CN110536610A - 植物壳材料与成分的崩解/分离和分解方法,以获得并生产植物成分和植物-基纤维产物 - Google Patents

植物壳材料与成分的崩解/分离和分解方法,以获得并生产植物成分和植物-基纤维产物 Download PDF

Info

Publication number
CN110536610A
CN110536610A CN201880021157.9A CN201880021157A CN110536610A CN 110536610 A CN110536610 A CN 110536610A CN 201880021157 A CN201880021157 A CN 201880021157A CN 110536610 A CN110536610 A CN 110536610A
Authority
CN
China
Prior art keywords
shell
plant
disintegration
starting material
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880021157.9A
Other languages
English (en)
Other versions
CN110536610B (zh
Inventor
马克斯·迪茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma Kesidici
Original Assignee
Ma Kesidici
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ma Kesidici filed Critical Ma Kesidici
Publication of CN110536610A publication Critical patent/CN110536610A/zh
Application granted granted Critical
Publication of CN110536610B publication Critical patent/CN110536610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N7/00Peeling vegetables or fruit
    • A23N7/01Peeling vegetables or fruit using chemical substances, e.g. lye
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/18Carbohydrates
    • A21D2/188Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/36Vegetable material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/006Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from vegetable materials
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/12Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from cereals, wheat, bran, or molasses
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/14Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N5/00Machines for hulling, husking or cracking nuts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials

Abstract

本发明涉及崩解和分解植物起始材料的方法,该方法具有下述步骤:a)提供植物起始材料,b)混合起始材料与崩解溶液并使起始材料保留在崩解溶液中,直到实现崩解,c)在分配体积中分配崩解的起始材料成分,获得植物起始材料的已溶解成分和固体成分,d)将固体成分与植物起始材料的已溶解成分分离,e)e1)借助旋风分离方法,通过从植物起始材料的固体成分中的富含木质素的壳中分级分离纤维素系纤维,获得纤维素系纤维的纯化部分以及富含木质素的壳,e2)通过复合剂聚集/复合植物起始材料中已溶解成分中的溶解蛋白质,并分离沉降的聚集/复合的缩合蛋白质,以获得聚集/复合蛋白质物料,从而获得植物起始材料的已分离成分作为进一步利用的材料。

