol 1004, a third symbol 1006, a fourth symbol 1008, a fifth symbol 1010, a sixth symbol 1012, a seventh symbol 1014, an eighth symbol 1016, a ninth symbol 1018, a tenth symbol 1020, an eleventh symbol 1022, a twelfth symbol 1024, and a thirteenth symbol 1026 are illustrated over a first frequency 1028 and a second frequency 1030.
In Figure 10, a first SRS symbol 1032 and a second SRS symbol 1034 are transmitted as the first symbol 1002 and the second symbol 1004 in the first frequency 1028 by a first antenna. A third SRS symbol 1036 and a fourth SRS symbol 1038 are transmitted as the third symbol 1006 and the fourth symbol 1008 in the first frequency 1028 by a second antenna. No guard symbol is used for the antenna switching between the first antenna and the second antenna because GS AS=0. A first guard symbol 1040 is transmitted as the fifth symbol 1010. The first guard symbol 1040 is a frequency hopping guard symbol used because GS FH=1. A fifth SRS symbol 1042 and a sixth SRS symbol 1044 are transmitted as the sixth symbol 1012 and the seventh symbol 1014 in the second frequency 1030 by the first antenna. A seventh SRS symbol 1046 and an eighth SRS symbol 1048 are transmitted as the eighth symbol 1016 and the ninth symbol 1018 in the second frequency 1030 by the second antenna. No guard symbol is used for the antenna switching between the first antenna and the second antenna because GS AS=0.
Figure 11 is a schematic block diagram illustrating another embodiment of minimizing a total guard period for an SRS pattern 1100. In this embodiment, GS AS=1, GS FH=0, frequency hopping is performed before antenna switching, and N=9. A first symbol 1102, a second symbol 1104, a third symbol 1106, a fourth symbol 1108, a fifth symbol 1110, a sixth symbol 1112, a seventh symbol 1114, an eighth symbol 1116, a ninth symbol 1118, a tenth symbol 1120, an eleventh symbol 1122, a twelfth symbol 1124, and a thirteenth symbol 1126 are illustrated over a first frequency 1128 and a second frequency 1130.
In Figure 11, a first SRS symbol 1132 and a second SRS symbol 1134 are transmitted as the first symbol 1102 and the second symbol 1104 in the first frequency 1128 by a first antenna. No guard symbol is used for the frequency hopping between the first frequency 1128 and the second frequency 1130 because GS FH=0. A third SRS symbol 1136 and a fourth SRS symbol 1138 are transmitted as the third symbol 1106 and the fourth symbol 1108 in the second frequency 1130 by the first antenna. A first guard symbol 1140 is transmitted as the fifth symbol 1110. The first guard symbol 1140 is an antenna switching guard symbol used because GS AS=1. A fifth SRS symbol 1142 and a sixth SRS symbol 1144 are transmitted as the sixth symbol 1112 and the seventh symbol 1114 in the first frequency 1128 by the second antenna. No guard symbol is used for the frequency hopping between the first frequency 1128 and the second frequency 1130 because GS FH=0. A seventh SRS symbol 1146 and an eighth SRS symbol 1148 are transmitted as the eighth symbol 1116 and the ninth symbol 1118 in the second frequency 1130 by the second antenna.
In certain embodiments, a number of frequency hops N FH is given by
Figure PCTCN2020072217-appb-000005
Figure PCTCN2020072217-appb-000006
or
Figure PCTCN2020072217-appb-000007
if frequency hopping is enabled and 1 if frequency hopping is not enabled. In such embodiments, BW SRS is a total configured bandwidth for additional SRS, and BW hopis a subband bandwidth per hop. It should be noted that in various embodiments, a floor () operation is used for
Figure PCTCN2020072217-appb-000008
and a ceiling () operation is used for
Figure PCTCN2020072217-appb-000009
In some embodiments, a length of an additional SRS transmission (e.g., length in number of symbols) including possible guard symbols between frequency hopping and antenna switching may be calculated using Equation 1 if frequency hopping is performed before antenna switching as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS + (N FH*GS FH-1) *GS FH *N AS; or using Equation 1: Simplified as follows: N= R*N AS*N FH + (N AS -1) *GS AS + (N FH -1) *GS FH *N AS.
In certain embodiments, a length of an additional SRS transmission (e.g., length in number of symbols) including possible guard symbols between frequency hopping and antenna switching may be calculated using Equation 2 if antenna switching is performed before frequency hopping as follows: N=R*N AS*N FH + (N FH*GS FH-1) *GS FH + (N AS*GS AS-1) *GS AS *N FH; or using Equation 2: Simplified as follows: N=R*N AS*N FH + (N FH -1) *GS FH + (N AS -1) *GS AS *N FH.
In various embodiments, a length of an additional SRS transmission (e.g., length in number of symbols) including possible guard symbols between frequency hopping and antenna switching may be calculated using Equation 3 to minimize a guard symbol overhead for antenna switching and frequency hopping as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS* (1-GS FH) + (N FH*GS FH-1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH; or using Equation 3: Simplified as follows: N=R*N AS*N FH + (N AS -1) *GS AS* (1-GS FH) + (N FH -1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH.
In some embodiments, depending on a UE capability and higher layer configuration, a guard symbol GS SS may be used between additional SRS symbols and a legacy SRS symbol at the end of the same subframe. In certain embodiments, the guard symbol GS SS is not included in a total length of additional SRS symbols N.
In certain embodiments, for additional SRS symbols to not collide with a legacy SRS symbol, and to accommodate possible guard symbol (GS SS =1 or 0) between the additional SRS symbols and the legacy symbol, a network (e.g., gNB) may configure a starting OFDM symbol l 0 for the additional SRS as shown in Equation 4.
Equation 4
l 0≤13-N-GS SS
In various embodiments, a network (e.g., gNB) may configure N and l 0 to satisfy Equation 3 and Equation 4. In such embodiments, a UE may not expect to receive a configuration of N and l 0 such that l 0>13-N-GS SS.
In one embodiment, if a one symbol guard period between additional SRS and a legacy SRS is used, a configured start OFDM symbol l 0 and a duration of additional SRS should satisfy l 0+N<=12; otherwise, the configured start OFDM symbol l 0 and the duration of additional SRS should satisfy l 0+N <=13.
In some embodiments, instead of configuring l 0 so that additional SRS never conflicts with a legacy SRS symbol at symbol 13, a dropping rule may be defined for additional  SRS symbols if a UE receives a l 0>13-N-GS SS. In such embodiments, if the UE receives a l 0>13-N-GS SS, the UE may truncate the last symbols of the additional SRS symbols to ensure the legacy SRS is always transmitted and a guard symbol is inserted between the additional SRS and the legacy SRS if GS SS=1. For example, if the UE is configured with l 0=9, N=4, and GS SS=1, and the UE transmits a legacy SRS in symbol 13, then the UE only transmits the first three symbols of the additional SRS and drops the last symbol. Accordingly, symbol 12 is reserved as a guard symbol, and the legacy SRS symbol is transmitted in symbol 13.
In certain embodiments, a number of additional SRS symbols N and a starting OFDM position l 0 may be configured, but a number of frequency hops N FH may need to be derived. N FH can be derived from Equation 1 if frequency hopping is performed before antenna switching: as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS + (N FH*GS FH-1) *GS FH *N AS , which can be rewritten to: N+ GS FH *N AS- (N AS*GS AS-1) *GS AS= (R*N AS + N AS *GS FH) *N FH to result in Equation 5.
Equation 5
Figure PCTCN2020072217-appb-000010
N FH can be derived from Equation 2 if antenna switching is performed before frequency hopping as follows: N + GS FH = [R*N AS + GS FH + (N AS*GS AS-1) *GS AS] *N FH to result in Equation 6.
Equation 6
Figure PCTCN2020072217-appb-000011
N FH can be derived from Equation 3 if frequency hopping and antenna switching is configured according to a total guard symbol overhead: as follows: N=RN ASN FH+ (N ASN FH-N AS-N FH) GS ASGS FH+N ASGS AS+N FHGS FH+GS ASGS FH-GS AS-GS FH=RN ASN FH+ (N ASN FHGS ASGS FH-N ASGS ASGS FH-N FHGS ASGS FH) +N ASGS AS+N FHGS FH+GS ASGS FH-GS AS-GS FH, which can be rewritten to: N N ASGS ASGS FH-N ASGS AS-GS ASGS FH+GS AS+GS FH= (RN AS+ (N ASGS ASGS FH-GS ASGS FH) +GS FH) N FH to result in Equation 7.
Equation 7
Figure PCTCN2020072217-appb-000012
In various embodiments, if a subband bandwidth per hop BW hopis not configured, a UE may derive it from N FH as
Figure PCTCN2020072217-appb-000013
Figure 12 is a schematic flow chart diagram illustrating one embodiment of a method 1200 for determining a length of sounding reference signal symbols. In some embodiments, the method 1200 is performed by an apparatus, such as the remote unit 102 and/or the network unit 104. In certain embodiments, the method 1200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 1200 may include determining 1202 a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
In certain embodiments, the set of sounding reference signal symbols includes at least one guard symbol. In some embodiments, the method 1200 further comprises determining whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the set of sounding reference signal symbols, wherein the last symbol in the subframe is not part of the set of sounding reference signal symbols. In various embodiments, determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
In one embodiment, the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol. In certain embodiments, the method 1200 further comprises, in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determining one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard. In some  embodiments, a user equipment determines the length of the set of sounding reference signal symbols.
In various embodiments, a network unit determines the length of the set of sounding reference signal symbols. In one embodiment, the method 1200 further comprises configuring a time domain resource for the set of sounding reference signal symbols. In certain embodiments, configuring the time domain resource for the set of sounding reference signal symbols comprises configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
In some embodiments, configuring the time domain resource for the set of sounding reference signal symbols comprises configuring the time domain resource for the set of sounding reference signal symbols based on: the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; the number of frequency hops corresponding to the set of sounding reference signal symbols; the number of antenna switches corresponding to the set of sounding reference signal symbols; and the guard symbol configuration corresponding to the set of sounding reference signal symbols.
In various embodiments, the method 1200 further comprises determining the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols. In one embodiment, the method 1200 further comprises determining a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
In certain embodiments, determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS + (N FH*GS FH-1) *GS FH *N AS, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In some embodiments, determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N FH*GS FH-1) *GS FH + (N AS*GS AS-1) *GS AS *N FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is  the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In various embodiments, determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS* (1-GS FH) + (N FH*GS FH-1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
Figure 13 is a schematic flow chart diagram illustrating one embodiment of a method 1300 for determining a number of frequency hops. In some embodiments, the method 1300 is performed by an apparatus, such as the remote unit 102 and/or the network unit 104. In certain embodiments, the method 1300 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 1300 may include determining 1302 a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
In certain embodiments, the method 1300 further comprises determining a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.
In one embodiment, a method comprises: determining a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
In certain embodiments, the set of sounding reference signal symbols includes at least one guard symbol.