Description

植物壳材料与成分的崩解/分离和分解方法,以获得并生产植 物成分和植物-基纤维产物
背景技术
用于繁殖的几乎所有植物产品,例如种子,果核或籽粒,而且其它植物产品,例如水果被至少一个壳结构(例如,种子包膜,种子涂层)包封,以抵消活化和/或提高活化/引发生长过程,并保护它们和/或提供生长所需的营养物和/或使之结构化。这通过提供这种壳层作为对物理或化学变化的完全密闭的屏障来实现。种子涂层在植物产品的发育阶段中具有提供水和营养物的任务且是在种子或籽粒内包含的成分,例如蛋白质,碳水化合物和脂肪/油在其内形成的场所。因此,这种薄膜层含有它们包封在其内的各种酶,以及造成产生内容物成分的化合物。因此,例如,高浓度的这些成分的起始和前体化合物,例如羧酸(例如抗坏血酸或肉桂酸)或酶或抗氧剂或染料也存在于这些壳材料内。此外,还通过壳层合成或掺入拟抵消微生物或大型生物分解/进攻的化合物。这些包括例如气味或调味物质以及毒素。当植物产品的成熟完全时,壳层被压紧和营养物的供应被终止。在不同种子和果核中,压紧是不同的。在大多数情况下,木质素和/或纤维素在压紧和连续层内发生交联。结果,位于其内的导水毛细管闭合。植物产品于是接受对崩解的机械保护和对包封成分溶胀的保护,而且防止水损失。在干态下,这种壳层以不具有间隙的方式用包封的物料压紧。因此,拟用于繁殖的植物产品的壳层非常难以或者不可能通过物理方式与包封成分分离。这尤其应用到直接毗邻包封成分的壳层上。尤其当壳层非常薄且具有与包封成分类似物理性能,例如弹性或密度时,物理分离是不可能的。这对于例如坚果或大豆的壳表皮(种子涂层)来说是事实,其中在干燥之后,通过纯粹机械方式来选择性去除壳层是不可能的。
植物的种子,果核和籽粒是重要的基本食物源,且通过部分粉碎或完全粉碎它们和/或它们的一部分作为食品来提供。对于许多种子和籽粒来说,需要完全去除一层或所有层壳层,因为如果它们保留在食品内的话,则具有非所需的效果。这可导致干扰感官效果,例如苦味,或者导致所得产品变色或者当被消耗时,口感不利地改变,这是在进一步加工过程中产生的粒子,其中包括与植物产品中其它成分不同的粒子尺寸和壳材料的硬度导致的。许多这些壳层可通过吸水溶胀,于是在壳层和包封的物料成分之间形成水填充的间隙空间。已知在室温下在水浴中这种溶胀仅仅非常缓慢地形成或者根本不形成;然而,使用热水或水蒸气,这一过程可以显著加速或者引发。有利地,加热还破坏具有毒性和/或非营养性能的有机化合物,例如脲酶或胰蛋白酶抑制剂和/或使之失活。然而,这可导致有机成分变化,使得它们产生非所需的感官效应,例如苦味或收敛效应,这通常不可能通过加热去除且保留在种子籽粒或种子内,即使它从壳材料中除去。湿气加热的缺点是,可出现若干种非所需的效果。一方面,在处理过的植物种子和籽粒内存在的蛋白质至少部分变性,且健康的有机化合物,例如维生素失活。另一方面,包含的淀粉具有较大的溶胀。此外,脂肪酸可能被化学改性,结果形成具有有害效果的例如反式脂肪酸或环氧化物。因此,允许在室温下或者仅仅在低热下分离壳材料的方法优于加热植物基材料的方法。在现有技术中,不具有可在室温下或者甚至在低温下进行实现植物种子和果核的壳材料的完全且容易分离的方法。特别地,没有关于当在水性介质中储存植物产品以供繁殖时,可如何在室温下或略微升温下,防止种子成熟或萌芽的报道。因此,需要在没有诱导种子、籽粒或果核成熟情况下,也没有导致包含的成分改变或者有害/有毒化合物形成情况下,允许从植物基表皮壳或外壳中完全且容易去除壳材料的方法。
在许多种子、果核和籽粒中,成分还含有根部形成部分,所谓的幼苗或幼芽。在许多情况下,它们在为人类营养提供的产品内的存在是非所需的,和/或在获得幼苗或根部形成部分作为进一步营养的一部分,例如用于生产胚芽油方面具有兴趣。因此,在许多领域中,分离幼苗和/或根部形成部分是期望的。为了践行这种分离,壳层必须被除去,因为幼苗和根部形成部分在结构上与种子或果核的其余成分相连,且位于最里面的壳层内。
在现有技术的方法中,通过机械方法分离幼苗,其中通过粉碎去除所述幼苗。这必然导致种子、籽粒或果核的成分受伤/破坏并导致壳材料进入或共排放。根据现有技术,可在温和条件下从彼此中分离这些结构且同时维持已分离幼苗/根部形成部分和种子、籽粒或果核中其余成分完整性的方法不是已知的。特别地,不具有下述方法:在温和(节约产品(product-sparing))条件下,且同时温和并完全分离壳材料的情况下,可将幼苗/根部形成部分与种子、果核和籽粒中其余成分分离,以便可以以选择和不变的形式,容易地获得不同的部分。因此,期望能满足这些条件的工艺,且崩解植物种子和果核,并在可用的条件下保存已分离的壳材料以供进一步使用。
经济上感兴趣的还是从植物种子和果核中分离的不适合于人类营养的涂层、壳或外皮。这些中的一些,例如在稻谷或向日葵籽的加工中大量地产生。这种壳材料通常不具有营养价值,因为它主要是高分子量化合物形式的纤维素和/或木质素,和因此不可能被人类消化。此外,如前所述,常常包括或坚固地粘附引起令人不悦的味道或气味或颜色或者有毒或者非营养的有机或无机化合物。另一方面,可包含或粘附具有健康促进效果和期望它在食物中存在的有机化合物。因此,对以用于人类营养的合适形式能够获得的种子涂层、外壳或外皮中的营养部分的制造也具有兴趣。以可用于人类营养且没有引起任何非所需的感官或营养效果以及含有并维持健康促进化合物的形式,处理壳材料的方法在现有技术中是未知的。因此,需要崩解或分解植物壳材料,以便它不含不想要的成分/化合物,或者与之相分离,且可将其转化成适合于人类消耗的物理形式。根据现有技术,以作为动物饲料、土壤肥料或用于发酵工艺的起始材料能够获得的形式使用植物壳材料。
令人惊奇地,已发现允许既温和(节约产品)去除植物种子和籽粒的壳材料,同时维持成分完整性,以及又温和(节约产品)分离幼苗/根部形成部分的方法。另外,利用该方法,因生产条件和/或中和导致的毒素和/或非营养的化合物和/或引起感官上非所需效果的化合物被失活和/或被去除的壳材料可以崩解,并从起始材料的其余成分中去除。
此外,令人惊奇地,可提供已分离的壳材料能够崩解和分解的方法,从而导致已分离或分解的壳材料的新型有利的应用。
纤维素系纤维构成消费所使用的植物-基材料的不可消化的碳水化合物的主要成分,且实质上占膳食纤维的主体。不可消化意味着这些化合物不可能通过人类胃肠道的酶,例如淀粉酶解离,和因此不可能解离成可吸收的C-糖化合物。因此,纤维素系纤维在肠道内基本上以不变的成分保持,和因此是大便的成分。特别地,由于它们能键合水,因此它们是结肠内容物稠度的非常重要的调节剂。这还决定了所得粪便的通过时间。在大量临床研究中清楚地证明用于防止肠病和肠内运输问题的高纤维饮食的重要性。因此表明可通过高纤维饮食减少肠癌的比率。此外,证明了升高的胆固醇水平和相关的心血管疾病的下降。还论证了在慢性便秘中日常富含纤维饮食的大便调节功能,慢性便秘在老年人中尤其普遍。另外,来自于通过人体菌落中微生物组防治微生物感染的生态学方法(Microbiom),部分降解纤维素系纤维的益生菌效应也得到论证。这种效应也归因于例如通过短链脂肪酸或植物甾醇介导的在菌落外部较低的癌发展几率,所述短链脂肪酸或植物甾醇产生纤维素系纤维的微生物降解或者从中释放,且它们可穿过菌落壁。世界健康协会和FDA强烈推荐每天消费30g(干物质重量)含量的膳食纤维。在工业化国家以及在新型经济体中实践的绝大多数营养形式没有实现这一目标。在膳食纤维消费和肥胖与糖尿病的发生率和严重性,和因此致死率之间存在反相关。然而,由于各种原因,例如工作人群无法获得或者暗含的社会行为,对饮食中膳食纤维含量的推荐在每日实践中不可行,尽管为此能够获得所有信息和解释。因此,非常需要提供可加入到或者用于补充食品制剂中的膳食纤维,它满足食品产品的感官和功能要求,进而增加膳食纤维的重量百分比。
令人惊奇地,已发现,本发明崩解植物壳材料和果皮的方法还导致植物起始材料,尤其籽粒,果核和坚果,而且其它植物产品中的其余成分分解。
因此,已发现,根据本发明,通过崩解壳材料,例如种子涂层或外壳,还实现了植物起始材料中的其它成分从壳材料,例如外皮或果皮中完全分解或分离,植物起始材料中的可溶成分变得水合,然后可在水性分配体积中容易地去除,在此它们从壳材料中完全除去/分解和分离。然后针对已溶解的可溶有机化合物的回收,发现进一步正面的性能。因此,发现了下述聚集方法,其中采用所述方法,非常容易聚集并缩合已溶解的可溶有机化合物,尤其蛋白质和碳水化合物,于是它们可通过已知的工艺技术分离且可作为纯的部分获得。
发明描述
本发明涉及进行植物壳材料崩解的方法,与现有技术的方法相比,该方法在柔和/温和(节约产品)的条件下,实现了植物壳材料软化的加速。在本发明的上下文中,温和是指可分离的壳材料,和起始材料,尤其果核,籽粒和坚果中的其余成分保持其完整性,结果它们优选保持物理完整,例如没有发生破碎。在产品上的柔和还意味着与采用现有技术的方法的情况相比,在显著较低的程度上发生机械改变。在产品上的柔和还意味着温度增加限于优选<120℃,更优选<100℃,更优选<90℃,更优选<75℃,更优选<60℃,进一步优选<50℃,和甚至更优选<40℃。此外,在产品上柔和还意味着在其中使用较高温度的分解工艺中,可在没有要求机械粉碎这些产品或起始材料的情况下,获得例如有机化合物,尤其纤维素系纤维和富含木质素的壳。因此,在该方法的不同实施方案中,可实现不同的产品节约效果,该效果对能够获得的产品和/或工艺经济性具有直接影响。该方法尤其适合于能进行从植物起始材料的其它成分中完全分离壳材料,且没有损害或崩解被壳材料完全包封的植物产品的结构完整性。在优选的实施方案中,这通过将期望在其内进行壳材料分离的种子、籽粒或果核置于崩解所使用的含有可溶化合物的溶液中来确保。在一个实施方案中,崩解化合物是阳离子的氨基酸和或肽。令人惊奇地,已发现,这导致已经在室温或降低温度下,植物壳材料水合的快速开始,这比采用含有本领域已知的化合物,例如NaOH的水溶液显著更加快速和更加完全。
也已发现,已经通过本发明方法之一崩解并水合的植物壳材料比用其它水溶性化合物处理的那些更加容易得多地去除。令人惊奇地,已发现,根据本发明在种子和籽粒的植物壳材料的崩解和水合过程中,取决于植物物种,发生变薄/溶解,然后自发地或者通过总是在同一点处或者在壳层的相同区域内发生的轻微的机械改变,发生壳材料的穿孔。由此可利用壳结构的轻微机械剪切,继续断裂,同时维持整个其余壳材料的完整性。已发现,取决于氨基酸/肽的暴露持续时间和浓度,自发地或者通过非常小的机械能输入,例如通过施加剪切应力,发生完全的穿孔,于是壳材料从种子、籽粒或果核中完全且完整无损地脱离。已表明,可通过本发明方法的实施方案之一,确保壳材料的可靠和完全去除。优选植物种子、籽粒或果核的壳材料的温和、产品节约的崩解/穿孔或脱离方法。
令人惊奇地,可实现植物壳材料的实质上选择性崩解,且大多数完全保留种子、籽粒或果核的其余成分的完整性,当在高温条件下置于含有已溶解的氨基酸和/或肽的溶液内时。这导致壳材料的自发脱离。正如所预期的,当加热到>80℃或90℃的温度时,壳材料的崩解方法加速。然而,令人惊奇地,这种崩解所要求的时间段可保持如此短,以致于不存在被壳材料包封的种子、籽粒或果核中其余成分的相关的溶胀、崩解或损坏。因此,有利地,可在对于种子、籽粒或果核的其它成分而言温和的条件下发生植物壳材料的选择性崩解。在一个实施方案中,为此,优选在>70℃的温度下,加热在其内种子、籽粒或果核完全被覆盖的本发明溶液。优选地,在该工艺期间搅拌种子或果核。可表明,在这些条件下,发生壳材料的完全脱离。再者,壳材料保持其完整性,除了穿孔的点或区域以外。令人惊奇地已发现,在高温下,在含有已溶解氨基酸和/或肽的溶液中的种子或果核溶胀到与在冷的水溶液中的情况相同的程度。
优选从植物种子或果核中完全脱离/分离壳材料的方法。
优选崩解和分解植物起始材料的方法,其中方法步骤b)与热和/或机械崩解一起进行,或者在紧跟方法步骤b)后的方法步骤b1)中发生热和/或机械崩解。
令人惊奇地已发现,增加氨基酸和/或肽的浓度,置于这一溶液中的种子、籽粒或果核的萌芽/幼芽减慢或完全抑制。例如,在含有浓度为0.4摩尔赖氨酸的溶液中放置8天的大豆表明体积增加160vol%和壳层显著脱离,但幼苗没有生长。相反,在水中放置相同时间段的大豆具有长度2至4cm的幼芽;然而,难以去除壳材料且去除不完全。此外,这些大豆的体积增加280vol%。对于其它种子和籽粒来说,例如采用芸豆也可论证这一效果。另外,可开发利用幼苗/幼芽的非常有益的效果。已发现,在通过将起始材料置于本发明的分解溶液内,且自发地或者通过轻微的机械改变壳材料,且在轻微溶胀种子或籽粒存在下,使壳材料发生脱离之后,已经形成且以脱离形式存在于胚芽床内的幼苗/幼芽可从种子或籽粒中非常容易地分离。这可仅仅通过使如此预处理的种子或籽粒通过管道或套管来实现,于是壳材料和幼苗/幼芽二者从种子或籽粒中分离。因此,可显著地简化幼苗或幼芽的机械分离。此外,幼苗或幼芽与崩解的壳材料一起可在简单的操作中从种子或籽粒中脱离并分离。
优选植物起始材料的崩解和分解方法,其中除了崩解和/或分离和/或溶解植物壳材料以外,还进行幼苗或幼芽的分离。
优选比较容易的分离幼苗或幼芽的方法。
优选崩解和分解植物起始材料的方法,在所述方法中,减慢/抑制植物种子和/或籽粒的成熟。
令人惊奇地,已发现,可按照尤其有利的方式,进一步加工通过本发明的方法之一从壳材料中释放的种子和籽粒。这尤其涉及进一步处理,以分解种子和籽粒中的单独的成分。因此,可表明,在水性分解工艺之后,使用飞轮磨,粉碎其中根据本发明去除壳材料,并存在范围为100至200vol%的植物材料溶胀的种子和籽粒,允许产生细粒物料并在短时间内完全分离成它们的成分。
尤其有利的是,在与未处理的种子或籽粒的比较中,要求显著较低的能量输入,且在粉碎期间没有形成粉尘。关于这一点,本发明的方法之一还涉及崩解和水合在其内发生了崩解/分离壳和/或壳材料的植物起始材料。
优选其中除了崩解/分离植物起始材料的壳和/或壳材料以外,还进行植物起始材料的其它成分的崩解/水合。优选种子、籽粒和果核。在另外的研究中,可表明,在按照这一方式预处理的种子或籽粒情况下,借助分解单独成分的水性方法,这些种子或籽粒中的单独成分可非常容易地分离。在优选方法的实施方案中,通过本发明的方法之一,种子或籽粒完全从壳/壳材料中释放且直接或者在仍然溶胀状态的过程中导引到粉碎或压紧工艺,在此获得不具有粉尘的细粒物料,将其暴露于溶液下,使各组分/成分分解。在一个实施方案中,立即在分解段之后或者在分解段之后,发生优选通过过滤实现的固体分离。结果,优选与过滤器残渣一起获得颗粒和纤维素系纤维形式的复杂或复合的碳水化合物,优选这些完全或基本上完全从起始材料的可溶成分,尤其蛋白质和可溶碳水化合物中释放。此外,与滤液一起获得含有已溶解的可溶蛋白质和碳水化合物的大多数或全部不含纤维的水溶液。
令人惊奇地,已溶解的可溶化合物可以以非常有利的方式聚集和缩合,这使得它们非常容易从分配水相中分离。优选地,通过缩合/聚集/复合和/或过滤或离心分离技术,选择性去除蛋白质部分,并以纯产物形式获得。例如通过添加有机酸,例如柠檬酸或乙酸,可实现已溶解蛋白质的这种选择性缩合/聚集/复合。
因此,通过本发明的方法之一,可非常容易地实现植物种子和果核从壳/壳材料中释放,以及所得植物种子、果核和籽粒分离成它们的成分这二者。可表明,在用不含本发明的用于崩解的任何化合物的水溶液溶胀种子、籽粒或果核之后,不可能采用随后的分配工艺,将种子、籽粒或果核的成分分配到分配溶液的水性体积内。令人惊奇地,在水性分配体积中实现通过本发明的方法水合成分的分离,如果使用本发明含有用于崩解/分解的物质的溶液之一的话。用于崩解/分解的优选化合物是氨基酸和/或肽。对于其中首先崩解壳材料,与采用本发明的溶液实现种子、籽粒或果核的溶胀相结合,之后紧跟着机械崩解的方法中,可表明与其中采用完全分解植物材料的成分的另一方法,进行壳/壳材料的分离的方法相反,不要求进一步暴露于本发明含有用于崩解化合物的水溶液下。
因此,该方法允许在同一个工艺执行操作中,崩解和分解以及分离植物壳材料/壳结构,以及随后崩解/分解起始材料的其余成分和它们的分离与回收这二者。因此,令人惊奇地,采用本发明的分解水溶液,可实现崩解植物壳材料和分离种子、籽粒或果核,以及随后通过水性分解工艺,进行种子、籽粒或果核的成分的分解。
优选其中通过崩解和/或分离壳材料和/或通过含有已溶解氨基酸和/或肽的水溶液来溶胀种子、籽粒或果核,使得水性分解工艺和分离种子、籽粒或果核中的成分变得可能。
优选分离植物壳材料,同时维持已分离壳材料和/或种子、籽粒或果核的成分的结构完整性。
优选生产植物壳材料制剂的方法以供用作浆粕制备。
优选通过崩解和分解植物起始材料的方法,能够获得植物壳材料制剂。
优选使用用于浆粕制备的植物壳材料制剂。
优选分解植物种子、籽粒或果核的方法。
令人惊奇地,根据本发明的植物起始材料的崩解还带来在其内包含的成分的回收。在优选的实施方案中,进行崩解,获得可溶蛋白质和碳水化合物,以及纤维素系纤维和/或富含木质素的壳。特别地,对于根据本发明采用亚硫酸盐和脲的崩解来说,除了崩解以外,还可进行种子、籽粒和果核的分解,这导致通过使用本发明公开的方法,完全增溶蛋白质,蛋白质然后以溶解状态存在且可聚集,缩合,分离和回收。例如,对于大豆种子来说,已表明,当它们浸泡在其内以浓度1wt%溶解有亚硫酸钠和/或脲的用于崩解的水溶液中且在1.4bar的大气压下加热水相介质到125℃时,成分之后可完全分配在水性分配体积内,当利用高剪切应力,悬浮液穿过胶体磨时。根据微观分析,过滤所得水性分配相允许回收从可溶残渣中释放的一部分固体物质。
另一方面,在过滤的工艺流体内存在的已溶解的蛋白质可以与聚集/复合化合物一起聚集/复合,从而允许它们缩合和沉降,并通过过滤或离心分离技术从游离水相中分离,然后以糊状奶油状物料形式存在。在化学分析中,检测到75wt%的蛋白质浓度。对于崩解其它植物起始材料,例如向日葵种子、玉米粒或麻风树(Jatropha)和油菜籽压饼来说,也能够获得类似的结果。容易获得蛋白质的分离物或浓缩物。
因此,在优选方法的实施方案中,在采用或没有采用根据本发明的分解方法之一情况下,进行崩解,以获得植物起始材料的可溶成分。
因此,优选崩解和分解植物起始材料的方法,该方法包括下述步骤:
a)提供植物起始材料,
b)掺混起始材料与崩解溶液并将其保留在崩解溶液中,直到实现崩解,
c)将崩解的起始材料的成分分配到分配体积中,
d)将固体成分与起始材料的已溶解成分分离,
e)通过e1)借助旋风分离方法,通过从富含木质素的壳中分级分离纤维素系纤维,并获得纤维素系纤维的纯化部分以及富含木质素的壳,e2)通过复合剂聚集/复合已溶解的蛋白质,并分离沉降的聚集/复合的缩合蛋白质,以获得聚集/复合蛋白质物料,从而获得已分离成分的有价值部分。
任选地,方法步骤b)可与热和/或机械崩解工艺一起进行,或者备选地,可在紧跟在方法步骤b)后的任选的方法步骤b1)中进行热和/或机械崩解。
通过崩解工艺获得的固体成分具有独特类型的典型气味,其中在所述崩解工艺中,没有包含在崩解溶液中的根据本发明的氨基酸和/或肽。因此,优选具有下述方法步骤的崩解和分解植物起始材料的方法:
a)提供植物起始材料,
b)添加含有氨基酸和/或肽的崩解溶液到起始材料中并将其保留在崩解/分解溶液中,直到实现崩解,
c)将崩解的起始材料的成分分配到分配体积中,
d)将固体成分与起始材料的已溶解成分分离,
e)通过e1)借助旋风分离方法,通过从富含木质素的壳中分级分离纤维素系纤维,并获得纤维素系纤维的纯化部分以及富含木质素的壳,e2)通过复合剂聚集/复合已溶解的蛋白质,并分离沉降的聚集/复合的缩合蛋白质,以获得聚集/复合蛋白质物料,从而获得已分离成分的有价值部分。
优选方法的实施方案的特征在于下述方法步骤:
采用下述方法步骤,崩解和分解植物起始材料的方法:
a)提供植物起始材料,
b)将起始材料与崩解溶液一起放置,并保留在崩解溶液中,直到实现崩解,
c)将崩解的起始材料的成分分配到分配体积中,获得植物起始材料的固体成分和已溶解成分,
d)将固体成分与植物起始材料的已溶解成分分离,
e)通过e1)借助旋风分离方法,通过从植物起始材料的固体成分中的富含木质素的壳中分级分离纤维素系纤维,并获得纤维素系纤维的纯化部分以及富含木质素的壳,e2)通过复合剂聚集/复合植物起始材料的已溶解成分的已溶解的蛋白质,并分离沉降的聚集/复合的缩合蛋白质,以获得聚集/复合蛋白质物料,从而获得植物起始材料的已分离成分作为有价值的部分。
任选地,方法步骤b)可与热和/或机械崩解工艺一起进行,或者,备选地,可在紧跟在方法步骤b)后的任选的方法步骤b1)中进行热和/或机械崩解。
在对比研究中,可表明使用根据本发明的氨基酸和/或肽,能够获得的纤维素系纤维和/或富含木质素的壳立即不具有加味剂和/或调味剂。
此外,尤其有利的是,可完全且完整无损地从植物种子、籽粒或果核中分离崩解的壳材料。在优选的实施方案中,优选采用在根据本发明制备的植物种子和籽粒上导致单面或多面切向剪切力的装置,发生已崩解的壳材料/壳的分离。
可在植物种子、籽粒或果核的外侧上产生的压力形式或者以剪切运动形式,施加剪切力。本领域已知的合适的装置例如包括压机。在尤其优选的实施方案中,通过借助现有技术的尺寸分拣装置,首先将植物种子、籽粒或果核分拣到这些种子或果核的确定直径范围的储存容器内,实现壳层的剥皮。通过另一装置,将单独的种子、籽粒或果核从这些储存容器放置到漏斗或轴内,以便种子或果核以优选的纵向取向排列。在优选的实施方案中,一种或更多种种子或果核借助活塞或气动装置,挤压通过挠性套管/管道或者一个或多个穿孔的隔膜/隔片。优选地,在这一情况下,壳材料被完全剥皮。优选地,植物种子、籽粒或果核因它们经历的加速导致从剥除器中排出/射出,并在另一储存容器中收集。优选地,壳材料同样被喷出并通过与已经从壳材料中释放的种子、籽粒或果核的轨道相比不同的路径分离,这种分离例如通过重力或风筛来实现,且进而运输到另一容器内。
在进一步优选的实施方案中,通过均匀和/或非均匀地旋转和/或逆向旋转的装置,分离壳材料,其中在所述装置内,根据本发明预处理的植物种子、籽粒或果核或者通过它们的直径分拣,或者在至少两个近似或几乎平行排列的管道上未分拣。旋转种子、籽粒或果核并在通过彼此贴着的管道形成的间隙内输送。优选地,管道之一或若干根管道的旋转是不均匀的。这导致在旋转的种子、籽粒或果核的壳材料上的切向剪切力,进而导致壳材料断裂,所述壳材料通过管道的旋转运动分离并运输。可例如通过加速运动和/或空气射流,排放种子、籽粒或果核中已分离的壳材料。结果,从壳材料中已经释放的种子、籽粒或果核和壳材料在不同的容器中收集。
优选一种装置,通过在已崩解的壳材料上产生的切向剪切力,脱离并分离种子、籽粒或果核中已崩解的壳材料和壳。
令人惊奇地,已发现,通过本发明的方法之一,为了连接它们,在植物壳材料和种子、籽粒或果核之间存在或者形成的层(中间/连接层)可以以非常有利的方式非常容易地去除。
因此,例如在分离杏仁和大豆的种子涂层中,已发现,当使用水或者本发明的方法之一进行分离且溶胀的种子涂层被机械去除时,皂状粘稠直至粘液状层保留在种子、籽粒或果核上,它在干燥期间变得粘附并导致粘合/粘附所得种子、籽粒或果核。已发现,通过本发明的崩解溶液溶胀且存在于已暴露的植物种子、籽粒或果核表面上,而且也可存在于已分离壳材料的表面上的中间层中,通过用冷水洗涤,可容易地去除。如果中间层没有使用本发明的方法或者仅仅通过用热水进行的洗涤工艺暴露的话,这是不可能的。可例如用水洗涤掉中间层。因此,优选使用根据本发明含有用于崩解的化合物的水溶液之一,崩解/分解壳的中间层/连接层和植物起始材料的壳材料/层。尤其优选溶解的氨基酸和/或肽。然而,也可使用含有其它化合物的水溶液或醇溶液,优选添加离子和/或非离子表面活性剂。优选采用来自现有技术的清洁物体的装置,例如使用水的成束的射流或者蒸汽,或者通过确立待清洁的植物材料的运动,建立清洁材料与彼此的剪切力,和/或使用机械移动器,即洗涤机,进行洗涤工艺。令人惊奇地发现,按照这一方式处理/制备的植物种子或果核显示出变化的干燥行为。当在进行本发明的方法之后,通过洗涤工艺,脱离且完全去除中间层时,例如芸豆或南瓜籽的干燥过程比较快。发现例如在干燥的南瓜籽中,在根据本发明去除中间层之后,在干燥期间没有形成表皮。此外,当发生中间层的崩解/分离时,预处理的种子与彼此的分离比较容易。
优选崩解/溶解/脱离在植物壳材料和植物种子、籽粒和果核之间的中间层。
优选崩解和分解植物起始材料,其中在植物壳材料和植物种子、籽粒和果核之间发生中间层的崩解/溶解/脱离。
令人惊奇地已发现,采用根据本发明的方法,也可崩解/部分溶解/脱离植物种子和果核的粘合与连接结构。例如,表明南瓜或西瓜的种子可非常容易地去除,且不具有来自线状或片状组织结构的残渣,其中当种子或果核采用根据本发明的溶液之一一起处理时,所述残渣借助粘合结构提供并机械稳定它们。
在其它相当的条件下,通过用含有例如表面活性剂的水或水溶液处理,不可能实现所描述的粘附的组织结构的容易去除。
令人惊奇地,通过本发明的方法之一处理而制备且与根据本发明的含有阳离子氨基酸和/或肽的液体之一接触足够长的时间或者在其内储存的种子、籽粒或果核具有尤其突出下降或完全消失的植物-特征味道。在额外的研究中,可进一步表明令人不悦/收敛味道的下降或消失取决于暴露于本发明用于崩解的含有阳离子氨基酸或肽的液体下的持续时间,或者取决于植物种子、籽粒或果核的壳层的穿孔的持续时间。还表明,在按照时间顺序去除令人不悦/收敛的感官效果之后,发生用根据本发明的方法之一处理的植物种子或果核物种的特征性味道的下降或消失。结果,可以以非常有利的方式,或者独立地采用本发明的方法,或者与壳材料结合,使处理过的植物种子、籽粒或果核的非所需的感官效果和特征性(固有)气味消失或去除。因此,可在产品上温和(产品节约)的条件下,生产就其完整度来说完整且完全不具有壳层的低气味或无味道的植物种子、籽粒或果核。已表明,通过暴露于根据本发明的含有阳离子氨基酸或肽的崩解溶液下而实现的植物种子、籽粒或果核中感官上可感觉的成分的这种下降对来自这种处理过的植物种子、籽粒或果核中的可回收产品具有显著的影响。例如,已表明,在单独的分解工艺中以独立的部分能够获得的成分完全或实际上不含导致典型/固有或令人不悦或收敛的感官效果的气味和味道。这对于可回收的淀粉和蛋白质部分来说是尤其有利的。
优选崩解/脱离/分离植物壳材料和获得低气味和/或低味道或者无气味和/或无味道的分离壳材料和/或植物产品的方法。
优选崩解和分解植物起始材料的方法,在所述方法中,崩解溶液含有氨基酸和/或肽。
本发明方法实施方案的另外的有利效果来自于所获得的已分离的壳层。令人惊奇地已发现,能够获得的已分离的壳层实质上不具有或者几乎不具有令人不悦的味道或者收敛的感官效果。另外,根据本发明方法获得的已崩解的植物壳层最大地溶胀且可容易地模塑成任何形状。另外,它们可以成型和/或挤压成片材,且可在没有断裂的情况下,切割成各种尺寸。已发现,例如可从按照这一方式获得的壳层中切割出薄的长条或其它几何形状,这尤其是因为可在没有断裂的情况下将壳层压平。通过这一效果,可回收且仍然溶胀的壳层可以压紧形成为片材或膜。此外,有利的是,根据本发明的崩解方法之一获得的已分离的壳层不具有或者实际上不具有令人不悦的味道或者释放触发收敛感官感觉的物质。因此,所得壳层也可用于食品制剂中。另外,与通过其它技术获得的壳材料相比,所得崩解的壳材料具有改进的溶胀性。因此,本发明的方法尤其有利地适合于生产具有良好加工性和良好溶胀能力的低味道或味道中性的纤维材料(浆粕)纹理。通过本发明方法的实施方案,能够获得可在各种应用,例如用于织构化食品中使用的由壳材料制备的产品。本文中术语壳材料制剂意味着通过本发明的崩解,使得可模塑的融合/复合/织构化(texture)已崩解的壳材料。
优选产生植物壳材料纹理的方法,所述植物壳材料的味道低或者无味道,和/或可结合形成平坦且定制或备用于组装的片材或膜,和/或可容易地溶胀。
优选崩解和分解植物起始材料,由植物壳材料生产纤维产品的方法。
优选崩解和分解植物起始材料,生产植物壳材料制剂的方法。
优选崩解和分解植物起始材料的方法,在该方法中,发生植物种子、籽粒或果核的壳材料的温和崩解/穿孔或脱离。
令人惊奇地,已表明,采用根据本发明的崩解工艺之一,可分解压紧的植物壳材料,并且使得壳材料的成分可回收。发现,长时间段置于根据本发明的水溶液之一内的植物壳材料溶胀,且纤维素系纤维可逐层去除。还发现,植物壳材料快速且完全溶解,当在高压釜内,在合适的温度和压力条件下在本发明的溶液之一中处理时。所得物料然后主要由分解的纤维素系纤维组成,所述分解的纤维素系纤维可使用过滤技术,从其内包含的蛋白质和可溶碳水化合物中用水容易地纯化。
在这一情况下,与从事先通过用以上描述的水性分解工艺处理的壳材料包封的籽粒或果核中获得的纤维素系纤维相比,从水合的壳材料中提取的纤维素系纤维在一定程度上显示出显著不同的性能。由壳材料的崩解和分解能够获得的纤维素系纤维例如在尺寸和形状上不同。因此,与在崩解和分解种子、籽粒或果核中其余成分之后的那些相比,由壳材料的分解工艺获得的纤维素系纤维具有较大的纵向/横向尺寸的长径比。认为这些不同还造成了针对种子、籽粒或果核的纤维素系纤维和那些相应的分解壳材料所发现的不同的感官感觉。进一步地,与由崩解/分解植物种子、籽粒或果核获得的纤维素系纤维相比,由壳材料能够获得的纤维素系纤维具有其它功能性能。例如,从分解芸豆的壳材料,获得严重着色的纤维素系纤维。此外,例如干燥杏仁和鳄梨仁的崩解和分解的外皮在品尝过程中具有尤其平滑的熔体触感。而且,在生产面团和食品制剂中,这种纤维素系纤维具有比纤维素纤维好的乳化和稳定性能。
优选由植物种子、籽粒或果核的壳材料获得纤维素系纤维的方法。
还表明,碳酸盐和亚硫酸盐适合于崩解纤维素系纤维。若用于崩解的碱性化合物用于植物起始材料,所述碱性化合物除了纤维素系纤维和/或富含木质素的壳以外,还含有蛋白质以及可溶碳水化合物,则溶液和崩解的植物材料出现强烈的褐变,这是非所需的。令人惊奇地已发现,当已经发生起始材料的分解工艺时,若在水性分解介质内包含碳酸盐或亚硫酸盐,则导致纤维素系纤维劣化的变色没有发生。因此,例如,在含有1wt%含0.05摩尔浓度精氨酸的脲溶液的大豆粉的崩解中,在经60分钟加热到90℃之后可实现壳材料的完全崩解。它还实现了允许可溶蛋白质和碳水化合物几乎完全分离的分解结果,所述可溶蛋白质和碳水化合物采用工艺流体过滤掉。所得光学透亮的纤维物料是无味道和无气味的,且含有38wt%(DM)小于100μm,82wt%(DM)<250,和18wt%(DM)>250μm的纤维素系纤维。用0.5wt%碳酸钠溶液在80℃下进一步崩解纤维物料20分钟,于是在每一情况下,没有出现工艺流体或纤维素系纤维的变色。
随后所得纤维素系纤维在感官上比进一步崩解之前的更加柔软,且具有最多65wt%(DM)<100μm,和最多98wt%(DM)<250μm。所得纤维材料在品尝过程中具有优良的口感,被描述为奶油状且平滑。因此,根据本发明,也可进行两段崩解/分解工艺,其中首先发生崩解/干扰壳/壳材料,并分离起始材料中的已溶解的可溶成分,然后进行纤维素系纤维和/或富含木质素的壳的崩解。令人惊奇地,已发现,含有亚硫酸盐的溶液同样适合于进行纤维素系纤维的崩解。因此,可表明含有仅仅小量可溶蛋白质和碳水化合物的果渣(酒槽)在发酵消化且在85℃下在1wt%亚硫酸钠水溶液内崩解90分钟并通过胶体磨分配之后,获得分配的纤维素系纤维的悬浮液。所得纤维素系纤维在感官上非常柔软,且78wt%(DM)<100μm,和>95wt%(DM)<250μm。
优选从植物种子、籽粒或果核的壳材料中获得纤维素系纤维的方法。
此外,已发现,也可通过适合于根据本发明的崩解/分解的化合物,生产不具有芳香剂和/或着色剂的纤维素系纤维。因此,对于在糖浆提取之后的具有仅仅可溶碳水化合物的低残渣含量的甜菜浆粕来说,使用1%亚硫酸钠溶液或2%碳酸氢钠溶液在90℃下进行90分钟的崩解,然后借助剪切混合器处理崩解的浆粕物料,从而导致纤维素系纤维的悬浮液。然而,纤维物料仍然具有强烈的泥土气味和味道,和因此不适合于消费。通过采用本发明的氨基酸和/或肽的溶液的另外的分解工艺,其中脱水的纤维物料在50℃下浸泡60分钟,和之后再次脱水并洗涤,所得纤维素系纤维是无气味和无味道的,且在感官检测中评定为非常柔软和奶油状。进一步地,在筛分分析中,分别发现纤维素系纤维80至85wt%(DM)<100μm,和94至96wt%(DM)<250μm。
对使用纤维素系纤维的进一步研究表明,非常良好的感官(例如奶油状),和尤其若发生起始材料的可溶成分的崩解和分解工艺,则可实现功能品质,例如溶胀体积,且在所得纤维素系纤维内具有可溶碳水化合物和蛋白质与其它可溶有机化合物的低残渣含量。因此,优选植物材料的崩解和分解方法,该方法保证在纤维素系纤维内容易水可溶的有机化合物的残渣含量优选<5wt%,更优选<2.5wt%,和更优选<1.0wt%。
优选崩解纤维素系纤维且分解和分离在其内包含的可溶成分的方法。
优选崩解纤维素系纤维且分解和分离在其内包含的可溶成分的方法,其中获得无气味和/或无味道的纤维素系纤维,且容易水可溶的有机化合物的残渣含量<5wt%。
优选根据本发明的方法,其中容易水可溶的有机化合物具有在20℃下>100g/l,优选在20℃下>140g/l的水溶解度,和几乎水不溶的有机化合物具有在20℃下<100g/l,优选在20℃下<75g/l的水溶解度。
优选崩解纤维素系纤维且分解和分离在其内包含的可溶成分的方法,以获得无气味和/或无味道的纤维素系纤维,且容易水可溶的有机化合物的残渣含量<5wt%,其中崩解水溶液含有亚硫酸盐和/或碳酸盐。
进一步发现,当通过崩解/分解工艺发生解松时,出现纤维素系纤维的感官和功能性能。且解松和与纤维素系纤维复合的可溶成分的增溶有关。针对通过本发明的方法能够获得的富含木质素的壳来说,也发现相应的解松。
优选植物起始材料的崩解和分解方法,其中进行维素-基纤维的解松和/或富含木质素的壳的制备。
此外,令人惊奇地发现,也可采用本发明的方法之一,崩解和分解压紧的含木质素的壳材料,和可浸提的纤维素系纤维可变得可回收。已发现,添加添加剂适合于崩解和/或分裂或甚至完全溶解阻碍纤维素系纤维崩解的含木质素的结构。在这一情况下,本发明含有已溶解氨基酸和/或肽的水溶液与根据本发明的分解添加剂的组合证明对于在含木质素的植物壳材料中回收纤维素系纤维和在温和的产品条件下溶解木质素聚合物来说是关键的。在这一情况下,已经可在范围为60-80℃的适度升高的温度下实现木质素聚合物结构的崩解。已发现,通过使用升高的压力,在90至140℃的温度下,特别地在同时加压的情况下(这在高压釜中是可能的),崩解/分解可以显著加速。
纤维素系纤维保持结构完整,且具有尤其低的感官上可感觉的硬度。此外,已发现,这些纤维具有<50mg/100m的尤其低的纤维长度重量。这些纤维素系纤维还具有非常良好的感官性能,例如平滑的熔体口感。令人惊奇地,也可使用崩解工艺技术,例如由椰子的纤维材料和由橘子果皮获得纤维素系纤维。用于溶液和/或溶解木质素或含木质素的聚合物结构的合适添加剂(它们与本发明的水溶液一起或者按顺序添加是合适的,且可以单独或与彼此结合使用)优选是亚硫酸盐化合物,例如亚硫酸钠或亚硫酸氢钠,以及硫酸盐化合物,例如Na2SO4,此外,脲和脲衍生物,例如硫脲,以及洗涤剂,例如月桂基硫酸钠,此外,碳酸盐,例如碳酸钠。
优选崩解/分解含木质素的结构和回收富含木质素的壳和纤维素系纤维的方法。
优选溶解植物壳材料的方法。
优选地,通过崩解和分解植物起始材料的方法,能够获得含木质素的壳材料。
令人惊奇地已发现,可从植物废材中提取并纯化且通过本发明的方法获得的不适合于食品制剂的来自各种植物产品的植物纤维素系纤维,提供具有优良的功能性能的无气味和无味道的纤维素系纤维以供制备食品制剂且与此同时具有积极的粪便调节性能。因此本发明的目的还是提供获得并提供功能性或可官能化的纤维素系纤维的工艺与方法。
因此,已表明,使用纤维素系纤维以供生产谷粉-基和/或淀粉-基食品,可以与添加纤维素系纤维相同的顺序节约谷粉或淀粉,且不影响定量或定性的烘烤结果。在其内表面上用发酵剂,例如酵母或碳酸氢钠涂布纤维素系纤维导致与原始配方相比,烘烤体积增加和所形成的空气腔室更加均匀的分布。与此同时,与用参考配方制备的烘烤物品相比,用纤维素系纤维制备的烘烤物品具有较高的抗压痕性,并导致改进的口感和更加协调的味觉。
也已表明,纤维素系纤维可在食品制剂中用作脂肪替代品。在这一情况下,例如通过用根据本发明生产的纤维素系纤维替代50wt%油或脂肪,与在其它情况下常用量的脂肪或油相比,可实现类似的制剂稠度/体积和相当或更好的感觉品质特征。
此外,令人惊奇地已发现,可通过本发明的方法之一,生产生物源耐磨和非-耐磨的冲刷和清洁剂。发现通过本发明的方法步骤,含木质素的壳材料和尤其木质素系壳完全或部分溶剂化/分解。采用增加的持续时间和水性崩解/分解工艺强度,采用含有已溶解的崩解化合物的溶液,生成其表面显示出增加的粗糙度的至少一些小的到非常小的粒子,且与此同时增加量的不具有尖锐边缘粒子的圆形外部轮廓。尤其优选的崩解化合物是氨基酸和/或肽。通过木质素系壳的部分和/或完全分解工艺,在表面上出现三维结构,其显然具有非常良好的有机和无机粒子的吸收行为并导致表面活性剂的良好增溶性能。注意到采用根据本发明的水性崩解/分解工艺之一获得的木质素系壳部分,特别地与表面活性剂结合的清洁容器导致显著较好的清洁,特别地在结壳的有机或无机累积物中。与现有技术的冲刷剂相反,当有光泽的表面用本发明的崩解和分解的木质素系壳材料清洁掉结壳时,不具有划痕。因此,本发明的方法适合于由木质素系壳材料生产耐磨或非-耐磨的生物源冲刷剂。
优选耐磨和非-耐磨的生物源冲刷剂的制备方法。
优选使用含木质素的壳材料作为耐磨和非-耐磨的生物源冲刷剂。
令人惊奇地,崩解植物壳材料的简单水性工艺将确保随后的技术上简单地完全分离壳材料,而且允许水合壳材料,进而使得能分解并回收植物壳材料中的固体成分。因此,可由之前不可实现或者难以回收且被其它有机杂质污染的植物壳材料获得纯的部分。另外,崩解/分解允许保留壳材料的基本组分(成分),它们当用作进一步加工/产品的原材料时,具有附加值。因此,可使用该方法,通过崩解/分离和溶剂化壳材料,由植物壳材料生产纤维产品。
优选借助含有用于崩解/分解的已溶解的化合物的水溶液,生产通过崩解和/或分离和/或溶剂化/分解植物壳材料能够获得的纤维产品的方法。
因此,可借助水溶液,通过生产通过崩解和/或分离和/或溶剂化植物壳材料能够获得的纤维产品的方法,实现本发明的目的。
详细说明
植物种子或果核的壳材料在生长阶段完成之后,在结构和功能上发生变化。这尤其包括输水毛细结构的收缩和不可逆的封闭。此外,存在纤维素系纤维的角质化。结果,被这种壳层包封的植物种子、籽粒和果核不溶胀或者仅仅在长期暴露于水下之后溶胀。此外,这一过程导致形成几乎非常坚固的层,它非常有效地保护包封的植物产品防止机械改变。令人惊奇地,已溶解的氨基酸和肽的水溶液适合于进行压紧和角质化的植物壳材料的崩解。进一步令人惊奇的是,崩解方法还适合于进一步溶解/分解已崩解的植物壳材料成其单独的组分,进而获得固体物质的纯部分,以及在水溶液中存在的已溶解的可溶化合物。
当使用阳离子氨基酸时,这一效果尤其突出。因此,尤其优选具有一个或多个阳离子电荷基团的氨基酸或含有具有一个或多个阳离子电荷基团的氨基酸的肽。优选的氨基酸是精氨酸,赖氨酸,组氨酸,以及这些的衍生物。
根据本发明可使用的肽可以是二肽,三肽和/或多肽。本发明的肽具有键合了质子或可键合质子的至少一个官能团。优选的分子量小于500kDa,更优选<250kDa,更优选<100kDa,和最优选<1,000Da。优选的官能团尤其是胍,脒,胺,酰胺,铵,肼基,亚肼基,羟基亚氨基或硝基。氨基酸具有单一官能团或更多的相同类的化合物或者不同类化合物的一个或多个官能团。根据本发明的氨基酸和肽优选具有至少一个荷正电的基团或者具有总的正电荷。尤其优选的是具有阳离子官能团的肽。优选地,阳离子氨基酸或肽溶液的pH范围为7至14,更优选8至13,和更优选8.5至12.5。在一个实施方案中,可通过添加酸或碱,调节pH到6至14的任何pH范围。可使用本领域已知的酸和碱,例如苛性钠或HCl。
尤其优选的肽含有任何数量和顺序的氨基酸精氨酸,赖氨酸,组氨酸和谷氨酸中的至少一种。因此,尤其优选含有至少一个胍基和/或脒基的氨基酸和/或衍生物。胍基是化学残基H2N-C(NH)-NH--,及其环状形式,和脒基是化学残基H2N-C(NH)--,及其环状形式。优选胍基化合物,除了胍基以外,所述胍基化合物还具有至少一个羧酸基(-COOH)。进一步地,优选羧酸基与胍基在分子中通过至少一个碳原子隔开。还优选除了脒基以外,还具有至少一个羧酸基(-COOH)的脒基化合物。进一步优选羧酸基与脒基在分子中通过至少一个碳原子隔开。
同样合适的是二肽,三肽,或低聚肽以及多肽,它们由一个,两个或更多个氨基酸组成。优选短链肽,例如RDG。尤其优选由具有疏水和亲水侧基二者的氨基酸组成的肽,例如(根据氨基酸命名的字母)GLK,QHM,KSF,ACG,HML,SPR,EHP或SFA。进一步尤其优选的是具有疏水和阳离子和/或阴离子侧基二者的肽,例如RDG,BCAA,NCR,HIS,SPR,EHP或SFA。具有4个氨基酸的另外的实例是NCQA,SIHC,DCGA,TSVR,HIMS或RNIF,或者具有5个氨基酸的另外的实例是HHGQC,STYHK,DCQHR,HHKSS,TSSHH,NSRR。尤其优选RDG,SKH或RRC。
使用根据本发明的氨基酸和/或肽在其内完全溶解的崩解水溶液,进行该方法。原则上可以自由地选择氨基酸和/或肽的浓度,但优选浓度为10μmol至3mol/l,更优选1mmol至1mol/l,和更优选100μmol至0.5mol/l。可单独或者以任何组合在水溶液中存在根据本发明的氨基酸或肽。原则上可以自由地选择含有已溶解的氨基酸或肽的水相相对于待处理的植物产品或壳材料的体积比,但应当确保完全润湿将崩解/溶解或分解的壳材料。优选在根据本发明的溶液之一中完全浸渍待处理的植物材料。
此外,已发现,可通过在崩解水溶液中溶解的崩解添加剂,加速包括果皮在内的植物壳材料的崩解过程。这种化合物包括,但不限于,下述化合物,例如脲,NH3,三乙胺,二乙胺;离子或非离子表面活性剂,例如SDS或DMSO;抗氧剂或硫酸盐和亚硫酸盐,例如亚硫酸钠或亚硫酸氢钠,另外的碳酸盐,例如碳酸钠或碳酸氢钠。
优选地,在水中溶解化合物,其浓度为0.1至30wt%,更优选浓度为0.5至15wt%,和最优选为1至5wt%。可独立地或者以任何组合使用化合物。取决于待实现的效果,可借助各种参数设定值,控制植物壳材料的崩解过程。因此,例如在一个实施方案中,例如在大豆的胚芽区域内发生壳材料的水合与崩解。这例如足以通过挤压装置,进行整个壳材料的机械剥皮。为此,例如在25℃下,在含有0.3mol精氨酸的分解溶液中浸渍完整的大豆6小时是足够的。这通过用你的手指“挤压”,完全去除壳材料来测试。在另一应用中,在35℃下,将已经除去了外壳的坚果置于0.2mol精氨酸溶液中3小时。在水合该溶液之后,可借助水射流装置,完全脱离种子涂层,其中所得种子涂层大多数保持完全和完整。所得坚果的种子涂层去除了>98%。由分解/崩解工艺获得的所有壳/表皮是柔软和挠曲的。在另一实施方案中,在20℃下,将短切的杏仁置于100mmol组氨酸溶液中20分钟。随后,将它们从溶液中分离,并在水力旋流器中去除脱离的种子涂层。可实现种子涂层去除>95%。在另一实施方案中,芸豆的种子涂层被去除。为此,将芸豆置于高压釜内的聚赖氨酸和组氨酸的溶液中,并在120℃的温度和1.2bar的压力下处理3分钟。然后壳层用2个手指容易且完全脱离。
在优选的工艺实施方案中,可使用崩解植物壳材料的工艺,在预进行的场所处水合壳/壳/壳层和/或破坏种子涂层和表皮的纹理,和/或溶解壳材料的中间层和/或软化壳层与表皮。根据不同的要求和起始材料的差异,必须首先确定在工艺中的具体条件。然而,一般地,优选下述参数设定值:
原则上可自由地选择植物材料暴露于本发明的崩解水溶液下的持续时间。优选地,暴露时间为5分钟至48小时,更优选10分钟至24小时,和更优选15分钟至12小时。可通过测试处理过的植物产品是否具有待实现的效果,例如种子涂层或壳层的可剥离性,容易地检测充足的暴露时间。原则上可自由地选择植物材料暴露于含已溶解氨基酸和/或肽和/或用于发生崩解的其它已溶解化合物的崩解水溶液下的温度。然而,优选温度范围为5℃至145℃,更优选温度范围为10℃至140℃,和最优选15℃至80℃。优选在常压条件下进行暴露。在优选的实施方案中,可施加较低或较高的压力到反应混合物上,优选的压力为0.1bar至10bar,更优选0.5bar至5bar,和更优选0.8bar至3bar。优选在用本发明的崩解水溶液处理的植物材料的暴露期间,温度和压力同时增加。优选在高压釜内,进行用本发明的崩解水溶液暴露植物材料。在高压釜内的优选处理时间为30秒至60分钟,更优选1分钟至30分钟,和更优选2分钟至15分钟。
在优选的实施方案中,将水合和部分或完全崩解的壳材料进料到允许去除壳材料的装置内。在现有技术中能够获得数量大的这种装置。优选节约产品的实施方案,因为按照这一方式,可实现本发明的产品节约处理的有利效果以供分离植物壳材料。例如,水力法是合适的,其中通过水射流,施加剪切力到壳材料上,从而导致它们的分离。而且机械工艺可以是非常有利的。在尤其优选的实施方案中,根据尺寸分拣预处理的种子、籽粒或果核,并传输到停风装置。此处,一旦进入到挠性或硬质管道/套管中或者仅仅在其内的运输路线期间,发生崩解的壳材料的撕裂和壳材料从种子、籽粒或果核中迁移/分离。一旦离开可以在施加压力下的管道/套管,则通过各种可采用的方法,例如使用重力或空气筛分,将种子、籽粒或果核与壳材料空间分离。可例如通过在手掌之间轻轻擦拭,通过崩解的壳材料的可剥离性,测定崩解的植物起始材料进行分离和去除壳材料的合适性。
在优选的实施方案中,遵照机械崩解工艺,进行本发明植物壳材料的崩解。优选进行过脱油的粗糙粉碎的种子、籽粒或果核和/或将要发生其它有价值部分,例如蛋白质和/或碳水化合物的分离。已表明,甚至这种粗糙至细粒的植物产品可采用来自本发明壳组分的崩解溶液纯化。对于它们的制备来说,也可使用旋风分离技术或分拣方法。
在一个实施方案中,通过添加表面活性剂和/或消化剂,增加通过含已溶解的氨基酸和/或肽和/或其它用于崩解的已溶解化合物的崩解水溶液导致的植物壳材料的水合与去除。
在一个实施方案中,该水溶液可含有崩解添加剂或助剂,例如醇或表面活性剂。优选的醇是甲醇,乙醇。优选的表面活性剂是脲,硫脲,月桂基硫酸钠和DMSO。优选的崩解剂是亚硫酸氢钠和亚硫酸钠。必须单独地确定每一应用所要求的浓度。
优选地,在将植物产品暴露于本发明的崩解水溶液之一后,立即进行壳/壳材料的分离/分解。可在随后的点处及时进行分离/分解。已表明,若采用本发明的方法之一,进行壳材料的崩解或溶解,则同时干燥的壳材料也可通过在水中溶解/溶胀而非常容易地去除。因此,本发明的方法也可用于制备植物产品以供在随后的点处比较容易地及时分离壳材料。已发现,如此处理的壳材料已经部分或完全无气味和/或无味道。在一个实施方案中,也可在有或无同时崩解/分解壳材料的产品情况下,使用本发明的方法用于壳材料的味道中和/去苦味。必须单独地确定所要求的暴露持续时间和温度与压力条件。
在该方法的进一步优选的实施方案中,使壳材料崩解,并将其从植物起始材料中分离,和/或将从植物起始材料中机械分离的壳材料置于一种或若干种崩解溶液中,或者连续地含有已溶解氨基酸和/或肽和/或用于崩解的其它化合物的崩解溶液中。有利地,于是继续或引发崩解工艺,其中壳材料被完全润湿。结果,例如可发生事先发脆且可容易地断裂的壳材料的软化,于是这些崩解的壳材料具有非常高的挠性且不再断裂。通过长期浸泡在本发明的水溶液之一内,进行用于这一目的的优选崩解形式。优选持续时间为15分钟至30天,更优选60分钟至14天,和更优选10小时至7天。因此应当选择已溶解的氨基酸和/或肽的浓度,为了定向,可以使用以上给出的数值。优选地,在室温下进行崩解。优选调节pH为6.5至13,更优选7至12,和更优选8至12.5。在进一步优选的实施方案中,通过在高压釜内短期处理,进行植物壳材料的调节/软化。已发现,已分离的壳材料的软化也可在升高的温度和升高的压力下采用短的暴露时间发生。优选80℃至140℃的温度范围,更优选90℃至130℃,和更优选100℃至121℃。优选的压力为0.5至10bar,更优选0.8至5bar,和更优选1.0至2bar。
暴露时间优选为20秒至10分钟,更优选30秒至8分钟,和更优选40秒至3分钟。优选对根据所提及的方法变通方案崩解且软化的壳材料在水中进行强力洗涤。这种崩解的壳材料没有进一步溶解,当留在中性水中时。此处它们可以在不变的条件下长时间段储存,所述时间段可以长于6个月。但也可干燥它们并储存。优选由单独的壳材料成分生产复合材料/织物。这有利地通过例如在过滤器压机装置上挤压壳材料来进行,例如可生产模塑板/片材。可例如在干燥橱柜内干燥这一压紧的材料。能够获得的压紧的壳材料的特征在于当置于水中时,它们巨大的可溶胀性,其优选>200wt%,更优选>300wt%,和更优选>400wt%。优选地,在加工以获得崩解的可模塑壳材料期间,在一个或多个额外或同时发生的工艺中,也可采用以上或以下描述的方法之一,实现已崩解壳材料的调节和/或功能化。有利地,同样和尤其采用这一方法,制备已崩解的软化/挠性植物壳材料,它完全或几乎完全无气味和/或无味道。几乎完全意味着>98%。换句话说,发生以前存在的加味剂和/或调味剂的下降大于98%。进一步地,已崩解和软化的壳材料没有释放任何或几乎没有释放任何着色剂到水性介质中。在一种应用中,表明大蒜的壳材料可形成为味道中性的高度挠性的片/片材。
此外,可将添加剂加入到本发明含已溶解氨基酸和/或肽的崩解水溶液中,于是实现进一步尤其有利的效果,所述条件例如促进调节和/或功能化和/或提高植物壳材料的崩解。在一个实施方案中,羧酸完全溶解在含有阳离子氨基酸和/或肽的水溶液中。这是尤其有利的,因为羧酸可通过水性介质中的阳离子化合物完全溶解,以形成纳米乳液。这使得在许多应用中,可以以尤其有利的方式缩短暴露时间,直到实现植物壳材料的脱离。此外,在通过本发明的水溶液引发的水合工艺期间,壳材料可负载有已溶解的羧酸,或者可有利地掺入和/或施加到氢化的纤维素系纤维内。一方面,这使得可生产具有改性的表面性能的壳材料,例如其具有疏水性能或抗微生物功能。另一方面,在崩解/溶剂化壳材料的情况下,可生产负载有羧酸,例如ω-3脂肪酸的纤维素系纤维。
在本发明的水溶液中溶解的优选羧酸是脂肪酸,例如单不饱和或多不饱和脂肪酸,例如油酸或亚麻酸,以及有机酸,例如乙酸或抗坏血酸。羧酸的优选浓度可以是1μmol至3mol/l,更优选1mmol至1mol/l,和更优选100μmol至0.5mol/l。优选地,羧酸完全溶解在本发明的崩解水溶液中。因此羧酸的总量受限于在混合溶液中的阳离子化合物的数量与浓度且提供羧酸的溶液。可添加另外的化合物到崩解水溶液中。在优选的实施方案中,添加离子或非离子表面活性剂作为添加剂。在从具有显著比例脂肪或蜡的壳材料回收纤维素系纤维中,这是尤其有利的。进一步优选使用脲或肌酸作为添加剂。在一个实施方案中,使用添加剂,实现来自有机基质的纤维素系纤维更好地/更加完全地分解。
在该方法的另外的实施方案中,除了崩解以外,还存在分解和分离植物壳材料中的组分(成分)。
在优选方法的实施方案中,通过结合水溶液形式的用于崩解的化合物或一系列水溶液与一种或更多种崩解添加剂,木质素和/或含木质素的聚合物结构和纤维素系纤维的角质化被破坏/溶解。尤其优选的是亚硫酸钠,亚硫酸氢钠,脲,硫脲,月桂基硫酸钠和DMSO以及碳酸盐,例如碳酸氢钠。在崩解添加剂优选于其内呈溶解形式的水溶液中,其浓度优选为50μmol至3mol/l,更优选1mmol至2mol/l,和更优选200mmol至1mol/l。化合物或水溶液可与根据本发明的已溶解的氨基酸和/或肽一起或者按顺序使用。优选其中已溶解的氨基酸和/或肽与添加剂一起使用的分解工艺。木质素和/或含木质素的聚合物结构在其下发生分解的优选温度优选为40℃至140℃,更优选60℃至130℃,和更优选80℃至120℃。优选同时施加压力到反应混合物上。优选0.5至10bar,更优选0.8至8bar,和更优选1至6bar的过压。必须单独地确定起始材料用水溶液暴露的时间,因为木质素聚合物的交联度和起始材料内纤维素系纤维的角质化程度可以很大地变化。可以通过从反应容器中取出样品,非常容易地确定所需的暴露时间。当植物壳材料的暗褐色到黑色结构不存在或者仅仅在小的程度上存在或者已经崩解成非常小的粒子时,尤其存在充足的暴露时间。此外,若在微观分析中,没有检测到内聚的纤维结构,则暴露时间是充足的。
已发现,通过使用本发明的方法,使木质素系壳材料崩解,并可以例如以完整的壳/壳材料或壳碎片形式回收。例如在麻风树,油菜籽,向日葵的种子或籽粒或者苹果和梨的种子中发现了含木质素的壳材料。在这一情况下,植物壳材料例如在提取油部分之后可以以完整或部分或完全机械或热崩解的状态存在,或者在榨汁之后以果渣状态存在。本发明的方法起到获得可回收的有价值材料部分的作用。
在另一工艺的实施方案中,通过浸泡,将尤其由水性分解工艺获得的植物种子的压榨残渣,例如油菜籽或麻风树的压饼置于本发明的溶液中,直到用其饱和。这种浸泡的材料被完全浸泡,而不是润湿。4小时之后,采用混合器,实现在水中分配固体成分。通过过滤器分离固体组分并将其与水性分解混合物一起进料到另外的工艺段中。在一个实施方案中,例如,可使用0.2mol赖氨酸和10wt%脲的溶液,在所述溶液内放置固体过滤器残渣6小时。随后,通过厢式压滤机去除液相,并且在水中分配过滤器残渣,然后借助旋风分离器分离,从而导致2种固体部分:纤维素系纤维和木质素系壳粒子。可表明,采用崩解和分解木质素系成分的方法,从纤维成分中分离成分是可能的,且可实现不同纤维成分的分离,和这是为何木质素系壳部分可以以可分离的有价值材料部分大规模获得的原因。
能够获得的纤维素系纤维具有变化的角质化程度,这取决于起始材料的来源和所选的崩解/分解工艺,或者所选的脱水工艺或者暴露于漂白剂下。这导致结晶区域,所述结晶区域导致在嘴内明显可感觉到的多粒状,并且在咀嚼的同时引起小颗粒的粒子感觉,这是非所需的。令人惊奇地已发现,在其内使用本发明的氨基酸和/或肽的崩解/分解工艺中,实质上没有出现纤维素系纤维的角质化。此外,已发现,若存在纤维素系纤维的角质化,则角质化程度可以显著下降,或者可通过用含有本发明的氨基酸和/或肽的溶液崩解完全逆转角质化。因此,可表明在130℃和1.2bar的过压下用亚硫酸钠溶液崩解10分钟的甜菜浆粕中,在均化和分离游离液体之后获得的物料由具有高角质化程度的纤维素系纤维组成和因此不是可食用的。当这一物料插入到0.3mol精氨酸溶液内时,在混合的同时,它开始分解角质化,结果在3小时之后实际上不存在多粒子。
优选崩解/分解纤维素系纤维的角质化的方法。
在优选的工艺实施方案中,采用分解溶液之一,对由根据本文描述的方法之一的事先崩解的工艺或者由另一工艺获得的木质素系壳或壳碎片进行分解工艺。此处优选实现木质素聚合物结构的溶解和/或分解。当然,在各种壳材料内这些结构的复杂度不同,结果必须单独地调节确切的反应条件。优选在亚硫酸钠溶液中,优选与已溶解的氨基酸和/或肽和/或脲和/或碳酸盐一起,在升高的温度下和优选在升高的压力下,崩解并分解木质素系壳材料/壳或其碎片。优选亚硫酸钠或亚硫酸氢钠,而且碳酸钠或碳酸氢钠的浓度为0.1至3mol,更优选0.3至2mol。已溶解的氨基酸和/或肽(单独或一起)的优选浓度为0.1至3mol,或最多到溶解度极限,更优选为0.2至2mol。优选地,崩解溶液的pH为8至14,更优选8.5至13,和更优选9至12.5。优选温度为60℃至180℃,更优选70℃至160℃,和更优选80℃至140℃。优选的压力增加为0.1至20bar,更优选0.2至10bar。崩解的持续时间取决于工艺参数和起始材料。优选地,崩解的持续时间为10分钟至24小时,更优选15分钟至10小时,和更优选15分钟至6小时。优选地,用水或合适的表面活性剂混合物对崩解和/或部分溶解和/或溶解的壳材料或壳或其碎片进行强力洗涤。若在洗涤溶液中没有显现出浊度,则冲刷过程完成。对木质素系壳的所得部分优选进行干燥工艺。在优选方法的实施方案中,借助筛分装置或者借助离心工艺,实现未键合的水的分离。优选振动筛装置和离心机。木质素系壳材料然后通常已经自由流动,然后例如在带式干燥器或真空干燥烘箱中,可干燥到优选<20wt%,更优选<15wt%,和更优选<10wt%的残留湿度。干燥储存它,直到使用时。
由于崩解工艺还使纤维素系纤维脱离/释放,因此在优选的工艺实施方案中,在另外的加工之前,之中或之后分离该比例的纤维素系纤维。这可优选借助已知的加工技术进行。
优选旋风分离工艺,在其内发生不同密度和具有不同沉降行为的粒子的半选择性排放。优选使用水力旋流器。可例如在微观分析中,确定所获得的木质素系壳粒子部分的纯度。优选所获得的部分的纯度>90%,更优选>95%,和更优选>98.5%。另一方面,在木质素系壳部分内的纤维素系纤维残渣通常没有令人烦恼。可表明在木质素系壳粒子部分内存在>5%纤维素系纤维情况下,对可因高的摩擦接触压力引起的划伤敏感的表面的划伤下降。
在优选的实施方案中,可在该工艺的任何点处,发生木质素系壳部分的尺寸选择和/或尺寸减少到预定的程度/尺寸。这优选在工艺的最后进行。优选借助通过筛分/过滤装置的保留,进行尺寸分拣。这可采用干燥,以及在水中悬浮的木质素系壳粒子二者进行。也可在干燥或浸泡的木质素系壳粒子上进行粉碎。例如,切割或粉碎磨机是合适的。可通过能够获得的分析筛分/过滤装置,确定能够获得的尺寸分布。
取决于植物起始材料,崩解工艺的强度和壳材料的破碎,形成木质素系壳成分的二维或三维粒子。在化学分析中,测定木质素含量>40wt%。优选获得木质素含量>40wt%,更优选>50wt%,更优选>60wt%,甚至更优选>75wt%,和尤其优选>90wt%的微粒子(三维)颗粒。
优选其中通过崩解植物起始材料,获得木质素含量>40wt%的微粒子颗粒/壳碎片。
已发现,这些木质素系壳碎片对在不同表面上的有机或无机结壳具有磨蚀性能或者擦拭性能。令人惊奇地,可发现由该方法得到的木质素系壳组分的不同磨蚀性能。已表明,当划伤-敏感表面,例如有光泽的清漆或有光泽的塑料表面用由壳材料的崩解工序之一获得的机械粉碎的木质素系壳材料处理时,使用恒压以供去除结壳,可观察到在去除粘合剂的位点处的划伤或梨沟。相反,当通过使用其它情况相同的清洁/脱离条件以供去除坚固粘合的污染物并使用相同选择的接触压力,使用由根据本发明的崩解工艺获得的植物壳材料时,在表面上不具有梨沟/划伤。
因此,崩解富含木质素的壳导致不同的磨蚀性能,它可去除表面污染物,和尤其结壳,例如有机材料,例如蛋白质,且没有引起表面上离散的磨损(划伤/梨沟),所述表面可以是容易划伤(划伤敏感)的表面,如同高光泽的塑料表面或有光泽的清漆情况一样。
此处磨蚀是指去除在材料,例如金属,玻璃,塑料,油漆或生物材料,例如皮革的表面上存在的粘合性,结饼或结壳。在本发明上下文中,磨蚀并不意味着对表面/磨蚀处理过的材料/材料表面的表面完整度存在损伤/损害。微观来说,表面的微米和/或纳米表面不规则度是可辨别的,且通过该方法步骤之一制造的木质素系壳/壳碎片是可视的,但外部轮廓具有尖锐边缘和/或是尖锐的。与由现有技术的磨蚀剂相比,这些富含木质素的壳碎片对在金属,玻璃或陶瓷上的结壳具有非常良好的磨蚀性能,所述结壳可显著更加容易地去除。划痕在此处不是可识别的,这与用这种富含木质素的壳碎片清洁上漆的塑料表面的情况一样。令人惊奇地发现,通过根据本文描述的方法,进一步崩解木质素系壳部分,颗粒变得更圆且具有平拱的外部轮廓,但在表面上的结壳残渣上仍然具有磨蚀效果。利用这些圆形的木质素系壳部分,当在皂溶液中悬浮时不存在划痕,且使用0.2N的下压力,用于抛光高光泽清漆或高光泽塑料表面。然而,对于木质素系壳部分的两种形式来说常见的是在结壳上高的去除/释放性能。此外,这两种形式显示出微米和/或纳米表面粗糙度。可用于磨蚀、不具有划痕应用的优选木质素系壳部分可具有任何形状。优选地,它们是圆盘状粒子。但可以存在其它空间结构。在优选的实施方案中,颗粒优选具有100μm至3mm的平均粒度,更优选200μm至1mm,和甚至更优选300μm至800μm。在一个实施方案中,通过分筛装置,分拣尺寸。优选可搅拌的筛子,例如振动筛或风筛装置。
优选由植物起始材料生产磨蚀粒子以供揭开/脱离表面结壳。
优选由木质素系壳生产磨蚀粒子以供揭开/脱离表面结壳。
因此,在一个实施方案中,优选木质素系壳的崩解,在所述粒子内优选达到95wt%,更优选>97wt%,更优选>99wt%,和更优选直到所有木质素系壳粒子以圆形形状存在。利用这一品质特征,能够获得非-划伤磨蚀的冲刷剂,利用它可清洁例如油漆和塑料的容易划伤的表面。优选地,通过添加根据本发明制备的木质素系壳部分到表面活性剂/皂溶液中,并使之在这一溶液中悬浮,进行本发明的非-划痕-生成的磨蚀冲刷剂的配制。借助高速剪切混合器,可将木质素系壳部分加入到仍然潮湿或干燥形式的表面活性剂/皂溶液中。为了用作冲刷剂,木质素系壳部分可以以潮湿、干燥或粉化状态使用。尤其适合于由木质素系壳部分生产磨蚀冲刷剂的是麻风树和菜籽油粒子/种子的壳组分。
在优选的实施方案中,根据本发明的植物壳材料的崩解/干扰与植物种子、果核或籽粒的崩解/分解一起或者接连发生。这是尤其有利的,因为这可采用相同的崩解/分解水溶液进行。为此,通常需要选择较长的暴露时间和/或与崩解/脱离/溶解壳材料的那些不同的工艺参数。特别地,可要求延长暴露时间,优选暴露时间为10分钟至48小时,更优选30分钟至24小时,和更优选1小时至12小时。此外,优选在用本发明的水溶液暴露期间,增加反应混合物的温度,优选温度为20℃至140℃,更优选30℃至120℃,和更优选40℃至80℃。在尤其优选的实施方案中,紧跟在崩解整个植物起始材料之后,实现起始材料中成分的分解,其中可溶组分,例如蛋白质和可溶的碳水化合物完全溶解在水性分配体积中,和固体成分,例如纤维素系纤维和富含木质素的壳悬浮在水性分配相中。优选地,此处选择水的体积,所述体积将确保固体成分容易分离。优选地,所添加的水对由崩解工艺得到的工艺混合物的体积比为2:1至200:1,更优选5:1至100:1,和甚至更优选10:1至50:1。可发生这一方法步骤的温度是任意的;优选5℃至95℃的温度范围。优选借助强力混合进料,混合分配体积,优选高性能剪切混合器/分散器或均化器。可通过从悬浮的混合物中去除样品并过滤它,检测充足的分配体积的存在或者起始材料中成分的崩解或分解程度。若例如在显微分析中,可过滤的固体成分不具有可溶成分的粘合性,则该工艺完成。优选地,优选通过过滤或离心分离工艺,进行悬浮固体物质随后的分离。优选在分离固体成分之后,分离在水性分配体积中存在的已溶解的成分,优选<5wt%,更优选<2.5wt%,和更优选<1wt%的固体成分存在于已分离的水性分配体积中。
优选通过添加其它可溶成分到含有已溶解蛋白质和任选地起始材料的其它可溶成分的水性分配体积中以供引发聚集/复合,从而实现已溶解蛋白质的分离。这些优选是一种或更多种有机酸,优选羧酸,例如柠檬酸或乳酸或抗坏血酸。但可使用其它酸,例如HCl或磷酸。此外,不同酸的组合是可能的。含有已溶解化合物以聚集/复合的水溶液的pH范围优选为4.5至13,更优选6至12,和更优选6.5至11,其中根据本发明在所述水溶液内,发生已溶解蛋白质和/或已溶解化合物的缩合和/或聚集和/或复合。进一步地,可在添加酸,例如钙和/或镁的化合物,例如氯化钙或氯化镁之前/之中和/或之后,添加复合物形成的强化剂。此外,可改变水性分配体积的盐度。单独的剂量取决于溶解和可聚集的化合物的浓度,和因此必须在每一情况下确定。已发现,使用充足的剂量,例如此时形成明显可视的聚集体,而同时事先混浊的水性分配相澄清。然而,也可使用分析方法:在根据本发明的蛋白质聚集之后,和在它们的分离之后,优选小于5wt%,更优选<2.5wt%,和更优选<1wt%已溶解的蛋白质保留在工艺流体中。