In some embodiments, the method further comprises determining whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the  set of sounding reference signal symbols, wherein the last symbol in the subframe is not part of the set of sounding reference signal symbols.
In various embodiments, determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
In one embodiment, the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol.
In certain embodiments, the method further comprises, in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determining one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard.
In some embodiments, a user equipment determines the length of the set of sounding reference signal symbols.
In various embodiments, a network unit determines the length of the set of sounding reference signal symbols.
In one embodiment, the method further comprises configuring a time domain resource for the set of sounding reference signal symbols.
In certain embodiments, configuring the time domain resource for the set of sounding reference signal symbols comprises configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
In some embodiments, configuring the time domain resource for the set of sounding reference signal symbols comprises configuring the time domain resource for the set of sounding reference signal symbols based on: the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; the number of frequency hops corresponding to the set of sounding reference signal symbols; the number of antenna switches corresponding to the set of sounding reference signal symbols; and the guard symbol configuration corresponding to the set of sounding reference signal symbols.
In various embodiments, the method further comprises determining the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols.
In one embodiment, the method further comprises determining a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
In certain embodiments, determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS + (N FH*GS FH-1) *GS FH *N AS, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In some embodiments, determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N FH*GS FH-1) *GS FH + (N AS*GS AS-1) *GS AS *N FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In various embodiments, determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS* (1-GS FH) + (N FH*GS FH-1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In one embodiment, an apparatus comprises: a processor that determines a length of a set of sounding reference signal symbols based on: a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; a number of frequency hops corresponding to the set of sounding reference signal symbols; a number of  antenna switches corresponding to the set of sounding reference signal symbols; and a guard symbol configuration corresponding to the set of sounding reference signal symbols.
In certain embodiments, the set of sounding reference signal symbols includes at least one guard symbol.
In some embodiments, the processor determines whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the set of sounding reference signal symbols, and the last symbol in the subframe is not part of the set of sounding reference signal symbols.
In various embodiments, the processor determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises the processor determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
In one embodiment, the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol.
In certain embodiments, the processor, in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determines one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard.
In some embodiments, a user equipment determines the length of the set of sounding reference signal symbols.
In various embodiments, a network unit determines the length of the set of sounding reference signal symbols.
In one embodiment, the processor configures a time domain resource for the set of sounding reference signal symbols.
In certain embodiments, the processor configuring the time domain resource for the set of sounding reference signal symbols comprises the processor configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
In some embodiments, the processor configuring the time domain resource for the set of sounding reference signal symbols comprises the processor configuring the time domain resource for the set of sounding reference signal symbols based on: the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols; the number of frequency hops corresponding to the set of sounding reference signal  symbols; the number of antenna switches corresponding to the set of sounding reference signal symbols; and the guard symbol configuration corresponding to the set of sounding reference signal symbols.
In various embodiments, the processor determines the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols.
In one embodiment, the processor determines a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
In certain embodiments, the processor determining the length of the set of sounding reference signal symbols comprises the processor determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS + (N FH*GS FH-1) *GS FH *N AS, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In some embodiments, the processor determining the length of the set of sounding reference signal symbols comprises the processor determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N FH*GS FH-1) *GS FH + (N AS*GS AS-1) *GS AS *N FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In various embodiments, the processor determining the length of the set of sounding reference signal symbols comprises the processor determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH + (N AS*GS AS-1) *GS AS* (1-GS FH) + (N FH*GS FH-1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS  is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
In one embodiment, a method comprises: determining a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
In certain embodiments, the method further comprises determining a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.
In one embodiment, an apparatus comprises: a processor that determines a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
In certain embodiments, the processor determines a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (36)

  1. A method comprising:
    determining a length of a set of sounding reference signal symbols based on:
    a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols;
    a number of frequency hops corresponding to the set of sounding reference signal symbols;
    a number of antenna switches corresponding to the set of sounding reference signal symbols; and
    a guard symbol configuration corresponding to the set of sounding reference signal symbols.
  2. The method of claim 1, wherein the set of sounding reference signal symbols includes at least one guard symbol.
  3. The method of claim 1, further comprising determining whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the set of sounding reference signal symbols, wherein the last symbol in the subframe is not part of the set of sounding reference signal symbols.
  4. The method of claim 3, wherein determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
  5. The method of claim 3, wherein the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol.
  6. The method of claim 3, further comprising, in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determining one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard.
  7. The method of claim 1, wherein a user equipment determines the length of the set of sounding reference signal symbols.
  8. The method of claim 1, wherein a network unit determines the length of the set of sounding reference signal symbols.
  9. The method of claim 8, further comprising configuring a time domain resource for the set of sounding reference signal symbols.
  10. The method of claim 9, wherein configuring the time domain resource for the set of sounding reference signal symbols comprises configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
  11. The method of claim 9, wherein configuring the time domain resource for the set of sounding reference signal symbols comprises configuring the time domain resource for the set of sounding reference signal symbols based on:
    the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols;
    the number of frequency hops corresponding to the set of sounding reference signal symbols;
    the number of antenna switches corresponding to the set of sounding reference signal symbols; and
    the guard symbol configuration corresponding to the set of sounding reference signal symbols.
  12. The method of claim 1, further comprising determining the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols.
  13. The method of claim 12, further comprising determining a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
  14. The method of claim 1, wherein determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH+ (N AS*GS AS-1) *GS AS+ (N FH*GS FH-1) *GS FH*N AS, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
  15. The method of claim 1, wherein determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH+ (N FH*GS FH-1) *GS FH+ (N AS*GS AS-1) *GS AS*N FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
  16. The method of claim 1, wherein determining the length of the set of sounding reference signal symbols comprises determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH+ (N AS*GS AS-1) *GS AS* (1-GS FH) + (N FH*GS FH-1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
  17. An apparatus comprising:
    a processor that determines a length of a set of sounding reference signal symbols based on:
    a number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols;
    a number of frequency hops corresponding to the set of sounding reference signal symbols;
    a number of antenna switches corresponding to the set of sounding reference signal symbols; and
    a guard symbol configuration corresponding to the set of sounding reference signal symbols.
  18. The apparatus of claim 17, wherein the set of sounding reference signal symbols includes at least one guard symbol.
  19. The apparatus of claim 17, wherein the processor determines whether the set of sounding reference signal symbols conflict with a last symbol in a subframe that includes the set of sounding reference signal symbols, and the last symbol in the subframe is not part of the set of sounding reference signal symbols.
  20. The apparatus of claim 19, wherein the processor determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe comprises the processor determining whether the set of sounding reference signal symbols conflict with the last symbol in the subframe based on the length of the set of sounding reference signal symbols and a starting symbol position for the set of sounding reference signal symbols.