在优选的方法中,采用搅拌器,和在很少搅拌工艺流体的情况下,混合所添加的聚集/复合剂。重要的是确保彻底混合。原则上可自由地选择混合物的持续时间。在优选方法的实施方案中,这仅仅在添加一种或更多种聚集/缩合剂的持续时间内发生,或者持续时间为10秒至5分钟,更优选20秒至2分钟。因此,在尤其优选的实施方案中,紧跟在添加一种或更多种聚集/缩合剂之后,维持停留时间,不发生或者仅仅发生混合物的最小混合。按照类似的方式,可确定缩合段所要求的时间,优选它为5分钟至10小时,更优选10分钟至5小时,和更优选15分钟至2小时。若停留时间下降到最小值,则在添加复合/聚集剂之后,可通过离心样品,确定停留时间的充足的最小持续时间,其中通过与聚集剂一起添加相同的和/或另一溶液到离心机的上清液中,检测通过复合/聚集提供的缩合和/或聚集和/或复合的完整程度。除非发生另外的聚集,已溶解蛋白质的提取过程是完整的。在优选方法的实施方案中,已溶解蛋白质的聚集/复合导致聚集体/复合物沉降。优选地,这些聚集体/复合物在另外的过程中缩合,结果它们可从工艺介质的游离水相中容易地分离。
在优选方法的实施方案中,聚集/复合和缩合的化合物/蛋白质以沉降相(缩合相)形式可回收。优选借助底部出口,实现沉降相的排放,并将其进料到另外的工艺序列中。这一缩合段优选在环境温度下,优选在范围为15℃至40℃的温度下进行。在进一步有利的实施方案中,这在降低或升高的温度下进行。一方面,优选温度范围为5℃至15℃,另一方面为40至80℃。选择降低的温度可以是有利的,例如在回收不耐热的化合物中。在微生物污染起始材料的情况下,可以例如选择高温,例如60℃,例如以巴士杀菌工艺形式杀灭例如微生物。另一方面,加热也可使过敏源和某些毒素和非营养的化合物失活。
优选获得由聚集/复合和缩合蛋白质组成的含蛋白质的沉淀物的方法。
优选在分离干扰的已溶解蛋白质和随后聚集/复合和缩合情况下,由通过崩解/干扰能够获得的植物起始材料生产并获得蛋白质的方法。
所获得的蛋白质物料可直接使用或者导引到另外的纯化步骤中。
在含有已溶解的崩解/分解化合物的水溶液中,在从通过分离/溶解工艺获得的具有其它已溶解的可溶成分的水溶液中分离已溶解蛋白质的研究中,已发现,通过水合通过本发明方法可实现的蛋白质,和通过选择合适的工艺参数,能够获得非常纯的蛋白质部分。纯意味着蛋白质部分具有优选>60wt%,更优选>70wt%,更优选>80wt%,和仍然更优选>85wt%,和最优选>90wt%的蛋白质含量。
已发现,在分解根据本发明的成分之后,可尤其通过使用大的分配体积,生产这种纯的蛋白质部分。这种已溶解的蛋白质例如穿过孔渗透性为至少1μm的膜滤器。这允许已溶解蛋白质的尺寸选择的分离。
此外,已发现,在其中存在最佳水合已溶解蛋白质和生理pH范围的这一特定的情形下,与本文列出的复合/聚集剂存在非常快速且突出的相互作用,这导致水合蛋白质的缔合,从而引起置换或排除工艺用水。这可例如通过形成肉眼可见的三维结构来认识,所述三维结构在形成之后,仅仅非常缓慢地沉降,同时存在工艺流体的部分或完全澄清。工艺流体然后适度到强力着色且含有加味剂和调味剂以及可溶的碳水化合物。因此,水合和随后缩合可溶蛋白质的工艺要求事先从蛋白质中释放的化合物在工艺水相中保持溶解状态且不与缩合蛋白质结合或者与缩合蛋白质一起排出。
优选借助含有已溶解的崩解/分解化合物的水溶液,从有机起始材料中生产蛋白质缩合物和/或蛋白质浓缩物和/或蛋白质分离物的方法。
在进一步优选的实施方案中,崩解/脱离/溶解植物壳材料和/或已经热和/或机械崩解/细分/粉碎的种子、籽粒或果核起始材料的其余成分。这会缩短根据本发明的水溶液所要求的暴露时间。
为了脱离和分离崩解/部分溶解/脱离的壳材料,优选在处理过的壳材料上产生剪切力的机械方法。在优选的实施方案中,通过辊,实现脱离和分离,在所述辊上或者在所述辊之间,运输预处理的种子/果核,且与此同时经历切向剪切力。特别优选使用冲刷装置或风扇装置同时分离,以分离脱离的壳材料。
在一个实施方案中,使用比崩解/脱离/分离植物壳材料所要求的更长的停留时间/暴露时间,在根据本发明的水性液体内,或者采用本发明的水性液体,实现崩解/溶解或脱离位于植物种子或果核上和/或已分离的壳材料上的中间层。优选地,暴露时间为1分钟至72小时,更优选10分钟至48小时,和更优选30分钟至24小时。可任意选择反应混合物的温度,优选温度范围为5℃至120℃,更优选10℃至100℃,和更优选15℃至70℃。优选施加物理剪切力到从中间层中去除的材料上。优选例如通过旋转容器或者搅拌器,在反应混合物中进行这些剪切力。优选地,也可通过洗涤/喷洒装置,产生剪切力。本领域技术人员可通过在干燥期间,针对其物理表面性能,例如存在涂层或表皮形成,检查处理过的产品,从而容易地确定充足的暴露时间和施加剪切力洗涤掉中间层。
在一个实施方案中,崩解/部分溶解或分解植物壳材料,且没有将它们从植物产品中去除。已表明,通过暴露于本发明的水溶液下,至少溶解或溶胀的涂层材料不再必须从植物种子或籽粒中去除,因为在进一步使用种子或籽粒期间,它们不再干扰。在另外的实施方案中,通过本发明的方法之一,崩解/部分溶解/分解已脱离并分离的植物壳材料。这是尤其感兴趣的,当拟提取并回收在植物壳材料内包含的材料以供进一步利用,或者拟允许生产并回收纤维素系纤维时。取决于应用,必须确定阳离子氨基酸和/或肽的浓度,以及暴露时间和反应混合物的温度与压力。
纤维素系纤维和富含木质素的壳部分
壳材料的性质与组成从植物起始材料的物种到类型均是变化的。为了生产谷粉,壳材料,例如外皮和种子涂层通常在粉碎之前分离,因为这些通常在最终产品中是不期望的。机械分裂/破碎的结果是,这通常仅仅采用巨大的工艺工程努力且损失籽粒/种子材料才成功。采用现有技术的方法,在没有残渣的情况下,在种子、果核和籽粒内,以及在其它植物起始材料内作为结构组件存在的纤维不可能分离或分开,因为它们与其它成分完全/全部键合并压紧。特别地,在现有技术中不可能机械分离这些纤维。
因此相当令人惊奇的是,可分离并解松植物起始材料中富含木质素的壳颗粒以及纤维素系纤维且可以直接纯的形式通过本文描述的方法获得。因此,遵照崩解/分解工艺,在从固体物质部分中强力去除键合的水含量之后,没有或几乎没有检测到蛋白质,可溶碳水化合物,加味剂,调味剂或其它有机或无机可溶化合物。从微观看,其它有机组分的连接是明显的。
富含木质素的壳部分显示出30–95wt%的木质素含量。它们以亚毫米尺寸的圆盘形式存在或者具有无定形的形式。在干燥之后,它们是自由流动且可倾倒的。存在显著的保水能力,其可以>40%。从微观看,纤维素系纤维具有原棉状3D结构,其平均直径为50μm至500μm和长径比(长度/直径)为1:1至1000:1。这些是没有内聚的分离/离散的结构,且具有优选<70mg/100m,更优选<50mg/100m,更优选<30mg/100m,进一步优选<20mg/100m,进一步优选<15mg/100m,和更优选<10mg/100m的非常低的重量对长度比。发现这种纤维素系纤维显著不同于例如由茎或木材制造的纤维素纤维在于化学组成,二级和三级结构,和物理化学性能。此外,发现可回收的纤维素系纤维和富含木质素的壳部分二者具有大于200vol%的很大的水键合能力。另外,已发现,富含木质素的壳部分和纤维素系纤维二者不具有或者几乎不具有在水性介质中溶解的加味剂或调味剂或着色剂。因此,通过该方法能够获得的富含木质素的壳部分和纤维素系纤维已经是它们可以使用的形式,或者它们可以通过现有技术的方法干燥,或者它们可用于另外的加工。
优选由水键合能力>200vol%的植物起始材料获得纯的木质素系壳部分和/或纤维素系纤维的方法。
令人惊奇地,除了高的水键合能力和高的保水能力以外,干燥的木质素系壳部分还具有极大的油与脂肪键合能力。在采用各种木质素系壳部分的实验中,它为250%至550wt%。值得注意的是,在表面和油之间存在疏水相互作用,这导致油与脂肪沿着粒子的外表面非常快速的运输。结果,油与脂肪可通过木质素系粒子反压力梯度(重力),借助它们的内部和外部表面的毛细力运输,当在松散的本体内存在时。在使用用该材料填充的竖管的研究中,静压头落差超过5cm。
此外,可表明,干燥和粉化的纤维素系纤维还对油与脂肪具有非常高的键合能力,为220至360wt%。
优选由对油和/或脂肪的键合能力>200wt%的植物起始材料获得纯木质素系壳部分和/或纤维素系纤维的方法。
通过崩解和分解植物起始材料的方法,能够获得对油和/或脂肪的键合能力>200wt%的富含木质素的壳部分和/或纤维素系纤维。
令人惊奇地,已发现,在所研究的许多植物-基产品中作为过滤器残渣,例如油菜籽和麻风树挤压残渣发现的所得富含木质素的壳部分和纤维素系纤维通过本领域已知的技术非常容易地彼此分离。
优选旋风分离技术,例如水力旋流器,但也可使用过滤器技术。已表明,这使得能够获得一方面纯的纤维素系纤维部分,和另一方面富含木质素的壳部分,在其内没有或几乎没有蛋白质,可溶碳水化合物,加味剂或调味剂,或其它有机或无机可脱离化合物存在,或者含有在水性介质内溶解的着色剂。
所得壳或纤维部分优选通过挤压工艺,从仍然键合的水中释放。备选地,可使用离心工艺。可在水合条件下(正如从该工艺中获得的),或者在它们完全干燥之后,使用脱水的壳或纤维部分。干燥工艺是本领域已知的。优选使用热空气的干燥工艺。有利地,在干燥后获得的富含木质素的壳部分以可容易分离和自由流动的形式存在。已发现,与纤维素纤维和纤维素衍生物相比,按照这一方式生产的纤维素系纤维在其化学组成上不同。尽管在纤维素纤维和纤维素衍生物中,除了C,H和O以外,实质上不可测定到另外的元素,许多元素,例如N,S,P,Fe,Cl,Na,Ca,K,Ni,Cl,Cu以及其它元素存在于纤维素系纤维内。由于针对纤维素系纤维发现的键合性能,因此认为这些元素与或者直接或者间接键合到聚合物框架结构上的官能团至少部分缔合。可以存在间接的共价键,即借助糖残渣或肽。但也可想到,非共价键合的化合物借助具有官能团或元素的静电键合力,连接到聚合物主链上。在纤维素系纤维表面上存在的官能团造成迄今为止发现的许多效果。
木质素系壳粒子,和纤维素系纤维二者具有大的内表面,这导致巨大的水键合能力。结果,它们尤其适合于水键合并储存在栽培所使用的土壤中。当干燥时,它们可以优良地储存和运输。对所研究的所有土壤类型(例如,沃土,腐殖质)具有最佳的混溶性。在所有研究的土壤中,通过添加富含木质素的壳部分,吸水和保水指数显著增加。
优选使用富含木质素的壳部分以供改进耕作土壤的水保留和保持能力。
干态下的木质素系壳粒子具有优良的油与脂肪吸收效果和因此非常适合于吸收油与脂肪例如用于从具有油与脂肪的表面或者从空气/气体混合物中吸收。所吸收的油与脂肪没有从木质素系壳粒子中自发地离开,与此同时不存在油或油脂饱和的材料的“结饼”,结果保持非常良好的运输性。也可表明,通过使用溶剂,所吸收的油与脂肪可完全从木质素系壳部分中去除,和之后它们具有与起始状况相比,对油和脂肪不变的再吸收能力。木质素系壳部分具有低的松密度,且空气或气体流可以在没有太大的阻力的情况下流过。可表明可利用这一性能,从含有油与脂肪蒸汽的空气或气体混合物,例如来自深度的脂肪油炸锅的废气中几乎完全去除油或脂肪液滴。因此,木质素系壳部分非常适合于作为表面的油分离剂或油吸收剂或者空气/气体混合物的吸收。
优选使用木质素系壳部分以供从表面中和从空气/气体混合物中吸收和键合油与脂肪。
优选使用油和/或脂肪键合能力>200wt%的富含木质素的壳部分和/或纤维素系纤维以供吸收油与脂肪。
令人惊奇地,通过本发明的方法获得的纤维素系纤维显示出不同于由木材的制浆工艺衍生的纤维素纤维的特殊性能。例如,可表明,使用相同的纤维素系纤维,亲水和疏水化合物二者可应用到根据本发明制备的纤维素系纤维上/内。此外,已表明,在干燥按照这一方式处理的纤维素系纤维之后,附着或捕获的亲水或疏水化合物存在突出的延迟释放。当层状施加到载体材料或获得层状材料结构时,这尤其如此。
因此,可使用生物无害且不干扰所获得产品或者甚至改进材料价值的化合物在其内溶解的崩解/分解水溶液,提供植物种子和籽粒的植物壳材料可以非常容易、有效和可靠地崩解/溶解/分解的方法。与现有技术的方法相比,可通过本发明的温和去除植物起始材料中的壳材料,显著改进植物种子、籽粒和果核的品质,尤其处理过的种子、籽粒和果核的完整度得到维持。与此同时,植物种子、籽粒和果核的感觉特征,例如在去苦味感觉上可得到改进。此外,该方法也可用于进一步分解处理过的植物起始材料。另外,可从崩解/溶解或分解的植物壳材料中提取并回收有价值的物质,例如维生素或抗氧剂。特别地,能够获得如此解松的纤维素系纤维,其具有特别的物理性能且由于优良的感觉效果导致非常适合于制备食品和餐食。
因此,可提供崩解/分解植物材料的简单可行且成本合算和产品-温和的方法,该方法普遍可采用且生物安全。
定义
起始材料
本文中所使用的术语“起始材料”包括所有生物源产品,其具有划界(demarcate)或描绘的一类或多类组织,这些组织部分或完全闭合或连接,或者代表复合材料结构。术语“植物壳材料”(果皮)尤其要理解为全部划界或描绘部分或完全闭合或连接的组织结构,它们作为层可分离且通常称为膜,种子涂层,表皮,鞘,果皮,壳,隔膜或外皮。该术语没有限制为本文提到的植物壳材料的组织类型的特定材料组成。原则上,起始材料可具有任何比例的不同成分以及其它成分与化合物。典型的成分尤其包括生物聚合物,例如纤维素或木质素,它们可以以各种组成和各类组织/复合结构存在。复合结构优选为一种或更多种成分的不具有间隙的压紧形式。
优选的起始材料是植物-基源,例如种子,籽粒,果核,坚果,大豆,球根状植物,块茎,植物,水果或根。
可以以未成熟、正成熟、已成熟、过度成熟、老化或甚至损害的起始材料形式存在。同样合适的是污染或弄脏的植物起始材料。植物起始材料可以是完全完整的形式,可以损坏,粉碎,剥离,挤压,压碎,或者在其它情况下崩解,其中包括,但不限于,研磨或磨碎的谷粉,它可例如来自于机械提取油,所谓的压饼。这些还包括事先经历过热和/或例如使用醇或有机溶剂,例如己烷的液体提取工艺的起始材料和尤其植物起始材料。还包括其中进行了热处理的植物起始材料。这些还包括由消化和/或发酵工艺能够获得的植物产品,尤其当它们是废材(副产物),例如酿酒厂残渣(例如,废籽粒或来自废籽粒粉形式)或marcs或橄榄渣时。另外,还包括可可豆残渣。
还优选例如在生产果汁(例如,苹果,西红柿或胡萝卜果汁)中发现的压榨残渣,或者在生产果冻或烈性酒(例如,黑莓果冻,黑醋栗所酿的酒)中获得的例如葡萄或苹果的渣或者提取物。
此外,可使用由剥离、脱壳或去籽工艺得到的植物起始材料的产品。
以下尤其落在所有植物种子的这一定义下:例如,亚麻籽,罂粟籽,芡欧鼠尾草,苋属植物,红辣椒,西红柿,茴芹,豌豆;例如下述的籽粒:油菜籽,荠,燕麦,大麻,小麦,荞麦,黑麦,大麦,玉米,向日葵,蔬菜,麻风树;例如来自下述的水果种子/核:苹果,梨,葡萄,橘子,樱桃,李子,杏仁,桃子,白梨,欧楂,布拉斯李树,花楸浆果,南瓜,甜瓜,鳄梨;豆类蔬菜,例如大豆,蚕豆,Mattenbohnen,绿豆或芸豆,咖啡豆,花生,小扁豆,例如Wasserlinsen,羽扇豆,或芝麻;蔬菜,例如花椰菜,西兰花,大头菜,芹菜,绿皮密生西葫芦,辣椒,朝鲜蓟或黄秋葵;球根状植物,例如胡萝卜或甜菜;水果,例如苹果,梨,温柏,香蕉,面包果,芒果,奇异果,西番莲果,甜瓜,西番莲果,无花果,南瓜,菠萝,鳄梨,橄榄,芒果,佛手瓜,番石榴,番木瓜,番茄,Marmayapfel,葡萄果实,橘子,柠檬或葡萄;浆果,例如野玫瑰果,醋栗,蓝莓,黑莓,草莓,接骨木果,小葡萄干,蔓越橘,桑葚,苹果浆果,木莓,黑莓,Sandorn;块茎植物和根,例如土豆,甜菜根,甘薯,姜黄根,木薯,辣根,芹菜,小萝卜,生姜,Arakascha,芋头,山葵,雪莲果,婆罗门参,芦笋,欧洲防风草,芥末,洋姜,香蒲,瑞典甘蓝,西伯利亚当归,山药根,山药,向日葵根,大蒜,洋葱,爪钩草或银杏;以及黄瓜,例如沙拉或酸黄瓜,以及茄子或绿皮密生西葫芦;坚果,例如杏仁,榛子,花生,核桃,腰果,巴西坚果,美洲山核桃,开心果,栗子,甜栗,海枣或椰子,此外,甘蔗。
优选干燥的起始产品。优选通过机械方法预粉碎。
优选不具有GMO的植物起始材料以供生产不具有GMO的产品。
植物种子、籽粒和果核的主要成分由蛋白质,碳水化合物,纤维素系纤维和富含木质素的壳组成。另外,它们尤其包括维生素,植物甾醇,矿物质,抗氧剂,调味剂和着色剂。
纤维素系纤维
本文中所使用的术语“纤维素系纤维”涵盖具有至少两个下述特征的由纤维素主链组成的母体植物材料的所有基本结构:
-植物-基材料来源;
-纵向和横向直径的长径比为1:1至1000:1;
-水键合能力>200wt%;
-非对应于元素C,H或O的化合物和官能团的比例>2.5wt%。
纤维素系纤维可以已经松散地键合到其它化合物或组分,例如通过压榨或粉碎工艺破碎或碎开的基质上或者与之一起存在,这是在压榨油籽或粉碎籽粒中的情况,或者它们处于稳定的复合结构内,这种稳定的复合结构防止纤维素系纤维分散,例如在蔬菜或水果中的情况。然而,在没有根据本发明处理的起始材料中,纤维素系纤维以不具有间隙、与对溶解不敏感的起始材料中的其它成分一起压紧(紧密键合)的材料(复合材料)形式存在。这一压紧的复合材料含有可溶蛋白质和碳水化合物。这种纤维素系纤维因此以压紧、不可接近的形式存在。本发明的纤维素系纤维具有三维体积和表面结构,当它们解松时。它们在复合材料结构内可以与其它固体,例如富含木质素的壳结合,所述富含木质素的壳可通过物理方式,例如机械粉碎和/或热处理,分离成球形或粒状碎片。
包括在该定义内的纤维素系纤维的特征在于它们共同的结构特征和物理性能。在解松的形式中,它们尤其具有游离纤维、网(网状物)或三维组织结构形式的空间结构。本发明的纤维素系纤维优选具有平面和/或粒状几何形状。特别地,它们的特征在于<20mg/100m的单位长度低的重量。它们可包括或包封可能是本发明纤维的结构成分中的着色剂或颜料。然而,其它有机或无机化合物也可以是纤维素系纤维的成分或者可键合到它们上,因为它们通过任何水性介质不可脱离。
采用本发明的方法,以解松形式获得的纤维素系纤维具有通过现有技术的方法可评估的这些性能。
富含木质素的壳部分
本文所使用的术语“富含木质素的壳部分/部分”或“木质素系壳”涵盖木质素含量>30wt%的植物起始材料的所有壳和支持结构。优选的富含木质素的壳部分具有>40wt%,更优选>50wt%,更优选>60wt%,甚至更优选>75wt%,和最优选>90wt%的木质素含量。它们不具有特定的外部形状,所述形状可以是平坦和多角到粒状和圆形。尺寸取决于制造工艺且范围可以是从数微米到数毫米。富含木质素的壳部分例如在菜籽油或麻风树种子的压榨残渣内以8至15wt%的重量分数存在。
崩解/分解工艺
本文中的术语“崩解”包括导致干扰/细分/分解起始材料中水不可渗透的结构或组织的所有工艺,从而导致壳层,例如植物起始材料的种子涂层或覆盖材料产生裂纹,孔隙或裂缝,导致完全溶剂化/细分不同类型的组织,从而导致植物起始材料的种子、籽粒或果核的包封表面暴露。关键的是通过崩解壳材料(种子涂层)实现水合,进而在崩解的种子涂层材料和包封的种子、籽粒或果核的表面之间的间隙对水溶液可接近。这还包括一部分或部分和/或局部或完全干扰/细分植物壳材料,以便暴露/释放植物种子涂层材料的单独组分。
本文中提到的崩解还指代被种子涂层和壳包围的植物起始材料。这还导致因水合其成分引起的干扰/细分/脱离起始材料的成分。本文提到的崩解是指彼此相连的成分的水合,和/或与不同成分通过共价或静电力连接到彼此上,与在不具有间隙的复合结构或角质化纤维素聚集体内一样,进而分解单独的成分并释放它们,以便它们可在水性分配体积内自发地分离或者通过温和剪切与彼此相分离。本文提到的“水性分解工艺”,在本文中也简单地称为“分解”是指当通过水合单独的化合物/成分时,对其它化合物/成分的键合能下降到水合化合物/成分可以自发地在水相中分配或者通过低的输入能量彼此分离的程度。因此,本文中所使用的术语“崩解”和“分解工艺”也可互换使用。
崩解/分解水溶液
本文中使用的术语“崩解水溶液”或“分解水溶液”是指用于崩解和用于干扰/分解起始材料中成分的溶质的水溶液。在优选方法的实施方案中,用于崩解或用于干扰/分解起始材料中成分的物质是在水中以完全溶解形式存在的一种或更多种氨基酸和/或肽。水可以是净化和纯化的工艺用水,去离子水,部分去离子水,井水或自来水。用于干扰/分解起始材料中成分的以溶解形式存在的优选物质是天然存在的氨基酸和/或由这些氨基酸组成或者含有这些氨基酸的肽。本发明的分解水溶液优选是单独和/或以总浓度范围为10μmol/l至3mol/l,更优选1mmol/l至1mol/l,和更优选0.1mol/至0.5mol/l存在的一种,两种或更多种氨基酸和/或肽的溶液。这些可以是化合物的L-,或D-形式或外消旋形式。优选使用L-形式。优选丙氨酸,精氨酸,天门酰胺,天门冬氨酸,谷氨酰胺,谷氨酸,甘氨酸,组氨酸,异亮氨酸,亮氨酸,赖氨酸,苯基丙氨酸,脯氨酸,丝氨酸,苏氨酸,色氨酸,酪氨酸和缬氨酸。尤其优选氨基酸精氨酸,赖氨酸,组氨酸和谷氨酸。进一步优选前述氨基酸的衍生物。根据本发明可使用的肽可以是二肽,三肽和/或多肽。本发明的肽具有键合质子或者可键合一个质子的至少一个官能团。优选的分子量小于500kDa,更优选<250kDa,更优选<100kDa,和尤其优选<1,000Da。
优选的官能团尤其是胍,脒,胺,酰胺,肼基,亚肼基,羟基亚氨基或硝基。氨基酸可具有单一官能团或者含有若干相同类化合物或者不同类化合物的一个或多个官能团。本发明的氨基酸和肽优选具有至少一个荷正电的基团或者具有总的正电荷。因此,尤其优选阳离子氨基酸。尤其优选的肽含有任何数量和顺序的氨基酸精氨酸,赖氨酸,组氨酸和谷氨酸中的至少一个。尤其优选含有至少一个胍基和/或脒基的氨基酸和/或这些的衍生物。胍基是化学残基H2N-C(NH)-NH--及其环状形式,和脒基是化学残基H2N-C(NH)-及其环状形式。这些胍化合物和脒化合物优选具有不大于6.3(KOW<6.3)的介于正辛醇和水之间的水分配系数(KOW)。尤其优选精氨酸衍生物。精氨酸衍生物定义为具有一个胍基和羧酸基或脒基和羧酸基的化合物,其中胍基和羧酸基或脒基和羧酸基被至少一个碳原子隔开,即至少一个下述基团位于脒基或脒基和羧酸基之间:-CH2-,-CHR-,-CRR'-,其中R和R'独立地表示任何化学残基。当然,胍基和羧酸基或脒基和羧酸基之间的距离也可以大于一个碳原子,例如下述基团-(CH2)n-,-(CHR)n-,-(CRR')n-,其中n=2,3,4,5,6,7,8或9,正如在脒基丙酸,脒基丁酸,胍基丙酸或胍基丁酸中的情况一样。具有大于一个胍基和大于一个羧酸基的化合物例如是低聚精氨酸和聚精氨酸。包括在这一定义内的其它化合物是胍基乙酸,肌酸,葡糖胺。优选的化合物具有下述通式(I)或(II)作为共同特征:
其中
R,R’,R”,R”’和R””彼此独立地表示-H,-CH=CH2,-CH2-CH=CH2,-C(CH3)=CH2,-CH=CH-CH3,-C2H4-CH=CH2,-CH3,-C2H5,-C3H7,-CH(CH3)2,-C4H9,-CH2-CH(CH3)2,-CH(CH3)-C2H5,-C(CH3)3,-C5H11,-CH(CH3)-C3H7,-CH2-CH(CH3)-C2H5,-CH(CH3)-CH(CH3)2,-C(CH3)2-C2H5,-CH2-C(CH3)3,-CH(C2H5)2,-C2H4-CH(CH3)2,-C6H13,-C7H15,环-C3H5,环-C4H7,环-C5H9,环-C6H11,-C≡CH,-C≡C-CH3,-CH2-C≡CH,-C2H4-C≡CH,-CH2-C≡C-CH3
或者R’和R”一起构成残基-CH2-CH2-,-CO-CH2-,-CH2-CO-,-CH=CH-,-CO-CH=CH-,-CH=CH-CO-,-CO-CH2-CH2-,-CH2-CH2-CO-,-CH2-CO-CH2-或-CH2-CH2-CH2-;
X表示-NH-,-NR””-,或-CH2-或取代的碳原子;和
L表示具有选自包括下述或者由下述组成的组中的至少一个取代基的C1-C8直链或支链以及饱和或不饱和碳链:
-NH2,-OH,-PO3H2,-PO3H-,-PO3 2-,-OPO3H2,-OPO3H-,-OPO3 2-,-COOH,-COO-,-CO-NH2,-NH3 +,-NH-CO-NH2,-N(CH3)3 +,-N(C2H5)3 +,-N(C3H7)3 +,-NH(CH3)2 +,-NH(C2H5)2 +,-NH(C3H7)2 +,-NHCH3,-NHC2H5,-NHC3H7,-NH2CH3 +,-NH2C2H5 +,-NH2C3H7 +,-SO3H,-SO3 -,-SO2NH2,-C(NH)-NH2,-NH-C(NH)-NH2,--NH-COOH,或
优选碳链L的范围为C1至C7,更优选范围为C1至C6,进一步优选范围为C1至C5,和最优选范围为C1至C4。
优选地,L表示-CH(NH2)-COOH,-CH2-CH(NH2)-COOH,-CH2-CH2-CH(NH2)-COOH,-CH2-CH2-CH2-CH(NH2)-COOH,-CH2-CH2-CH2-CH2-CH(NH2)-COOH,或-CH2-CH2-CH2-CH2-CH2-CH(NH2)-COOH。
同样优选以下所示通式(III)的化合物:
其中残基X和L具有本文公开的含义。
同样合适的是由一个,两个或更多个氨基酸组成的二肽,三肽或低聚肽,以及多肽。优选短链肽,例如RDG。尤其优选由具有疏水和亲水侧基二者的氨基酸组成的肽,例如(根据氨基酸的命名的符号)GLK,QHM,KSF,ACG,HML,SPR,EHP或SFA。进一步尤其优选的是具有疏水和阳离子和/或阴离子侧基二者的肽,例如RDG,BCAA,NCR,HIS,SPR,EHP或SFA。具有4个氨基酸的另外的实例是NCQA,SIHC,DCGA,TSVR,HIMS或RNIF,或者具有5个氨基酸的另外的实例是HHGQC,STYHK,DCQHR,HHKSS,TSSHH,NSRR。尤其优选RDG,SKH或RRC。
对于本发明的崩解/分解溶液来说,可使用或者包括在其内完全溶解的另外的物质。尤其优选的物质是亚硫酸盐,例如亚硫酸钠或亚硫酸氢钠和/或脲和/或碳酸盐,例如碳酸钠或碳酸氢钠。此外,调节溶液pH的物质,尤其碱或酸,例如脲或NaOH,碳酸钠,碳酸氢钠或三乙胺或乙酸或脲酸或具有表面活性剂性能的物质,例如DMSO或SDS。本文还包括稳定剂,例如抗氧剂或还原剂。进一步地,能崩解起始材料中成分的优选的物质是选自亚硫酸盐和硫酸盐中的物质。尤其优选亚硫酸钠和亚硫酸氢钠。此外,阳离子氮化合物,例如二乙胺或三乙胺。在崩解/分解水溶液中,所列出的物质可以异溶解形式单独或者以与彼此和/或与其它物质一起的任何所需的组合存在。以溶解形式存在的单一物质的优选浓度为0.001至30wt%,更优选0.01至15wt%,和更优选0.1至10wt%。水溶液的pH范围优选为7至14,更优选8至13,和更优选8.5至12.5。
解松
本文所使用的术语“解松”是指部分或完全分解/干扰类似或不同成分的不具有间隙的复合材料,进而分离这些成分和/或形成含有气态或液体介质的解离空间。本文提到的解松尤其是指导致纤维素系纤维和富含木质素的壳中不溶纤维状和/或组织状结构分解的水合,所述水合允许可溶成分在分配水溶液内分离,进而允许去除不具有或几乎不具有水溶性化合物的解松的水不溶的纤维素系纤维。
分配溶液
本文中与术语“分配体积”同义使用的术语“分配溶液”是指添加到反应混合物中的水相,它能分配并分离起始材料中可溶已溶解的可溶固体和复杂的不溶成分。在本发明的分配体积中,这些成分以可容易分离的形式存在。可通过取样,测试存在足够大的分配体积,以确定使用本文描述的技术和方法,已溶解和悬浮成分的可分离性。
缩合/聚集/复合
术语“缩合/聚集/复合”概述了允许组合相同和/或不同有机和/或无机化合物的所有物理和/或化学过程,从而导致可变为固体且与含水水相借助合适的分离工艺分离的缩合物或聚集体或复合物。术语“缩合物”要理解为是指大分子结构的联合,进而形成可测量的体积。键合力是通过疏水或亲水键合能的静电力。一般地,“聚集”是指原子或分子和/或离子堆积或团簇成较大的化合物结构,聚集体。堆积或团簇受到范德华力,氢键和/或其它化学或物理化学键合模式影响。本文所使用的术语“复合物”是指缩合物和/或聚集体的宏观可视形式,它们结合形成较大的复合材料结构。由于来自缩合物/聚集体和复合物的低键合能,因此例如通过混合工艺,单独的化合物可从复合材料结构中容易地分开或分离。相反,凝固物是小到大分子化合物的三维结构,它通过其中分子结构之间的共价键形成和/或解离的化学反应产生。在凝固物的情况下,单独的化合物不可能彼此分离或者仅仅在小的程度上通过在水中溶解分离。本文提到的缩合/聚集/复合不同于凝固,凝固尤其是蛋白质最初的三级结构部分或完全变性的(强)酸的沉淀反应。这与本发明的聚集/复合或缩合的情况不一样。例如,变性化合物的水键合能力显著低于本文提到的缩合物/聚集体和复合物。
复合/聚集剂
本文中术语“复合剂”或“聚集剂”是指在水性混合物中引发,维持和/或加速在水中溶解的成分/有机化合物缩合/聚集/复合的一种或更多种有机和/或无机物质。这些试剂对待缩合/聚集或复合的成分尤其可具有催化,去稳定,置换和/或释放效果,这导致成分/有机化合物的聚集/复合。通过改变pH和/或盐度和/或甚至通过使得它们牵涉到聚集/复合工艺内,该物质也可引起这一效果。
优选的聚集剂尤其包括有机酸,尤其优选柠檬酸,抗坏血酸,乳酸,己二酸,EDTA。此外,尤其优选的无机酸是磷酸。进一步地,提供钙,镁和铝离子,优选盐形式,例如氯化钙或氯化镁。进一步地,碳酸盐阴离子,优选以盐形式提供,例如碳酸钠,或碳酸氢钠。此外,硅酸盐阴离子,优选以溶解盐形式提供,例如偏硅酸钠。复合剂可以以固体形式施加,优选微细粉末形式或者在水性介质中以完全溶解形式施加。优选水溶液。浓度范围优选为1mmol至5mol/l,更优选100mmol至3mol/l,和更优选200mmol至2mol/l。
起始材料中的成分/有机化合物
本文中可互换使用的术语“起始材料中的成分”和“有机化合物”包括本文提到的起始材料源自其中的源于生物来源的所有有机化合物,且它分别衍生自生物源起始材料,且可以通过本文描述的任何方法分解并与生物源起始材料分离。这些可以是单独的化合物,例如分子或复杂化合物形式,例如聚合物形式。根据不同的来源,发现可单独存在,但通常以可变的组合且以不同的比例存在的不同组的有机化合物。因此,在下述中,列出了仅仅有机化合物可以归类的物质的主要组,但不限于这些:蛋白质,其中包括清蛋白,球蛋白,油质蛋白。此外,脂质,例如甘油单酯,甘油二酯或甘油三酯,蜡,蜡酸,羟基-和分枝菌酸,具有环状烃结构的脂肪酸,例如莽草酸或2-羟基-11-环庚基-亚油酸,甘露甾醇(mannosterylerythritol)脂质,染料,例如胡萝卜素和类胡萝卜素,叶绿素和它们的降解产物,酚类,植物甾醇类,尤其β-谷甾醇和菜油甾醇和豆甾醇,甾醇类,芥子酸胆碱,角鲨烯,植物雌激素,例如异黄酮或木酚素类。以聚合物形式存在的碳水化合物是水不溶的,例如纤维素或复合形式存在的碳水化合物例如淀粉,或者以水溶性形式存在的碳水化合物,例如葡萄糖或果糖。此外,类固醇及其衍生物,例如皂苷类,此外,糖脂,糖基糖脂和甘油鞘脂,此外,鼠李糖脂,果蝇脂(sophrolipid),海藻糖脂,甘露甾醇脂质,此外,多糖,其中包括果胶,例如鼠李糖半乳糖醛酸和聚半乳糖醛酸酯,阿拉伯聚糖(同多糖),半乳聚糖和阿拉伯半乳聚糖,以及果胶酸和酰胺基果胶,此外,磷脂质(Phospholipide),尤其磷脂酰肌醇,磷脂(Phosphatide),例如磷酸肌醇,此外长链或环状碳化合物,此外脂肪醇,羟基和环氧基脂肪酸。同样,糖苷,脂蛋白,肌醇六磷酸酯或肌醇六磷酸,以及葡萄糖苷。另外,维生素,例如视黄醇(维生素A),和衍生物,例如视黄酸,核黄素(维生素B2),泛酸(维生素B5),生物素(维生素B7),叶酸(维生素B9),钴胺素(维生素B12),骨化三醇(维生素D)和衍生物,生育酚(维生素E)和生育三烯酸,叶绿醌(维生素K)和维生素K2。此外,单宁类,萜类,姜黄素,占吨酮。而且,调味剂或加味剂和香味剂,染料(着色剂),磷脂质和糖脂质,蜡或蜡酸和脂肪醇。此外,优选呈组织/织物状复合材料结构形式的水不溶性生物聚合物,例如木质素和纤维素。