  21. The apparatus of claim 19, wherein the set of sounding reference signal symbols and the last symbol in the subframe are separated by a guard symbol.
  22. The apparatus of claim 19, wherein the processor, in response to determining that the set of sounding reference signal symbols conflict with the last symbol in the subframe, determines one or more sounding reference signal symbols of the set of sounding reference signal symbols to discard.
  23. The apparatus of claim 17, wherein a user equipment determines the length of the set of sounding reference signal symbols.
  24. The apparatus of claim 17, wherein a network unit determines the length of the set of sounding reference signal symbols.
  25. The apparatus of claim 24, wherein the processor configures a time domain resource for the set of sounding reference signal symbols.
  26. The apparatus of claim 25, wherein the processor configuring the time domain resource for the set of sounding reference signal symbols comprises the processor configuring a total length of the set of sounding reference signal symbols, a starting position for the set of sounding reference signal symbols, or a combination thereof.
  27. The apparatus of claim 25, wherein the processor configuring the time domain resource for the set of sounding reference signal symbols comprises the processor configuring the time domain resource for the set of sounding reference signal symbols based on:
    the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols;
    the number of frequency hops corresponding to the set of sounding reference signal symbols;
    the number of antenna switches corresponding to the set of sounding reference signal symbols; and
    the guard symbol configuration corresponding to the set of sounding reference signal symbols.
  28. The apparatus of claim 17, wherein the processor determines the number of frequency hops corresponding to the set of sounding reference signal symbols based on the length of the set of sounding reference signal symbols.
  29. The apparatus of claim 28, wherein the processor determines a subband bandwidth per hop based on the number of frequency hops corresponding to the set of sounding reference signal symbols.
  30. The apparatus of claim 17, wherein the processor determining the length of the set of sounding reference signal symbols comprises the processor determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH+ (N AS*GS AS-1) *GS AS+ (N FH*GS FH-1) *GS FH*N AS, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
  31. The apparatus of claim 17, wherein the processor determining the length of the set of sounding reference signal symbols comprises the processor determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH+ (N FH*GS FH-1) * GS FH+ (N AS*GS AS-1) *GS AS*N FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
  32. The apparatus of claim 17, wherein the processor determining the length of the set of sounding reference signal symbols comprises the processor determining the length of the set of sounding reference signal symbols as follows: N=R*N AS*N FH+ (N AS*GS AS-1) *GS AS* (1-GS FH) + (N FH*GS FH-1) *GS FH* (1-GS AS) + (N AS*N FH-1) *GS AS*GS FH, N is the length of the set of sounding reference signal symbols, R is the number of sounding reference signal symbol repetitions corresponding to the set of sounding reference signal symbols, N AS is the number of antenna switches corresponding to the set of sounding reference signal symbols, N FH is the number of frequency hops corresponding to the set of sounding reference signal symbols, GS AS is a number of guard symbols for antenna switching, and GS FH is a number of guard symbols for frequency hopping.
  33. A method comprising:
    determining a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  34. The method of claim 33, further comprising determining a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.
  35. An apparatus comprising:
    a processor that determines a number of frequency hops corresponding to a set of sounding reference signal symbols based on a length of the set of sounding reference signal symbols.
  36. The apparatus of claim 35, wherein the processor determines a size of a subband bandwidth based on the number of frequency hops and a sounding bandwidth.
PCT/CN2020/072217 2020-01-15 2020-01-15 Determining a length of sounding reference signal symbols WO2021142655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072217 WO2021142655A1 (en) 2020-01-15 2020-01-15 Determining a length of sounding reference signal symbols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072217 WO2021142655A1 (en) 2020-01-15 2020-01-15 Determining a length of sounding reference signal symbols