蛋白质
本文中所使用的术语“蛋白质”是指由通过肽键连接在一起的氨基酸组成的大分子。本文提到的蛋白质具有>100个氨基酸。它们以其初级结构,二级结构或三级结构以及以官能活性形式存在。在二级结构的情况下,空间几何形状可以是α-螺旋,β-片材,β-环,β-螺旋形式或无规线圈结构形式。本文还包括蛋白质的超分子化合物,例如胶原蛋白,角蛋白,酶,离子通道,膜受体,基因,抗体,毒素,荷尔蒙或凝血因子。根据所有生命形式和生命区域中普遍发生的,本文提到的蛋白质可以是任何所述形式的大分子化合物,而与它们最初具有的生理任务无关,且例如起到成型,支持,运输或防御或繁殖,能量产生或能量运输或反应促进/反应翻转的作用。这尤其意味着以上定义的蛋白质可由本文描述的起始材料提取。
方法
提供植物起始材料的方法
根据本发明可使用的起始材料不同的来源和提取可能性,这些可以以不同形式和状态存在。例如,可牵涉整个/完整的种子,籽粒,果核,坚果,蔬菜,水果,鲜花,子房或根部,和/或由全籽粒或部分干扰、破碎,粉碎,粉化,研碎或挤压的植物材料,和/或尤其通过自溶/微生物降解/化学-物理反应,部分或完全经历发酵或崩解工艺的植物材料组成,和/或是来自农业生产/食品生产或利用的残渣。破碎,分裂,粉碎,粉化或液化或溶解的植物起始材料可以以连续或离散的小片形式存在,或者可以聚集,例如作为粒料或压榨材料或者以松散的复合材料,例如颗粒或本体材料形式或者以分离形式,例如谷粉或粉末,或者以悬浮液形式存在。植物起始材料的稠度、形状和尺寸原则上不相关,但优选允许比较容易分解的粉碎的植物起始材料。优选地,植物起始材料的可分散的颗粒的最大直径为100μm至100cm,更优选0.5mm至50cm,更优选1mm至20cm,和更优选2mm至5cm。合适的植物起始材料的形式是任意的,以及稠度可以是硬或软,或者它可以是液体形式。在这一情况下,起始材料可具有任何所需的温度,优选例如紧跟在压榨工序之后获得的加热的起始材料。除非植物起始材料满足本发明的工艺操作之一的合适的性能/要求,否则可通过现有技术能够获得的方法确立这些条件。这些尤其包括可以促进和/或促进本发明植物起始材料分解的方法。这些尤其包括植物起始材料用其粉碎的机械方法。在这一情况下,视需要,尤其对于工艺经济性来说,可以需要首先粉碎植物材料,然后干燥它,或干燥植物材料,然后粉碎它。在一个方法的实施方案中,在方法步骤a)之前,粉碎然后干燥的植物起始材料被粉碎到某一粒度,优选粒度为10μm至2cm,更优选30μm至5mm。然而,根据本发明,粉碎也可在添加崩解/分解溶液之中或之后发生,在一个工艺实施方案中,首先机械去除植物起始材料中含木质素的组分。这些可以是例如植物起始材料的壳材料,例如表皮,外皮或果皮,例如苹果或葡萄种子的那些。为此,机械方法根据现有技术是已知的。
在合适的容器内填充起始材料,所述容器可优选用上述填充,且在底部处具有可闭合的出口。
用于崩解和用于分解起始材料的水溶液的制备和使用方法
使用本文定义的本发明的分解物质,制备本发明的分解溶液。为此,将一种或更多种物质溶解在水中,其中水可以是澄清的工艺用水,完全不具有离子的水和井水或自来水。为了溶解它,可需要升高温度和/或继续混合最多2天。优选地,阳离子氨基酸或肽溶液的pH范围为7至14,更优选8至13,和更优选8.5至12.5。在一个实施方案中,可通过添加酸或碱,调节pH到6至14的pH范围。可使用本领域已知的酸和碱,例如苛性钠或HCl。
实施方法步骤b):的方法:掺混起始材料与崩解溶液,并使之留在崩解溶液中,直到实现崩解。
在这一方法步骤中,必须确保在植物起始材料内部的成分的表面润湿。这可采用现有技术的方法,在完整或崩解的植物起始材料上进行。可在任何温度下制备分解溶液,并将其加入到起始材料中。可以以液滴形式,例如以气溶胶,逐滴或射流,连续或不连续朝向起始材料,在起始材料内和/或在起始材料上进行施加。
在优选的实施方案中,这在排出空气下和/或在惰性气体条件下进行。优选将待崩解的植物材料置于分解水溶液内。通过从容器中借助供应管线进料可调节量的所制备的分解溶液到起始材料中,进行施加。
当壳材料或壳可例如在水性分配体积内或者通过水流,或者通过轻微的机械力,从植物起始材料中完全或部分地自发脱离/分离时,存在壳材料和壳的崩解形式。若起始材料的单独成分从固体和水不溶性复合材料中或者从周围的复合材料结构(例如壳)溶出或者从中分配,则存在壳或壳材料中成分或者起始材料中成分的崩解。在本发明的上下文中,分离是指单独的化合物/成分在水性分配体积中可自发地分离。此处可溶解是指崩解或分解的成分或化合物通过低的输入能量在水性分配体积中容易且完全分开。物理方法,例如加热或机械降低也可用于这一目的。
原则上,若植物起始材料具有高的水含量,则热崩解是有利的,正如在新鲜水果和植物中的情况一样。此处,优选通过水或水蒸气转移热能,进行崩解。优选地,同时进行加压。
若植物起始材料具有低的水含量和/或包封在水不可渗透的壳层/壳内,则机械崩解是尤其有利的。此外,当植物起始材料的另一部分,例如油应当从中首先去除时,优选机械方法。
在优选的工艺实施方案中,通过完全或部分机械粉碎起始材料,进行崩解。然后将粉碎的材料置于水浴中并加热,直到代表起始材料中一定比例可回收成分的起始材料如此软,以致于使用轻微的力,例如通过用手指压碎,成分变为糊状或液相。若因各种结构,例如中种皮和壳不同的强度导致遵照以上提及的崩解形式之一,这些结构彼此可容易地区分和机械分离,则这是尤其有利的。在优选的实施方案中,在高压釜内,加热和增压一起进行。在优选的实施方案中,在崩解植物起始材料之前和/或之后,去除植物壳材料。在尤其优选的实施方案中,通过在先引入到含本发明的崩解/分解水溶液的本发明水溶液之一内,崩解植物起始材料。原则上,可自由地选择体积或重量比,但若植物起始材料被分解溶液完全润湿,则它是有利的。优选地,分解水溶液的水体积对植物材料质量之比为0.3至30,更优选0.5至20,更优选0.7至10,和更优选0.8至5。在该方法的变通方案中,在采用崩解方法之一期间,或者之后立即,用分解溶液之一浸渍植物材料。在一个工艺变通方案中,直接与实施/加速植物起始材料崩解的化合物一起进行浸渍。暴露于分解溶液下的持续时间取决于所使用的植物源材料。优选持续时间为1分钟至48小时,更优选10分钟至14小时,和更优选20分钟至6小时。原则上可自由地选择植物起始材料用分解水溶液进行暴露时的温度。优选地,选择5℃至140℃,更优选10℃至120℃,和更优选15℃至90℃的温度。
实施方法步骤c)的方法:在分配体积内分配崩解起始材料中的成分
在优选的实施方案中,在事先的方法步骤中崩解的壳/壳材料和/或植物起始材料在水中溶剂化,完全水合已分离的成分,进而以可分离的形式提供它们,且它们没有任何缔合/附着到其它成分上或者被其它成分缔合/附着。本发明的分配体积是确保壳/壳材料和/或起始材料中的成分可分离和分离的水体积。
对于壳材料的分解/分离工艺来说,非常小的水体积可能是足够的,例如借助水的射流施加。若进行崩解和分解,则所要求的分配体积必须足够大,以允许完全水合可溶或可脱离的成分并确保可分离起始材料中已溶解和不溶的成分。若它是分解混合物,则优选通过用来自在先的工艺段的样品制造稀释系列,测定所要求的分配体积(例如10g分离/分解混合物)。在3分钟的搅拌段之后,进行悬浮液的过滤(筛目100μm)。针对可溶和水可洗涤化合物的沉积/附着,(目视或者微观)分析过滤器残渣。然后以增加的剂量,混合滤液与合适的聚集剂溶液。当在起始材料的固体成分上不存在以过滤器残渣形式存在的沉积/附着时,实现足够大的分配体积,且在分配混合物内存在的已溶解的可溶成分完全缩合和/或聚集和/或复合。
优选水的体积对起始材料的干燥质量之比为5:1至500:1,更优选10:1至150:1,和更优选15:1至50:1。为此,可使用连续方法步骤的澄清/纯化的工艺用水或者是去离子水或者没有进一步处理的自来水或井水。
分离/分解混合物和这一方法步骤的水相的引入或接触类型是任意的。优选其中借助高性能剪切混合器或另一强力混合器,进行水相混合的工艺。这是尤其有利的,因为它允许直接水合并分离。进一步优选引起湍流流动的搅拌装置,例如推进式混合器或射流混合器。分配工艺可以是连续或不连续的,且在任何温度下,优选水性悬浮液的温度范围为6℃至90℃,更优选10℃至60℃,和更优选18℃至40℃。分配工艺的持续时间是任意的,优选1分钟至24小时,更优选5分钟至5小时,和更优选10分钟至1小时的持续时间。
可在来自经过粗筛(1mm网)和细筛(100μm筛)过滤的分配混合物中获取的代表性样品的过滤器残渣上,微观或目视没有观察到植物起始材料中不同成分可视的聚集体时,起始材料中成分的分解工艺中的分配工艺是充足且完全的。也可通过将分配混合物的样品填充到有刻度的圆柱体内,识别起始材料中成分的成功分配,并在短时间内,分离3相,或者在存在脂质的情况下,分离4个很好地可区分的相。所要求的时间应当不超过4小时。
根据本发明控制并任选地调节分配溶液的pH。这可采用现有技术的碱或酸来进行,优选的酸是HCl或甲酸,优选的碱是NaOH或脲。优选地,分配溶液的pH为5至13,更优选7至12.5,和更优选7.5至11。
在合适的容器内提供进行本发明下述方法步骤所要求的水的体积。
进行方法步骤d)的方法:从起始材料的已溶解成分中分离固体成分
本文提到的起始材料中的固体成分是作为根据本发明的崩解/分解工艺之一的结果,没有进一步溶解的有机化合物且可以通过过滤以粒状物结构形式获得,并且没有通过10μm的筛子。优选借助现有技术的过滤技术,实现固体成分的回收。然而,也可采用其中例如借助离心加速,例如筛分破碎机或旋风分离技术,实现固体物质从液体混合物中分离的工艺技术。在方法步骤d)之后,工艺液体或分配混合物含有优选<5wt%,更优选<2.5wt%,和更优选<1wt%最大尺寸>10微米的固体物质。
进行方法步骤e)的方法:作为进一步利用的材料部分,获得植物起始材料的已分离成分
在优选的实施方案中,在方法步骤d)中从彼此中分离的部分被进料到单独的处理段中:
e1)借助旋风分离技术,从植物起始材料的固体成分中的富含木质素的壳中分级分离纤维素系纤维,获得纤维素系纤维的纯化部分以及富含木质素的壳,
e2)通过复合剂聚集/复合植物-基材料中已溶解成分中的溶解蛋白质,并分离已沉降的聚集/复合/缩合蛋白质,以获得聚集/复合蛋白质物料。
若仅仅获得一种可回收的部分,则可使用两个方法步骤中的仅仅一个。在方法步骤e1)中,进行不同或相同崩解固体物质的分离,所述崩解固体物质优选以壳/壳材料或者纤维素系纤维和/或富含木质素的壳(部分)形式存在。在分离不同固体的情况下,这可通过过滤技术或者旋风分离技术进行。优选通过在水中悬浮固体物质,和优选使该悬浮液在搅拌下通过筛子和/或使悬浮液通过具有不同网眼尺寸的筛子,进行过滤。还优选使用纤维物料的悬浮液,进行旋风分离技术。过滤从这一分离装置的上部和下部排放物中流出的水相,并且回收筛分部分。优选地,来自方法步骤b)的工艺溶液的体积对植物材料的体积之比为0.1:1至10,000:1,更优选0.5:1至1,000:1,更优选1:1至500:1,和更优选2:1至20:1。
当在宏观或微观分析中,所得不同固体部分的纯度优选>95wt%,更优选>97wt%,和更优选>99wt%时,该方法步骤完成。
可进行方法步骤e2),条件是通过崩解/分解工艺,起始材料中的可溶成分也已经脱离/溶解,且它在清洁的在先方法步骤的工艺液体内/从固体物质中分离的在先方法步骤的工艺液体内。
在优选的实施方案中,这一方法步骤牵涉缩合和/或聚集和/或复合已溶解蛋白质和/或在先方法步骤的滤液中的其它已溶解的有机和/或无机化合物。这一聚集工艺的目的是引起已溶解或水合成分和尤其蛋白质的聚集,并且形成可借助已知分离技术分离的缩合相/物料,以便以尽可能少的水获得它们。
优选添加一种或更多种合适的聚集剂。合适的聚集剂例如是酸,其中包括优选有机酸,例如乙酸,抗坏血酸,柠檬酸,乳酸,苹果酸,而且无机酸,例如HCl,硫酸或磷酸,此外,盐,例如NaCl,KCl,MgCl2,CaCl2或NaSO4,AlCl3,另外,络合剂,例如EDTA,而且吸收剂,例如氧化钙,氧化镁,高岭土或其它粘土矿物。同样优选可溶的二价阳离子,优选铝、钙和镁盐。此外,本文列出的聚集剂的组合是有利的,例如柠檬酸和氯化铝的组合。进一步优选碳酸盐,例如碳酸钠,碳酸氢钠,或碳酸钙。此外,硅酸盐化合物,特别地偏硅酸钠,正硅酸钠,以及其它可溶硅酸盐。原则上可以自由地选择含有已溶解聚集剂的水溶液的pH且取决于可用其实现的聚集有效性。视需要,也可添加调节溶液pH的缓冲液到聚集剂的溶液中。
通过以增加的浓度添加并彻底混合不同聚集剂到工艺段d)的不具有纤维的工艺溶液的样品中,并测定已溶解成分的聚集/复合的完成度,本领域技术人员可容易地识别合适性。为此,添加一种或更多种聚集溶液/聚集剂,并与在离心分离缩合物之后获得的上清液混合。若在至少10分钟的反应时间之后接着离心没有沉降且水相透明或几乎透明,则已经发生了已溶解成分的成分聚集/缩合。在另外的实施方案中,以固体形式进行聚集剂的施加,优选使用加入到反应混合物中的粉化形式。在短的停留时间之后,可肉眼检测聚集/复合。可通过离心已经聚集/复合/缩合的样品溶液并用相同和/或不同聚集剂溶液再次处理上清液,进行合适浓度的选择。若没有形成和/或分离掉可视的缩合物/聚集体/复合物,则该溶液含有<6wt%,优选<4wt%,和最优选<2wt%的已溶解蛋白质。
聚集剂完全溶解在优选不具有粒子的水或者去离子水中。聚集剂的浓度取决于工艺条件且必须独立地确定。通常优选浓度范围为1mmol至5mol/l,更优选100mmol至3mol/l,和更优选200mmol至2mol/l。连续或不连续,逐滴或者作为射流,进行具有一种或更多种聚集剂的溶液的体积的测定,或者使用不同聚集剂与不同水溶液的情况。优选地,搅拌反应混合物,优选使用轻微湍流或层流的流动条件,进行搅拌,以便避免崩解所形成的缩合物/聚集体/络合物。优选进行反应混合物的彻底混合。
优选地,通过目视检测缩合进展,或者通过工艺监控,进行工艺控制,所述工艺监控基于在水相澄清进展的期间测定浊度。可通过以上描述的方法和任选地添加一种或更多种聚集剂到反应溶液中,容易地检测已溶解化合物的缩合/聚集/复合的完成度。原则上可自由地选择混合的持续时间。在优选的方法实施方案中,仅仅进行混合,其持续时间是添加一种或更多种聚集剂或者持续时间是10秒至5分钟,更优选20秒至2分钟。
原则上可以自由地选择缩合和/或聚集和/或复合发生时的温度。优选地,选择6℃至90℃,更优选10℃至60℃,和更优选18℃至40℃的温度。优选地,设定pH为某一范围;pH最佳来自于选择或组合聚集剂。可通过以上描述的方法测定最佳pH范围。含有已溶解化合物的水溶液的pH范围优选为5至13,更优选6至12,和更优选6.5至11,其中在所述水溶液内,发生已溶解蛋白质和/或本发明的其它已溶解化合物的缩合和/或聚集和/或复合。
在尤其优选的实施方案中,在添加一种或更多种聚集剂之后,维持没有进行混合物混合或者仅仅进行混合物最小混合的停留时间。可以按照与本文的方法所描述的相类似的方式,测定缩合段所要求的时间,优选它为5分钟至10小时,更优选10分钟至5小时,和更优选15分钟至2小时。若停留时间下降到最小值,则基于以与以上描述的类似方式离心并处理的样品,容易地验证添加聚集剂之后停留时间的足够最小持续时间以供采用缩合剂实现缩合和/或聚集和/或复合的完成。优选在环境温度下,优选15℃至40℃的温度范围内进行缩合段。在进一步优选的实施方案中,一方面,这在5℃至15℃的温度下发生,和另一方面在40℃至90℃的温度下发生。选择降低的温度可以是有利的,例如在回收不耐热的化合物中。可例如选择高温,例如60℃,例如在巴氏杀菌工艺形式中,杀灭在起始材料的微生物负载上的微生物。另一方面,加热也可使过敏源和某些毒素以及非营养的化合物失活。在优选的方法实施方案中,已缩合/聚集/复合的蛋白质以沉淀物形式变得可回收。当没有发生另外的沉降时,完成沉降。优选地,沉降段的排放借助底部出口并被进料到另外的脱水工艺中或者直接进料到干燥工艺,例如喷雾干燥或粉碎干燥工艺(TurboRotors)或者冷冻干燥中。
在优选的工艺实施方案中,使这一方法步骤中的已缩合/聚集/复合的化合物脱水,以去除键合的工艺用水,纯化和/或调节这些和/或使得它们容易运输或配制。在这一方法步骤最后能够获得的沉淀物优选以悬浮液直至粘稠的奶油状物料形式存在。优选脱水,所述脱水借助过滤工艺技术来实现。优选在带式过滤器上施加。优选的过滤器具有50至500μm,更优选80至350μm,和更优选100至320μm的筛目。优选地,过滤器的带式织物由聚丙烯制造,或使用其它疏水聚合物材料。优选的装置是带式过滤器,腔室过滤器,压滤机和腔室压滤机,以及真空带式过滤器。同样优选离心工艺;离心机或倾析器是尤其合适的。可按照工艺特定的方式,选择能够获得的脱水缩合物物料中的残留水含量,以便例如获得可流动或可涂开或尺寸稳定的蛋白质物料。原则上,期望尽可能完全分离键合的工艺用水。当使用倾析器时,优选在>2,000*g,更优选>3,000*g,和更优选>3,500*g下进行分离。优选地,在倾析器内的停留时间为>10s,更优选>20s,和更优选>30s。进一步优选压榨工艺以供去除键合的工艺用水。优选地,在具有水可渗透的过滤器织物/材料的过滤器装置中,进行工艺用水的去除。优选地,已经缩合或脱水的物料例如位于在其上施加压力的过滤器腔室内,于是可降低残留的水分含量到所需的水平。优选在范围为15℃至40℃的环境温度下进行该工艺。在进一步有利的实施方案中,可选择范围为5℃至15℃,和40℃至80℃的温度。
优选获得残留水分含量<90wt%,更优选<80wt%,更优选<70wt%,和甚至更优选<60wt%,和甚至更优选<40wt%的脱水物料。
测试保水能力的方法
可通过现有技术的方法,测定保水能力。在该方法之一中,测定0.5g样品的含水量,并将其悬浮在100ml锥形烧瓶的50ml蒸馏水内。在20℃下搅拌1小时之后,通过在G3多孔玻璃上负载,去除游离的水相,与多孔玻璃一起,在2,000*g下离心样品材料15分钟。测定离心过的液体量和样品重量。根据下式,计算保水值(WRR):
WRR(%)=(样品的湿润材料质量-样品的干燥质量)÷样品的干燥质量×100
可借助强力混合器,在具有中性pH的水相中和在体积对纤维的固体质量之比>1,000:1下,通过混合所得解松的纤维素系纤维(例如具有100wt%水含量的100g)3分钟,之后允许经过筛目为50μm的筛子,自由地流出未键合的水相,测定水合体积。1小时之后,测定纤维素系纤维物料的体积。之后,进行机械脱水,然后干燥至<10wt%的残留湿度。在测定体积之后,计算体积比。可通过使用液液相,例如石蜡基油,以类似的方式测定保油能力。
根据标准方法AOCS 1990,(Daun and DeClercq,1994),测定蛋白质的水溶解度(NSI)。
应用
该方法原则上可应用到所有植物-基产品上。该应用原则上用于分解,溶剂化/脱离植物壳材料和用于部分或完全溶解或分解。
该方法还适合于溶剂化或溶解已分离的植物壳材料。为此,尤其优选例如土豆,苹果,南瓜的表皮,以及例如向日葵或小麦种子或苹果或梨的外皮或核。同样优选其中植物壳材料,例如表皮,果皮,外皮,豆荚已经通过本发明的方法之一或者通过另一方法分离,采用本发明的方法之一分离并通过本发明的方法之一进一步溶解的方法。
该方法因此尤其适合于分离植物种子和果核的壳材料,特别地若它们处于压紧形式的话。该方法因此尤其适合于溶解或脱离例如干燥坚果,例如核桃或榛子,杏仁,豆类,例如大豆或芸豆,果核,例如苹果、橘子或葡萄种子或甚至鳄梨或麻风树种子,豆科植物,例如大米,玉米或豌豆和豆类,干燥种子和果核,例如菜籽,向日葵,小麦,黑麦,燕麦,羽扇豆,荠的壳,豆荚或表皮。
通过本发明的方法实施方案,可生产各种优选的产品。例如,可提供在非常温和的条件下制备的去皮谷物和果核。通过省去用于分解工艺的升温,能够获得具有其成分完整度不变的籽粒和核。特别地,没有形成反式脂肪酸或热反应产物。在一个实施方案中,获得富含氨基酸和/或肽的籽粒和果核,以及其它起始材料。在另外的方法实施方案中,通过使用这种或另一种官能化,实现植物产品的氧化稳定性的增加。
在进一步有利的实施方案中,可例如以分离层形式或者作为味道中性形式的溶胀物质,能够获得在食品中使用的崩解的壳材料。这种优良的可成型性和织构化食品壳/纤维缩合物具有优良的溶胀性能和水键合能力,和因此还起到保持食品产品新鲜的作用。
在另外的实施方案中,由以前不能够获得的壳材料获得其成分的纯部分,且它具有可在许多生活领域中使用的优良性能。
对于木质素系壳部分来说,证明了优良的保水能力。因此,优选的应用是添加到土地/土壤中,以改进水键合能力,特别地耕种土壤的水键合能力。因此,因其高的水键合能力和自然可降解性和生物相容性导致获得可在庄稼栽培领域中用于改进土壤品质的富含木质素的壳部分。富含木质素的壳部分也可用于吸收和/或储存/运输类脂相。它们因此也可用于油吸收/分离。此外,它们可用于配制宠物食品产品。特别的价值是木质素系壳部分,它通过崩解工艺获得磨蚀清洁效果,和因此还可以处理/清洁对划伤敏感的表面。关于这一点,可提供生物源且可生物降解的磨蚀清洁剂。
根据本发明生产的纤维素系纤维原则上可用于所有生活领域以及工业工艺和工艺序列中。
通过本发明的方法获得和生产的纤维素系纤维尤其适合于人类营养应用。特别地,它们适合作为膳食的食品添加剂以供制备卡路里减少的食品。另外,纤维素系纤维适合于膳食减重。另外,它们可在食品制剂中用作可溶碳水化合物,例如果胶或淀粉的替代品或者用于减少可溶碳水化合物。此外,它们可在食品制剂中用作油或脂肪的替代品或者用于减少油或脂肪。纤维素系纤维适合于调节肠道活性和改变/软化粪便稠度。进一步地,它们可用作膳食的抗便秘剂。纤维素系纤维也可用于动物的粪便控制和膳食减重。此外,纤维素系纤维适合于增稠和稳定液体或可流动食品与食品制剂。纤维素系纤维增加食品制剂的水键合和保水能力。结果,纤维素系纤维还适合于在食品或食品制剂中保持水含量较长时间,或者保持它们新鲜并降低风干风险。进一步地,可使用纤维素系纤维,掺入和/或稳定食品或食品制剂内的物质/化合物或微生物。结果,可在食品或制剂中例如稳定/分配活泼化合物,例如维生素或抗氧剂。此外,这意味着显示出增加的新陈代谢活性的微生物,例如酵母或乳酸-解离细菌可以引入到食品内。也可利用纤维素系纤维的这些性能,培养藻类或其它微生物,并使用它们生产具有增加的功效的物质/化合物或气体。
根据本发明生产的纤维素系纤维尤其适合于制备洗剂/霜/药膏或糊剂以供施加在皮肤或粘膜上。通过进行该方法,它们能改进皮肤和粘膜表面上的保水以及改进亲水和亲油化合物的可乳化性,并掺入诸如抗氧剂或防晒化合物之类的化合物且导致改进的皮肤和粘膜区域的光滑度。
此外,纤维素系纤维非常适合于作为分离剂用于利用直接或间接加热方法,在高温下蒸煮,例如烘焙,烘烤,烧烤或油炸的食品产品/食品。
因此,纤维素系纤维可例如在肉或鱼以及肉或鱼产品,土豆或面团制剂的制备中用作分离剂或者用作面包/面包屑的替代品。此外,纤维素系纤维适合于配制或保存其它营养品或食品成分。在生产蛋白质产品,例如蛋白质浓缩物或分离物中尤其是这种情况。然而,可采用本发明的纤维素系纤维,制备和/或配制和/或储存具有油/脂肪和/或可溶或复合碳水化合物或芳香剂和香料的制剂。此外,纤维素系纤维适合于在粘膜上产生长久的潮湿感觉。因此,纤维素系纤维尤其适合于处理干燥口腔粘膜。另外,纤维素系纤维适合于降低气味,尤其它们可应用于降低或防止口臭。
此外,可提供非常纯形式的蛋白质以供人类和动物营养。所获得的蛋白质部分尤其适合于配制食品制剂和例如在肉与香肠产品,烘烤混合物,奶油和饮料中或者在婴儿食品中或者作为肠道营养品/在肠道营养品(管饲养)中使用。优选生产并使用低变应原浓缩物或蛋白质分离物中的蛋白质部分/作为低变应原浓缩物或蛋白质分离物中的蛋白质部分。
优选由不具有GMO的植物起始材料生产不具有GMO的产品。
实施例
根据LMBG§3 5L 03.00-27,借助Dumas方法的氮气测定法,测定样品中粗蛋白质含量。为了将氮含量转化成样品中的粗蛋白质含量,使用因子6.25。采用Leco系统FP-528,进行氮的测定。
在室温下测定固体物质部分的水键合能力(WBC):称重2g样品到最接近0.01g,放入离心管内,并采用试管振荡器,与40ml去离子水混合1分钟。在5分钟之后和在10分钟之后,采用试管振荡器,剧烈混合该混合物30秒。然后在20℃下,在1000g下离心15分钟。倾析上清液。再次称重离心管。测定水饱和样品的重量。
在室温下测定固体物质部分的脂肪键合能力:将3g样品分散在有刻度的25ml离心管内的20ml油(商业玉米油)中。然后在700g下离心15分钟。测定未键合的油的体积。以ml油/g样品给出油键合能力。
为了在预定pH下测定蛋白质溶解度,使用根据C.V.Morr的方法。称取1g样品,并置于100ml烧杯中。在搅拌下,添加40ml 0.1mol/l具有消泡剂的氯化钠溶液。用0.1mol/l盐酸或0.1mol/l氢氧化钠溶液调节pH到所需值。将该批次转移到50ml体积的烧瓶中并用0.1mol/l氯化钠溶液达到所需体积。从该溶液中移取20ml到离心管内并在20,000g下离心15分钟。将所得上清液过滤通过Whatman No.1过滤器。在过滤的上清液中,根据Dumas(系统Leco FP 521),测定氮。
除非另外说明,在常压条件(101.3Pa)下和在室温(25℃)下,进行所有研究。
实施例1
对植物壳材料和壳崩解的研究
下述起始材料用于研究:1)大豆,2)芸豆,3)杏仁,4)核桃。材料不具有外壳(壳)(3)和4))且为干燥形式。将各自200g置于容器内,在所述容器中存在不具有(a)或者具有在其内溶解的下述物质的水溶液:b)0.1mol氢氧化钠溶液,c)精氨酸0.3mol,d)SDS 1wt%,e)赖氨酸300mmol/l,f)组氨酸和甘氨酸300mmol/l,g)RDG 0.3mol。每10分钟从该批次中移取单独的豆类/坚果类以供分析。最大暴露的持续时间为4小时。通过入射光显微镜,针对穿孔/溶解壳材料,直接检查从溶液中取出的豆类和坚果类。此外,通过在壳材料上的手工切向压力和通过在3bar压力下的中央水射流,检查壳材料的可剥离性。将另一部分的豆类和坚果类置于25℃的水浴中。在每一情况下,登记壳材料是否以及在何种程度上可以部分或完全脱离或自发地脱离。此外,研究脱离的壳材料的稠度。
结果:
在置于试验序列c),e),f)和g)的水溶液内之后,在仅仅数分钟之后,豆类或坚果类的壳材料具有明显可视的溶胀,所述溶胀随着时间流逝继续增加,同时这仅仅针对纯水或者在试验序列b)和d)中在40或20分钟之后明显。可视的溶胀与从豆类/坚果表面去除壳层的能力有关。
在壳材料的显微分析中,发现在试验序列c),e),f)和g)的水溶液中浸渍起始材料导致幼苗区域内壳材料的表面分解,其具有圆形接缝(1)外观或者具有纵向(2+3)取向/进展,同时在暴露于其它溶液下之后这是不可检测的。在该时间段内,存在壳材料的规则穿孔且在这些区域内豆类/坚果暴露;分离的壳材料显示出类似的几何形状。在试验序列b)中暴露导致壳材料和/或暴露的起始材料变暗。
通过在纯水中浸渍,在研究的时间段期间,在任何材料内的壳材料没有自发地剥离掉。由于切向力导致仅仅在研究最后脱离小部分。在试验序列b)和d)中,在380分钟或400分钟之后,可识别到壳材料的自发和部分脱离。通过切向力,在序列1)和3)中,在180或240分钟之后,和在序列2)和4)中,在280或360分钟之后,可实现壳材料的部分脱离。完全脱离是不可能的。对于引入到溶液c),e),f)和g)内的材料来说,在30至100分钟之后发生壳材料的自发分离。对于序列c),e),f)和g)的所有制剂来说,在110至180分钟之后,可实现完全的自发分离。对于这些制剂来说,在10至20分钟之后,通过切向压力,首次部分脱离是可能的,和在20至40分钟之后完全脱离。在试验序列b)和d)中获得的壳材料并不是非常具有弹性的,这与暴露的持续时间无关。试验序列c),e),f)和g)的脱离的壳材料在20至40分钟的暴露时间之后是柔软且挠曲的,且材料可压平而没有撕裂壳材料。
实施例2
对壳材料崩解和鞘与幼苗分离的研究
对于该研究来说,使用a)大豆,b)芸豆和c)小扁豆,它们以干燥起始材料形式获得。在该试验序列中,使用1)不含任何物质,或者含有2)NaOH 0.5wt%,3)碳酸钠1wt%,4)精氨酸0.3mol,或5)赖氨酸异亮氨酸+DMSO 0.3mol的水溶液。在试验序列A)中,将100g每种起始材料完全浸渍在该溶液中,并且通过分析连续的显像记录,测定可视的胚芽发芽的时刻,以及当胚芽达到长度5mm的时刻。实验的持续时间限为72小时。在试验序列B)中,将500g起始材料置于水中,其持续时间导致5mm的胚芽生长,然后将每一种100g的一部分置于试验水溶液1)至5)中。此处储存材料一段时间,根据实施例1的实验工序,该时间段产生壳材料的自发穿孔以及壳材料的容易且完全分离。然后,取出一半样品并置于填充装置内,所述填充装置确保通过压缩空气射流,使单一样品流经硅酮管。研究完全分离幼苗和壳材料的频率。采用留在试验溶液内的试验序列B)的起始材料,进行试验序列C),直到在试验溶液中实现48小时的总浸渍时间。在这一时间段期间,记录显像,检测幼苗尺寸的进一步生长。在研究最后,对试验序列B)的样品类似地进行用剥皮装置分离外壳和幼苗。研究壳材料与幼苗的分离完全度,并将幼苗的长度与试验序列B)的相比较。此外,在水浴中,使用剪切混合器(UltraTurrax,T18,20.00rpm,30s),均化已分离的壳材料,然后测试所得悬浮液。
结果:
在水中浸渍之后,在大致同时,在各自的起始材料内种子材料发芽且幼苗均匀生长。通过在溶液2)和3)内浸渍,与置于纯水中并在溶液5内浸渍30小时之后相比,实现12或18小时延迟。在溶液4)中,在给定时间内在起始材料中没有(b)和c))或者<5mm的非常缓慢的生长。在试验序列B)中,在起始材料内存在幼苗的进一步生长,当在溶液4)和5)中储存时,这种生长被强烈地延迟直至防止。在溶液2)和3)中浸渍之后,在36%和28%的豆类和小扁豆中存在壳材料以及幼苗的完全剥皮。对于在溶液4)和5)中浸渍的样品来说,在92%和90%的豆类和小扁豆中,这是可能的。在试验序列C)的样品情况下,在溶液2)和3)中浸渍之后,可检测到轻微的生长,而这在溶液4)和5)中浸渍的样品情况下是不可识别的。品尝该悬浮液得到令人不悦且皂状的味道,当起始材料在溶液2)和3)中浸渍时,而在溶液4)和5)中浸渍起始材料之后,悬浮液实际上是无味道的。
实施例3:
对水合起始材料的崩解和成分的可分离性的研究
下述起始材料用于研究:1.南瓜,灰胡桃果的变种,2.温柏和3.芹菜。很好地清洁材料并细分成4或8份且置于下述水溶液内:a)赖氨酸0.1mol+脲1wt%,b)聚-精氨酸0.1mol+SDS,c)精氨酸0.1mol,d)组氨酸异亮氨酸0.1mol+亚硫酸钠1wt%。作为参考,采用纯水进行试验,所有其它条件相同。经1小时加热溶液到90℃,然后取出插入的材料小片,并允许冷却。然后检查外壳层的可剥离性。评估壳材料是否可容易手工去除,且很少附着中种皮和大的片。进一步地,通过将去皮材料以1:10的重量比(材料/水)置于含有水的容器中,检查去皮材料的可分散性。随后,采用剪切混合器(Silverson,L5M,UK,35mm/8000rpm)进行分配30秒。之后,借助真空过滤,从悬浮液中去除游离水相。以2:1的体积比混合糊状材料与纯水,穿过筛眼尺寸为0.8mm的筛子,并再次去除游离水相。之后立即由4个专家进行感官评价。评价在嘴中和在吞咽期间气味的存在和味道品质以及感官性能。
结果:在参考实验中,外部涂层不可能分离(材料3)和仅仅以小片状分离(特别是材料2)以及具有明显的中种皮粘合。在溶液a)至d)中崩解的材料情况下,外部壳层的分离容易(b)和d))直至非常容易(a)+c))。相应地,在没有附着中种皮的情况下,分离中等尺寸或大且团块的壳材料片。去皮的参考样品不可能完全粉碎,从而留下大量小的聚集体团块在筛渣内。用溶液a)-d)崩解的材料以糊状悬浮液形式存在,它穿过筛子,实质上不具有残渣。在感官评价中,由参考样品获得的糊剂具有物种典型的强烈的气味和味道。此外,可感觉到单调(材料2)至多粒状的口感(特别是材料3)。在用溶液a)至d)崩解之后获得的样品中,没有或者实际上没有感觉到物种典型的气味或味道。在所有情况下,发现令人愉悦的口感(量化为“柔软”和“奶油状”)。感觉不到颗粒。
实施例4
对植物壳和壳材料的崩解与分解的研究
使用下述起始材料:1.己烷提取之后的豆粕,2.玉米粕,3.苹果渣,4.葡萄籽粉。以1:10的重量比(固体:水相),将300g每一种样品置于含有a)纯水和下述水溶液的容器内:b)组氨酸-缬氨酸-亮氨酸0.2mol+亚硫酸钠1wt%,c)精氨酸0.1mol,d)赖氨酸0.3mol亚硫酸氢钠0.5wt%,e)亚硫酸钠0.5wt%+碳酸钠0.1wt%。将该容器置于125℃的温度和1.2bar的压力下的高压釜内5,15和30分钟。在冷却之后,用剪切混合器(Silverson,L5M,UK;35mm/8,000rpm),均化所有悬浮液90秒。紧跟着用筛目为500μm,250μm,100μm和50μm的振动筛塔分析仪,湿法分筛。根据筛分部分的样品,测定残留水分含量,和根据单独的筛分部分的干燥质量,计算残留水分含量。此外,取样以供微观分析。针对可识别的壳/壳结构,分析样品,并计算它们相对于纤维结构的相对比例。进一步地,进行化学分析,测定可溶碳水化合物和蛋白质的含量。以1至3%体积的体积比,添加含有10wt%柠檬酸和10wt%氯化钙的水溶液到筛分分离之后获得的水相中,调节工艺液体的pH到4.8至5.4。在搅拌之后,允许悬浮液沉降2小时。紧跟着倾析上清液相。所述上清液相没有或者仅仅轻微混浊(若存在的话),和沉降相在过滤器床上穿过。在10小时之后,从过滤器中取出脱水的物质,并化学分析蛋白质和碳水化合物含量。还测试这些部分。此外,在借助筛压机,洗涤和去除游离水相之后,对单独的筛分部分中的纤维物料进行实施例3的感官试验。
结果:仅仅在水浴中热崩解之后,均化后存在主要大直径的颗粒,它仅仅在很小的程度上受到热暴露持续时间影响。相反,在短的加热时间段之后,在使用溶液b)至e)崩解之后能够获得的颗粒显著较小。微观分析揭示了在仅仅热崩解(a))之后,在所有时间点处和在所有筛分部分内,在所有样品中存在壳材料碎片或壳碎片。相反,在使用溶液b)至e)短的暴露时间崩解之后,在筛目>250μm的筛分部分内,仅仅在小的程度上可检测到壳材料或壳碎片,和在经历过较长暴露持续时间的样品中,不再存在壳材料或壳碎片。尽管在纯粹的热崩解之后获得的颗粒部分中,已经存在于起始材料内的主要部分的可溶碳水化合物和蛋白质仍然存在,但在用溶液b)至e)分解之后在颗粒部分内可检测到仅仅小量到最小量可溶化合物。因此,借助聚集引发工艺,仅仅在热降解之后,从水性滤液中实质上不可能获得蛋白质或碳水化合物。相反,通过聚集和脱水方法,从分解溶液b)至e)的滤液相中可回收理论计算量的蛋白质,所述理论计算量的蛋白质来自于根据起始材料的定量分析的蛋白质量减去筛分部分内检测到的蛋白质量之差。在用溶液b)至e)分解之后获得的蛋白质/碳水化合物部分实质上是无气味和无味道的。尽管在测试期间,通过仅仅热分解获得的纤维仍然判断为主要是硬的和纤维状,但通过用溶液b)至e)崩解获得的纤维部分被分类为柔软至非常柔软、柔和且奶油色。在用溶液b)至e)崩解和分解之后的筛渣的微观分析中,发现颗粒是大体积的纤维结构,在另外的分析中揭示了它为纤维素系纤维。
实施例5
对富含木质素的壳成分和纤维素系纤维的分解与可分离性的研究
在麻风树果核(JPK)和油菜籽(RPK)的压榨残渣上进行水性分解工序。在这一情况下,采用水溶液,进行蛋白质和碳水化合物的分离,并借助腔室压滤机,从固体部分中去除游离水。残渣具有40wt%的残留湿度和强烈且令人不悦的植物典型的气味(因此没有进行品尝)。为了分解过滤器残渣,在下述实验中使用100g松脆的残渣,在所述残渣内使用下述溶液并连续搅拌4小时:1.赖氨酸0.3mol/l,2.聚精氨酸+谷氨酸0.2mol/l,3.组氨酸+RDG0.2mol/l,4.NaOH 0.5N,5.水。随后,借助过滤器,分离固体物质,并在过滤器上用水洗涤2次。之后,采用剪切混合器,在2升自来水(自来水)中分配样品60秒。在借助泵,使搅拌的悬浮液穿过筛目为500μm的筛机之后,在1bar的压差下,将悬浮液引入到旋风分离器(Akavortex,AKW,德国)内。收集底流并与自来水以1:5的比例混合且循环到旋风分离器中。借助筛目为100μm的振动筛,从悬浮的固体物质中释放这两种分离工艺的上部流体,获得筛渣1(SR 1)。借助筛目为200μm的振动筛,将底流与微粒相分离,得到筛渣2(SR 2)。在细筛上铺开富含木质素的壳的物料以及(SR1)纤维素系纤维样品,并借助热空气干燥。骤冷纤维素系纤维的其余部分,在通过压榨去除键合的水之后,进行另外的研究。然后微观和化学分析样品。通过滚动(rolling),使干燥的SR2分割。取样微观和化学分析颗粒的组成。为了测试水键合能力,将100g这些样品加入到在底部区域内具有侧面出口的窄底座的烧杯中。从顶部逐滴添加水到壳材料中,直到水从出口流出。计算干物质与键合水的重量比。采用灯油而不是水进行相同实验,并因此计算油键合能力。通过搅拌,以1:10的体积比,将SR1样品悬浮在去离子水中3分钟,然后采用FiberLab FS 300(Valmet),测定本文的纤维素系纤维的尺寸。针对有机组分(例如蛋白质)的粘附性以及聚集体的存在和纤维组分与植物起始材料中其它成分的结饼,借助入射光显微镜,检查所得部分。
结果:
在用分解溶液1)-3)崩解之后,紧跟在水性分解工艺后获得的含有固体物质的过滤器残渣在水中可容易再悬浮和水合,这通过快速沉降的富含木质素的壳颗粒从纤维素系纤维中快速自发分离,同时纤维素系纤维具有非常低的沉积速率来佐证。采用用溶液4)和5)处理的已分配纤维部分没有观察到这种行为。借助旋风分离器,在纤维素系纤维和富含木质素的壳颗粒之间获得选择性,在首先用溶液1)-3)分离而处理的样品中,分别地,对于由上部流出物的水相中获得的材料来说,选择率为约80%,和对于从下部流出物中获得的材料来说,选择率为约70%。在第二次分离单独的固相之后,对于这两部分的分离结果是>95%。对于用溶液4)和5)处理的样品来说,到达这一程度的分离是不可能的或者是不完全的(<60%等级的纯度)。微观来看,在用分解溶液1)-3)处理过的样品情况下获得的固体物质制剂上没有检测到有机成分的累积,而其它样品具有显著的有机材料沉积物,且在一些情况下,以大的聚集体形式存在。对用分解溶液1)-3)处理的制剂来说,分别测定到干燥的富含木质素的壳的水键合能力为250至300wt%,和油键合能力为280至320wt%。采用溶液4)和5)获得的部分的相应的水或油键合能力分别为<150wt%和<120wt%。对于用分解溶液1)-3)制备的干燥的纤维素系纤维来说,水键合能力范围为290至340wt%,和油键合能力范围为220至310wt%。对于可由用溶液4)和5)的方法获得的部分来说,相应数值为<100wt%和<80wt%。
采用分解溶液1)-3)获得的富含木质素的壳部分的化学分析导致52至73wt%的木质素含量。
在由这一崩解工艺获得之后再悬浮的纤维素系纤维的体积尺寸表明,与比用溶液4)和5)处理之后相比,在用分解溶液1)-3)处理之后获得的纤维素系纤维内存在显著较大的体积(+158至+340vol%)。
化学分析表明,在用分解溶液1)至3)崩解之后,在纤维素系纤维内和在富含木质素的壳部分内存在的蛋白质或可溶碳水化合物的含量<1wt%,而在其它制剂中蛋白质和可溶碳水化合物的含量>10wt%。在感官评价中,发现用分解溶液1)至3)处理的纤维组分无气味和无味道,而其它制剂具有令人不悦的味道和气味。
实施例6
在植物起始材料内的分解条件研究
采用下述成分含量,研究粒料形式的下述压榨残渣以及粉末形式的研磨产品:豆饼(SPK):蛋白质38wt%,碳水化合物26wt%,纤维21wt%,油11wt%,其它4wt%;油菜籽饼(RPK):蛋白质35wt%,碳水化合物21wt%,纤维30wt%,油9wt%,其它5wt%;麻风树压饼(JPK):蛋白质32wt%,碳水化合物22wt%,纤维25wt%,油13wt%,其它8wt%;燕麦粗粉(HM):蛋白质40wt%,碳水化合物30wt%,纤维18wt%,油8wt%,其它4wt%;扁豆粉(LM):蛋白质33wt%,碳水化合物33wt%,纤维25wt%,油6wt%,其它3wt%。首先,通过添加50g等分试样的起始材料到含有1000ml下述物质的水溶液的烧瓶中,测定分解所要求的持续时间:a)精氨酸0.2mol,b)组氨酸和赖氨酸,各自0.1mol,c)聚-精氨酸0.1mol和谷氨酸0.1mol,d)NH3 0.2mol,e)KOH,0.2mol,f)脲0.3mol,g)碳酸钠0.5wt%,h)亚硫酸钠0.2wt%,并在50/min的速率下混合。这通过观察在所形成的悬浮液内不再存在可视的固体聚集体的时间点来检查。在这一时间点处,通过筛目为100μm的振动筛,过滤各悬浮液,并根据实施例5,微观检查过滤器残渣。然后,进行试验,通过以1:1的重量比为起始,添加50ml递增的分解溶液到100g等分试样的产品中,测定完全渗透和分解起始材料所要求的最小体积,并且对于各分解溶液来说,在完全分解所要求的初步研究中测定的时间段内,缓慢地混合悬浮液。在各自的最小暴露时间最后取样,并在3,000rpm下离心3分钟。以起始材料和分解溶液(Pref)之间的质量比形式,测定产生完全溶胀的充足体积,此时在离心样品之后,以上清液形式存在仅仅最小的游离液层。然后将10g每一批次加入到90ml自来水中,其中可采用各自批次所要求的最小体积,实现最大可实现的溶胀,通过摇动分配,然后使悬浮液穿过筛目为100μm的振动筛。使洗出液流经10μm的细筛。将各自的过滤器残渣悬浮在水中,并且使用相同的过滤(根据实施例1的试验工序),微观分析在其内存在的粒状物结构。在反复研究期间,干燥筛渣,并测定保留的颗粒的重量。在另外的研究中,采用实验室混合器,在900ml水中混合100g混合物Pref的物料5分钟。然后使该悬浮液穿过振动筛。在腔室压滤机内,从筛渣中去除键合的水,并测定残留的水分含量。然后将压榨残渣悬浮在0.5mol NaOH溶液中并彻底混合1小时。再次使悬浮液穿过振动筛,并用腔室压滤机,干燥过滤器残渣。
结果:
尽管与溶液d)-f)相比,在用溶液a)-c),g)和h)分解中存在显著较大的溶胀体积(+160直至+260wt%vs.+80直至+160wt%),但实现这一溶胀的时间显著较短(8至20分钟vs.40至300分钟)。在通过用溶液a)-c),g)和h)分解制备的分配体积内,在分解混合物样品的分配之后,在最大溶胀(Q max)的时间点处,在筛渣(筛目100μm)中的微观分析表明,不存在固体物质的聚集体,所述固体物质实质上不具有粘附的有机残渣。与之相反的是,在用溶液d)-f)制备的分解混合物处理之后,在筛渣内,在Q max的时间点处,存在固体物质的许多聚集体/凝结物,它们中的一些完全被有机物质包围。与用溶液a)-c),g)和h)获得的样品的筛渣(在其内存在解松的大体积和膨胀的纤维素系纤维)相反,这些仅仅分离且轻微膨胀可检测。在事先进行过滤的洗出液的超细过滤器(筛目10μm)上,在用溶液a)至c),g)和h)分解之后,实质上没有检测到粒状物结构,而对于由用溶液d)至f)分解得到的洗出液来说,存在许多固体粒子,这引起过滤器表面结层;这些粒子主要是具有高的有机化合物粘附性的纤维素系纤维。在分解和分配可溶与已溶解成分之后,对于由用d)-f)溶解分解获得的样品来说,与对于通过用溶液a)-c),g)和h)分解获得的那些相比,筛渣的干燥重量显著较大(+130直至+350wt%)。通过用碱降解筛渣,在用溶液a)至c),g)和h)分解之后获得的材料实质上不再释放蛋白质,而通过使用溶液d)至f),在分解混合物的筛渣中,8至22wt%蛋白质溶出。
实施例7
木质素系植物壳材料用于油键合的应用的研究
对由实验5通过分解工艺1)-3)获得的富含木质素的壳部分(麻风树(JS),油菜籽(RS)),以及在其内用NaOH(NO)消化的麻风树和油菜籽的富含木质素的壳部分进行空干,并分离。测定平均粒度分布和单位体积的重量。
在用开孔PP织物密闭的底部具有锥形尖端的直径10mm的玻璃管内,填充干燥的壳材料至20cm的高度。测定填充的壳物料的重量。为了比较,商业油吸收剂(OAM1:CleanSorb,BTW,德国;OAM2:PEA SORB,Zorbit,德国)类似地填充到相同的玻璃管内。填充的玻璃管垂直安装在夹持器(holder)内,所述夹持器具有每一尖端浸渍在向日葵油浴和另一试验的油酸内。每5分钟登记油面的高度(这通过颜色变化清楚地可识别),或者吸收剂的反射。2小时之后停止实验,并测定管道内油上升的高度和油浴体积与起始体积之差。随后,将立管的全部内容物仔细地吹入到烧杯内并称重。之后,在每一情况下添加100ml乙醇。在排除空气情况下,搅拌悬浮液,并采用磁搅拌器经30分钟加热到60℃。然后用抽吸过滤器,排放液相,并进行壳或吸收剂物料中筛渣2次洗涤(乙醇/H2O),之后在60℃下干燥12小时。然后测定/计算(重量差)干燥物料的重量与稠度。随后,采用所得干燥物料部分,和油面高度反复该实验,并再次测定/计算所吸收的油体积
结果(表1中的数值结果):
与用碱液纯化的木质素系壳部分相反,采用本发明的分解溶液获得并制备的木质素系植物壳对油具有非常快速和高的吸收能力,它也好于商业油吸收剂。这影响抗重力的吸收能力和总的吸收体积二者。采用用本发明的分解溶液获得的木质素系壳部分,大多数完全可能通过溶剂纯化所吸收的油,而在未根据本发明获得的富含木质素的壳部分情况下,所吸收的油不可能完全去除。甚至在采用商业产品的情况下,所吸收的油的提取不完全。在采用事先纯化的吸收剂的更新循环中,在用本发明的分解溶液制备的富含木质素的壳部分的吸油速率和量与以前运行的实验相当;然而,其余纯化制剂的吸油性能保持远好于第一使用循环中获得的那些。
实施例8
对使用富含木质素的植物壳从含油的气溶胶中分离油的研究
在10x 10cm的2个筛板之间分配用分解溶液a)精氨酸0.2mol(JKPa)和d)NH30.2mol(JKPd)制备的来自实施例5的麻风树(JKP)的富含木质素的植物壳至2cm的填充高度;然后在框架内锁定筛子。将筛框插入到随后密封的通风井内。压缩空气源确保恒定的空气流(70℃)以50m3/h的流速穿过过滤器。将超声雾化器置于空气流内,所述空气流在恒定速率下汽化油-水乳液。采用压力传感器,监控在过滤器以下的压力累积。在筛子上方,空气出口借助油雾分离器(contec),所述油雾分离器将确保从空气混合物中保留99.5%的油。为了比较,在另外的实验中,在空气导管内安装常规的空气过滤器(LF),钢网过滤器(SGF),活性炭过滤器(AKF)和膜滤器(MF)。30分钟之后完成实验,在此期间汽化20ml的油体积。随后,去除膜滤器,并测定对起始值的重量差。从过滤器外壳中取出富含木质素的壳部分,并将其悬浮在烧杯内的丙酮中,且提取键合/吸收的油。蒸发分离的丙酮相,并称重残渣。根据吸油材料和油雾的重量差,计算油分离速率。
结果:当使用膜滤器和活性炭过滤器时,因空气流动阻力增加导致在进料导管内压力增加(最大压差35或52mbar)。当使用JKPd)时,与采用本发明的分解溶液(JKPa)获得的富含木质素的壳部分的实验相比,最初压力较高。在实验过程中,在进料杆内也不存在压力增加,而在制备JKPd)时的压力略微增加。在常规的空气过滤器中的油分离速率为48至62wt%。非根据本发明生产的富含木质素的壳部分的油分离速率为55wt%,而采用本发明的分解溶液制备的富含木质素的壳部分的油分离速率为98wt%。从这一部分中通过提取可回收18.4g油,而在制备JKPd)中仅仅可回收5.2g。
实施例9
对木质素系壳材料的磨蚀清洁行为的研究
在另外的崩解/分解步骤中,使用下述方法,处理从实施例5中用分解溶液1)和2)分解的油菜籽压饼获得的壳部分:1)精氨酸0.3mol,2)精氨酸0.3mol+脲10wt%,3)精氨酸0.1mol+Na2SO3 1wt%,4)NaOH 0.5N,5)水。将化合物完全溶解在去离子水中,将10g等分试样的壳部分悬浮在200ml溶液中并搅拌20分钟。之后,在高压釜内在120℃下在2bar下处理悬浮液11分钟。之后,在筛网上进行用水强力洗涤。在压榨之后,进行壳颗粒的干燥与分离。取样以供分析。然后进行在非离子表面活性剂内壳部分的悬浮。然后将2ml包括壳部分的表面活性剂溶液置于高光泽的塑料上,在所述塑料上存在各种结壳的材料,例如蛋白,调味汁或面团。将500g通过自动推进器移动的木制冲压机共轴移动30次到达硬壳上的塑料片材的表面上。然后洗涤表面。在干燥之后,评价污物的残留程度和划痕或梨沟的存在。
结果:微观分析表明,通过方法1至3生产的木质素系壳组分完全分离,且与通过方法4和5获得的木质素系壳材料相比,具有显著较小的表面尺寸。根据工序1至3制造的壳部分主要是圆形的且具有光滑的外部轮廓。在采用方法4和5获得的壳部分情况下,存在主要尖锐的边缘和锯齿状的外部轮廓。
对于用通过方法1至3制备的富含木质素的壳部分处理的表面来说,实现表面污染物的完全去除,而对于根据方法4和5制备的壳部分来说,仍然存在残渣。用根据方法1至3制备的富含木质素的壳清洁的表面不具有划痕。用通过方法4和5能够获得的壳部分处理的表面显示出适中到严重的划痕。
实施例10
回收纤维素系纤维的分解工艺的研究
对于每1kg A)油菜籽压饼,B)玉米渣,C)全大豆,D)在提取糖浆之后的甜菜浆粕来说,进行下述实验工序:在a)25℃和b)60℃的温度下,通过将材料A)和B)置于分解化合物浴内,在每一情况下,连续搅拌60分钟,进行水性分解,c)此外,在高压釜内,在125℃下,借助热崩解,将材料C)和D)浸渍在分解溶液内各自15分钟。使用下述分解溶液:1.水,2.0.1N氢氧化钠溶液,3.30%硫酸溶液,4.精氨酸0.3mol水溶液,5.赖氨酸0.3和谷氨酸0.2mol水溶液,6.1.5wt%亚硫酸氢钠溶液,7.5wt%碳酸氢钠溶液。随后,通过离心,从所得混合物中去除游离水,以便它们以尺寸稳定的物料形式存在。为了分离已溶解的成分,将物料悬浮在10l水中,并采用搅拌器,精细地悬浮10分钟。随后,使用筛目为200μm的振动筛,分离水相。从所得部分中取样以供分析。称重不具有液滴的物料,然后在干燥烘箱内干燥。根据湿和干物料之间的重量差,计算水键合能力。针对纤维结构以及针对与其它有机组分的粘附/团块程度,微观分析湿样品。针对可溶碳水化合物和蛋白质的含量,检查所得干燥材料。使用纤维分析仪(FiberLab FS300,Valmet),分析每克湿物质的纤维数量(pcs),最大空间延伸和长径比。
结果:
通过使用水,不可能实现起始材料的分解。采用碱液,但没有采用分解溶液3,在室温下起始材料的部分分解是可能的。采用分解溶液2,在升高的温度(A)b)和B)b))下,和采用热崩解(C)和D)),可实现显著的分解。在实验条件下,采用硫酸溶液分解是不可能的。在所有实验条件下,分解溶液4-7实现完全分解。在其中没有实现宏观完全分解的所有样品中,微观分析表明存在与其它有机成分或组分部分结合的固体粒子和/或纤维以及存在与其它纤维或有机化合物的结饼。在化学分析中,在宏观不完全的分解中,检测筛渣内可溶的碳水化合物和蛋白质。在采用分解溶液4-7进行的分解实验中,在所有实验工序中发生与非-纤维素系纤维相对应的成分的宏观完全分离(滤液溶液也穿过筛目为20μm的筛子,且没有形成残渣)。在采用分解溶液4-7的分解工艺之后获得的不具有液滴的物料的体积显著大于在采用水或碱溶液进行分解工艺之后的分解物料的体积。因此,在这些工艺中所获得的纤维素系纤维中,与采用分解溶液4-7获得的解松的纤维素系纤维的情况(680-850wt%)相比,水键合能力显著较低。相应地,发现,在化学分析中,在使用分解溶液4-7之后的所得纤维素系纤维物料中,存在<1wt%的可溶碳水化合物和<0.5wt%蛋白质的残留含量。在其它分解产品中,可溶碳水化合物和蛋白质的含量为15至37wt%。具有可溶碳水化合物和蛋白质>1wt%的残留含量的产品的干燥聚集体非常坚固,且可仅仅部分水合。相反,在用分解溶液4-7分解,干燥之后获得的聚集体在5分钟内可完全水合。粉碎导致在水中快速溶胀的粉末且得到柔软的纤维物料,当去除游离水时。分析通过用分解溶液4-7分解而制造的纤维素系纤维的尺寸与数量,表明范围为20μm至600μm的宽且均匀的分布,其中纤维数量范围为550至237pcs/g,和长径比为2.5:1至22:1。单位重量的纤维长度为0.8至2.5mg/100m。
实施例11
对由机械崩解工艺生产纤维素系纤维的研究
对于该实验来说,使用1kg每一种下述起始材料:A)豆粕,B)燕麦薄片,C)葡萄籽粉。
进行下述方法步骤:
V1)研磨起始材料到100μm的平均粒度。之后,用精细分级分离器(Netsch CFS 5)气流分拣;
V2)研磨起始产品到100μm的平均粒度。之后,在1:1的重量比下,以溶解形式引入下述化合物到水溶液中:a)精氨酸0.2mol,b)组氨酸和赖氨酸,每一情况下,0.1mol,c)聚-精氨酸0.1mol和谷氨酸0.1mol,d)NH3 0.2mol,e)KOH,0.2mol,f)脲0.3mol,以便起始材料完全浸渍在水溶液中4小时。然后使用手动共混器,以1:10的体积比,用水洗涤全部反应混合物。使悬浮液穿过筛目为200μm的筛子。用相同体积的水相洗涤筛渣2次,然后在多孔PP膜上以1mm的层厚铺开筛渣并干燥。随后,进行干燥物料的粉碎。
V3)在没有进一步粉碎的形式下,添加起始材料到下述水溶液中:a)精氨酸0.3mol,b)聚赖氨酸0.2mol,c)聚谷氨酸0.2mol和组氨酸0.4mol,d)三乙胺0.2mol,e)NaOH0.2mol,f)碳酸钠0.3wt%。将所添加的水溶液的体积限制为恰好出现起始材料完全浸渍/润湿时的体积。允许该批次静置24小时。然后使用手动共混器,以1:10的体积比,用水搅拌混合物。之后,使悬浮液穿过筛目为200μm的筛子。用相同体积的水相洗涤筛渣2次,然后在多孔PP膜上以1mm的层厚铺开筛渣并干燥。随后,进行干燥物料的粉碎。
在分别获得的干燥物料当中,针对可溶碳水化合物和蛋白质的含量,进行化学分析(根据实施例5)。在每一情况下,在30℃的温度下,在连续搅拌下,将50g所得的粉化纤维物料溶解在500ml水中1小时。在这些当中,将100ml填充到窄-底座的有刻度的圆柱体内,并测定可视的纤维下落到50ml刻度下方时的沉降时间。此外,取样以供分析纤维尺寸(根据实施例6分析)。浓缩其余悬浮液,以便实现40–50wt%的残留湿度。由4个专家测试所得糊状物料。评估下述性能:味道,细度,口感,吞咽期间的感觉。
结果:分解研究V1中的纤维部分仍然含有比较大量的可溶碳水化合物(24-36wt%)和蛋白质(18-29wt%)。用分解化合物a)-c)制备的分解研究V2和V3中的纤维物料具有<0.5wt%的可溶碳水化合物和蛋白质的残留含量。在使用其它化合物(d)-f))用于分解之后,在所得纤维物料内发现12–22wt%的可溶碳水化合物和14-25wt%的蛋白质含量。由分解研究V1获得的纤维部分仍然压紧且在水中仅仅部分水合,和在下落到有刻度的圆柱体内之后存在非常快速的沉降。采用分解化合物d)-f),由分解研究V2制备的粉化纤维部分被部分水合,而采用分解化合物d)-f)进行的分解实验V3中的粉化纤维几乎不可水合。对于采用这些分解化合物获得的分解产品来说,在V2下测定的沉降时间为15-25分钟,和在V3处测定的为4-10分钟。相反,采用分解化合物a)-c)进行的分解实验V2和V3中的粉化材料完全水合。这些分解部分中的已溶解的纤维素系纤维在测量圆柱体内显示出非常低的沉降速率,结果仅仅在12-27小时之后才发生已溶解的纤维素系纤维沉降到50ml标记以下。纤维长度平均为150至300μm,和纤维宽度为11至19μm。单位长度的纤维重量(粗糙度)为1.2至5.1mg/100m。
测试分解研究V1)中的湿纤维材料揭示了存在对应于起始材料的显著量的有气味和调味物质。采用分解化合物d)-f)获得的分解研究V2和V3中的纤维部分具有起始材料的气味和味道,尽管强度较低。然而,它们不可食用,因为相关的分解化合物具有强烈的气味或味道。相反,在采用分解化合物a)-c)获得的分解研究V2和V3中的纤维部分中,不存在气味或味道,结果气味和味道判断为中性。此外,采用分解化合物a)-c),在实验V2和V3中获得的纤维素系纤维不具有多粒状,具有更加令人愉悦的口感和令人愉悦的吞咽感。
实施例12
针对由有机起始材料生产纤维素系纤维的研究
采用各种预处理的起始材料,研究制造下述纤维素系纤维的可行性,所述纤维素系纤维具有<1wt%的蛋白质和/或碳水化合物残留含量,且不释放任何加味剂,调味剂或着色剂到水性介质中。
实验序列I.使用可溶蛋白质从大豆和未剥离的芸豆中提取之后富含纤维素系纤维的有机物料。为了制备,将果核,或未剥离的豆类机械粉碎并置于聚精氨酸和组氨酸,或赖氨酸和聚谷氨酸的溶液中分别4和8小时。以1:10或1:5的体积比,将干物质含量为40wt%(DW)的有机物料悬浮在水中,接着强力混合,紧跟着使用100μm的筛目过滤。筛渣主要由纤维素系纤维组成,但在其内还包括大量壳材料以及复杂有机固体(淀粉颗粒)。以1:10的体积比,将纤维物料分配在水中,并通过泵运输通过旋风分离器(Akavortex,AKW,德国)。收集上部流出物,并借助弓形筛(Bogensiebs)过滤(筛目50μm)。分析残渣。
实验序列II.针对分解工艺,使用在其内纤维素系纤维仍然形成大聚集体的热崩解植物材料。此处,起始材料是在水浴中在90℃至98℃的温度下经历过1至3小时热处理并用手持式食品共混器粉碎成均匀物料的温柏,胡萝卜和芹菜。在该分析中,>2,000μm的聚集体占>15%重量。此外,存在物种典型的气味和味道。借助腔室压滤机,使物料脱水到50-80wt%的残留水分含量。以1:5的重量比,将所得物料悬浮在含有下述的水溶液中:a)精氨酸0.3mol,b)聚-赖氨酸,脲10%),c)精氨酸0.1mol+Na2SO3 10%,并在120℃的温度下,将悬浮液置于高压釜内8至16分钟。过滤分解产物并用大量水洗涤2次。从最终的筛渣中取样以供分析。
实验序列III.使用具有高比例着色剂的机械崩解的植物材料。为此,使用红甜菜的菜泥,来自用精氨酸溶液分解向日葵籽压饼的纤维部分,和来自玉米粉的水性分解的纤维部分。首先使起始材料脱水到40至70%的残留水分含量。然后,采用手持式共混器,以1:5至1:10的重量比,将该物料悬浮在含有下述的水溶液中:a)聚-精氨酸,脲5%;b)赖氨酸0.3mol,SDS 2%,组氨酸0.3mol;c)精氨酸0.1mol,DMSO 2%。在一系列的实验(T60)中,在60℃下,搅拌悬浮液24小时,并在另一试验序列(T120)中,在高压釜内,在120℃下处理8分钟。过滤所得悬浮液,并用水洗涤2次。取样以供分析最终的筛渣。
分析纤维素系纤维的尺寸分布,蛋白质和可溶碳水化合物含量(根据实施例7),对着色剂的溶解度进行研究(通过将试验部分置于水和表面活性剂的水溶液中48小时,随后过滤和借助分光镜分析滤液来测试),和根据实施例3的标准,由4个专家进行感觉评价。
结果:
实验序列I:通过旋风分离技术分离的解松的纤维素系纤维实质上不具有可视或可测量的壳材料残渣,或起始材料中其它成分,例如淀粉颗粒的聚集体。此外,可选择性获得具有较窄的直径范围和<1,000微米的纤维长度占98%以及与起始材料中存在的相比,较低或较窄的松散纤维。
实验序列II:纤维分析表明,处理导致纤维素系纤维的复合物粉碎和解松,在其内纤维的直径范围明显地左移,不存在直径>2,000μm的颗粒或者仅仅占<0.1%的部分。
实验序列III:在由试验序列T60和T120二者获得的解松的纤维素系纤维的物料中,没有着色剂从水溶液中溶出。
在试验序列I至III中获得的解松的纤维素系纤维具有<0.1wt%的蛋白质和/或可溶碳水化合物含量。
发现所有获得的纤维素系纤维物料在感官检查中是无气味和无味道的。此外,发现对于所获得的所有制剂来说,当咀嚼时,它们是非常柔软的,传递令人愉悦的口感,且当吞咽制剂时,不存在令人不悦的感觉。
实施例13
对由纤维素系纤维/采用纤维素系纤维制备烘焙食品的工业化生产的研究
进行下述制剂的大规模生产:A)炸薯条,B)饼干和C)姜饼。原始物料的生产:
A)采用自动捏合/搅拌装置,在2小时内混合100kg水分含量为70wt%的来自大豆粉的解松的纤维素系纤维(根据实施例11(采用精氨酸溶液)制备)与3kg佐料混合物成均匀的面团。借助螺旋泵,将面团物料泵送到填充装置内,利用所述填充装置,将确定体积的物料置于装置模具内。在填充之后,通过蒸汽可渗透的对应物(counterpart),密闭(密封)模具,进而在所有侧面密封的模具内将面团物料形成为3mm的薄切片(直径5cm)。随后,经5分钟加热整个模具板到140℃。然后将当打开模具时散落的碎片在皮带上传送到烘箱内,在所述烘箱内经2分钟,加热它们至180℃。然后在无水氮气氛围下包装之后冷却的碎片,空气和蒸汽-气密。获得31kg碎片。在2,6和12个月的储存时间段之后,发生目视的触感和感官检查。外观以及断裂行为和表面纹理保持不变。在测试期间,在所有时间点处评定稠度为酥脆,且表明令人愉悦的口感。在储存期间的味道特征没有变化。
B)将50kg残留水分含量<20wt%(根据实施例11V2b)制备)的解松的纤维素系玉米纤维仔细地混合到由40kg蛋白和10kg蛋黄和35kg糖粉与调料组成的泡沫物料中,以便没有破坏泡沫,将其与200g碳酸氢钠一起搅拌。将可流动的面团填充到烤盘(直径30cm)内一直到2cm的高度,并在180℃下烘烤20分钟。在冷却之后,使饼干盘分离,并在氮气氛围下,气密和蒸汽密封包装。在2,6和12个月的储存时间段之后,进行视觉完整性和感官检查。外观以及抗压凹和表面纹理保持不变。在测试中,在所有时刻,稠度判断为轻微酥脆,和口感据说柔软和圆润。在储存期间的味道特征没有变化。
C)混合50kg残留水分含量<25wt%(根据实施例12V1生产)的解松的芸豆纤维素系纤维与50kg杏仁粉,10kg切碎的蜜饯柠檬皮和橘子皮以及500g碳酸氢钠和调味剂混合物。在60kg由鸡蛋和糖粉制成的物料下,捏合该混合物。在2小时的静置时间段之后把面团分成几部分,并在烤盘上滚平到1cm的高度且在180℃下烘烤20分钟。在冷却之后,将面团部分切割成多个小片,并气密和蒸汽-密封包装。在2,6和12个月的储存时间段之后,进行视觉、触觉和感官检查。外观以及抗压凹和表面纹理保持不变。在所有时刻,稠度评定为嫩脆且丰满的口感。在储存过程中,外观,抗压凹或味道香浓没有变化。
实施例14
在搅拌器内,使用喷洒装置,用70l 0.1mol精氨酸溶液浸泡50kg大豆提取粉,并在浸泡之后允许静置1小时。随后,混合70l水,然后使用压滤机,从物料中去除水,实现60wt%的残留水分含量。将过滤器残渣悬浮在70l 0.5wt%亚硫酸钠溶液中,并在128℃的温度下,在1.2bar的压力下,将该混合物置于高压釜内10分钟。然后借助筛压机,使该混合物脱水。将筛渣引入到200l工艺水相内,并借助剪切混合器(具有精细的分散工具的SilversonL5M-A/10,000rpm)分配10分钟。然后进行悬浮液的离心筛分过滤。以无气味和无味道奶油状物料形式获得筛渣,并用纳米乳液溶液功能化,然后在带式干燥器上干燥。薄的小片形式的干燥纤维素系纤维在水中在3分钟内完全水合,然后感觉上柔软且为奶油状。结合来自所有步骤的滤液相,然后混合20wt%柠檬酸溶液,在低搅拌下分配。6小时之后,将沉降相通过容器底部的排放装置排放,并流动到筛目为80μm的带式过滤器上,然后在连续的皮带行进下使聚集体物料脱水。获得奶油状蛋白质物料,它可完全溶解在水中,和使所得溶液完全通过且没有残渣通过网眼尺寸为10μm的筛子。蛋白质物料是无气味和无味道的。