Publications (1)

Publication Number Publication Date
WO2021142655A1 true WO2021142655A1 (en) 2021-07-22

Family

ID=76863471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072217 WO2021142655A1 (en) 2020-01-15 2020-01-15 Determining a length of sounding reference signal symbols

Country Status (1)

Country Link
WO (1) WO2021142655A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226639A1 (en) * 2015-01-29 2016-08-04 Gang Xiong System and methods for support of frequency hopping for ues with reduced bandwidth support
CN107005390A (en) * 2015-04-10 2017-08-01 华为技术有限公司 A kind of method and apparatus that send and receive of SRS
WO2018218200A1 (en) * 2017-05-26 2018-11-29 Qualcomm Incorporated Transmit power and frequency hopping configurations for control information transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226639A1 (en) * 2015-01-29 2016-08-04 Gang Xiong System and methods for support of frequency hopping for ues with reduced bandwidth support
CN107005390A (en) * 2015-04-10 2017-08-01 华为技术有限公司 A kind of method and apparatus that send and receive of SRS
WO2018218200A1 (en) * 2017-05-26 2018-11-29 Qualcomm Incorporated Transmit power and frequency hopping configurations for control information transmissions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Introduction of DL MIMO efficiency enhancements for LTE", 3GPP DRAFT; R1-1913619, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, NV, USA; 20191118 - 20191122, 6 December 2019 (2019-12-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051838210 *
HUAWEI, HISILICON: "Remaining issues of additional SRS symbols in normal UL subframe", 3GPP DRAFT; R1-1911916, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823098 *

Similar Documents

Publication Publication Date Title
WO2020093320A1 (en) Data block transmissions
WO2020164117A1 (en) Indicating dmrs ports for codewords
WO2022006864A1 (en) Transmission using dmrs from two code division multiplexing groups
US20220007378A1 (en) Resource pool assignment
WO2021203269A1 (en) Integrated access and backhaul node configuration
CN114503477B (en) Transmitting feedback for sidelink transmission
US20230058765A1 (en) Data transmissions using multiple transmission reception points
WO2022016441A1 (en) Configuring uplink transmission configuration indication states
WO2022027562A1 (en) Configuring sounding reference signal resource sets
WO2022027456A1 (en) Configuring uplink transmission configuration indication power control parameters
WO2021056530A1 (en) Information for physical downlink shared channel configuration
WO2021022537A1 (en) Indicating a slot offset corresponding to a downlink control channel
WO2022061699A1 (en) Downlink control information indicating transmission control indicator states
WO2022082427A1 (en) Frequency offset indication
WO2021179285A1 (en) Channel state information report configuration
WO2021146985A1 (en) Updating sounding reference signal spatial relation information
WO2021035385A1 (en) Using multiple downlink reference signals for channel estimation
WO2020232627A1 (en) Determining signal-to-interference ratios
WO2021142655A1 (en) Determining a length of sounding reference signal symbols
WO2022061692A1 (en) Multiple downlink control information transmissions
US12003444B2 (en) Determining resources for phase tracking reference signals
WO2020220236A1 (en) Multiplexing feedback responses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914384

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20914384

Country of ref document: EP

Kind code of ref document: A1