Claims (21)

1.一种崩解和分解植物起始材料的方法,该方法包括下述步骤:
a)提供植物起始材料,
b)掺混起始材料与崩解溶液并将其保留在崩解溶液中,直到实现崩解,
c)将已崩解的起始材料的成分分配到分配体积中,以获得植物起始材料的已溶解成分和固体成分,
d)将固体成分与植物起始材料的已溶解成分分离,
e)通过如下获得植物起始材料中已分离成分作为进一步利用的材料:
e1)借助旋风分离方法,通过从植物起始材料的固体成分中的富含木质素的壳中分级分离纤维素系纤维,获得纤维素系纤维的纯化部分以及富含木质素的壳,
e2)通过复合剂聚集/复合植物起始材料的已溶解成分的已溶解的蛋白质,并分离沉降的聚集/复合的缩合蛋白质,以获得聚集/复合蛋白质物料。
2.权利要求1的方法,其中方法步骤b)与热和/或机械崩解一起进行,或者在方法步骤b)之后进行在方法步骤b1)中的热和/或机械崩解。
3.权利要求1或2的方法,其中崩解溶液含有氨基酸和/或肽。
4.权利要求1-3中任一项的方法,其中制备解松的纤维素系纤维和/或富含木质素的壳。
5.权利要求1-4中任一项的方法,其中进行植物种子、籽粒或果核的壳材料的产品节约的崩解/穿孔或脱离。
6.权利要求1-5中任一项的方法,用于由植物壳材料生产纤维产品。
7.权利要求1-6中任一项的方法,用于分离植物壳材料,同时维持已分离的壳材料和/或种子、籽粒或果核的成分的结构完整性。
8.权利要求1-7中任一项的方法,其中除了崩解和/或分离和/或溶解植物壳材料以外,还进行幼苗/幼芽的分离。
9.权利要求1-8中任一项的方法,其中它减慢/抑制植物种子和/或籽粒的成熟。
10.权利要求1-9中任一项的方法,用于崩解/溶解/脱离植物壳材料和植物种子、籽粒和果核之间的中间层。
11.权利要求1-10中任一项的方法,其中获得低气味和/或低味道的壳材料和/或植物产品。
12.权利要求1-11中任一项的方法,其中植物起始材料是植物种子、籽粒或果核的壳材料。
13.权利要求1-12中任一项的方法,用于回收木质素系壳部分和纤维素系纤维。
14.权利要求1-13中任一项的方法,用于制备植物壳材料制剂。
15.权利要求1-14中任一项的方法,用于崩解/分解纤维素系纤维的角质化。
16.权利要求1-15中任一项的方法,用于获得由聚集/复合和缩合蛋白质组成的含蛋白质的沉淀物。
17.通过权利要求1-16中任一项的方法能够获得的含木质素的壳材料。
18.通过权利要求1-16中任一项的方法能够获得的富含木质素的壳部分和/或纤维素系纤维,其油和/或脂肪键合能力>200wt%。
19.通过权利要求14的方法能够获得的植物壳材料制剂。
20.植物壳材料制剂用于壳材料制剂的用途。
21.权利要求17的含木质素的壳材料作为磨蚀和非磨蚀的生物源磨蚀冲刷剂。
CN201880021157.9A 2017-03-28 2018-03-27 植物壳材料与成分的崩解/分离和分解方法,以获得并生产植物成分和植物-基纤维产物 Active CN110536610B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017003177 2017-03-28
DE102017003177.0 2017-03-28
PCT/EP2018/057838 WO2018178116A1 (de) 2017-03-28 2018-03-27 Verfahren zur desintegration/separation sowie aufschluss von pflanzlichen hüllmaterialien und konstituenten zur gewinnung und herstellung von pflanzeninhaltsstoffen und pflanzlichen faserprodukten

Publications (2)

Publication Number Publication Date
CN110536610A true CN110536610A (zh) 2019-12-03
CN110536610B CN110536610B (zh) 2023-02-17

Family

ID=62116811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880021157.9A Active CN110536610B (zh) 2017-03-28 2018-03-27 植物壳材料与成分的崩解/分离和分解方法,以获得并生产植物成分和植物-基纤维产物

Country Status (9)

Country Link
US (1) US20210106040A1 (zh)
EP (1) EP3599901A1 (zh)
CN (1) CN110536610B (zh)
CL (1) CL2019002740A1 (zh)
CO (1) CO2019011981A2 (zh)
MX (1) MX2019011611A (zh)
SG (1) SG11201907827UA (zh)
WO (1) WO2018178116A1 (zh)
ZA (1) ZA201907078B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113334520A (zh) * 2021-04-22 2021-09-03 孙明一 一种香料原料的除杂提纯装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112931885B (zh) * 2021-03-09 2023-11-28 张家界绿源农业综合开发有限公司 一种用于猕猴桃的加工装置

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1285172C (en) * 1986-11-03 1991-06-25 Gobind T. Sadaranganey Process for the production of light coloured food grade protein and dietary fibre from grain by-products
RU2048123C1 (ru) * 1991-12-10 1995-11-20 Николай Николаевич Терещенко Способ производства продукта для диетического питания
AU2704800A (en) * 1999-02-16 2000-09-04 Davorin Bauman A process of obtaining natural antioxidants from plants
JP2001019703A (ja) * 1999-07-08 2001-01-23 Kinichi Seno 緑豆澱粉とその製造手段
WO2002067698A1 (en) * 2001-02-26 2002-09-06 Biovelop International B.V. Process for the fractionation of cereal brans
US6638554B1 (en) * 2002-08-30 2003-10-28 Roberto Gonzalez Barrera Continuous production of an instant corn flour for arepa and tortilla, using an enzymatic precooking
FI20050394A0 (fi) * 2005-04-18 2005-04-18 Cerefi Oy Menetelmä lignoselluloosamateriaalien pääkomponenttien erottamiseksi
CN1901810A (zh) * 2003-11-24 2007-01-24 毕奥维勒普国际有限公司 源自燕麦和大麦谷物的可溶性膳食纤维、制备β -葡聚糖丰富的部分的方法以及该部分在食物、药物和化妆品中的应用
US20070054031A1 (en) * 2005-09-02 2007-03-08 Keshun Liu Methods of extracting, concentrating and fractionating proteins and other chemical components
CN101147617A (zh) * 2007-10-16 2008-03-26 山东省果树研究所 一种核桃仁脱种皮方法
CN101558845A (zh) * 2009-04-16 2009-10-21 陈福库 从燕麦麸皮中提取燕麦淀粉、蛋白粉、β-葡聚糖的方法
CN101607998A (zh) * 2009-05-14 2009-12-23 河南工业大学 小麦麸皮酶工程法转化戊聚糖和膳食纤维的方法
CN101756174A (zh) * 2010-01-19 2010-06-30 陕西科技大学 甜荞麦膳食纤维提取方法
CN102028189A (zh) * 2009-09-28 2011-04-27 芜湖市秦氏糖业有限公司 连续喷射液化酶解法提取稻壳膳食纤维的方法
AU2011374871A1 (en) * 2011-08-09 2014-03-13 Paul DEPOO Resealable spout for selectively accessing coconut water within a coconut
US20150044748A1 (en) * 2012-02-02 2015-02-12 Bühle Barth GmbH Method for Processing Plant Remains
CN105310044A (zh) * 2015-11-04 2016-02-10 邵素英 一种低氰化物含量的苦杏仁及其制备方法
CN105592724A (zh) * 2013-08-29 2016-05-18 雅培公司 具有提高的溶解度和生物利用度的亲脂性化合物的营养组合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919952A (en) * 1986-11-03 1990-04-24 Robin Hood Multifoods Inc. Process for the production of light colored food grade protein and dietary fibre from grainby-products
US20050118693A1 (en) * 2003-10-29 2005-06-02 Thorre Doug V. Process for fractionating seeds of cereal grains
LT2938204T (lt) * 2012-12-27 2017-06-12 Gea Mechanical Equipment Gmbh Vertingų produktų, konkrečiai baltymų, gavimo būdas iš medžiagų natūralių mišinių

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1285172C (en) * 1986-11-03 1991-06-25 Gobind T. Sadaranganey Process for the production of light coloured food grade protein and dietary fibre from grain by-products
RU2048123C1 (ru) * 1991-12-10 1995-11-20 Николай Николаевич Терещенко Способ производства продукта для диетического питания
AU2704800A (en) * 1999-02-16 2000-09-04 Davorin Bauman A process of obtaining natural antioxidants from plants
JP2001019703A (ja) * 1999-07-08 2001-01-23 Kinichi Seno 緑豆澱粉とその製造手段
WO2002067698A1 (en) * 2001-02-26 2002-09-06 Biovelop International B.V. Process for the fractionation of cereal brans
US6638554B1 (en) * 2002-08-30 2003-10-28 Roberto Gonzalez Barrera Continuous production of an instant corn flour for arepa and tortilla, using an enzymatic precooking
CN1901810A (zh) * 2003-11-24 2007-01-24 毕奥维勒普国际有限公司 源自燕麦和大麦谷物的可溶性膳食纤维、制备β -葡聚糖丰富的部分的方法以及该部分在食物、药物和化妆品中的应用
FI20050394A0 (fi) * 2005-04-18 2005-04-18 Cerefi Oy Menetelmä lignoselluloosamateriaalien pääkomponenttien erottamiseksi
US20070054031A1 (en) * 2005-09-02 2007-03-08 Keshun Liu Methods of extracting, concentrating and fractionating proteins and other chemical components
CN101147617A (zh) * 2007-10-16 2008-03-26 山东省果树研究所 一种核桃仁脱种皮方法
CN101558845A (zh) * 2009-04-16 2009-10-21 陈福库 从燕麦麸皮中提取燕麦淀粉、蛋白粉、β-葡聚糖的方法
CN101607998A (zh) * 2009-05-14 2009-12-23 河南工业大学 小麦麸皮酶工程法转化戊聚糖和膳食纤维的方法
CN102028189A (zh) * 2009-09-28 2011-04-27 芜湖市秦氏糖业有限公司 连续喷射液化酶解法提取稻壳膳食纤维的方法
CN101756174A (zh) * 2010-01-19 2010-06-30 陕西科技大学 甜荞麦膳食纤维提取方法
AU2011374871A1 (en) * 2011-08-09 2014-03-13 Paul DEPOO Resealable spout for selectively accessing coconut water within a coconut
US20150044748A1 (en) * 2012-02-02 2015-02-12 Bühle Barth GmbH Method for Processing Plant Remains
CN105592724A (zh) * 2013-08-29 2016-05-18 雅培公司 具有提高的溶解度和生物利用度的亲脂性化合物的营养组合物
CN105310044A (zh) * 2015-11-04 2016-02-10 邵素英 一种低氰化物含量的苦杏仁及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARAKAWA T等: "Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects", 《BIOPHYSICAL CHEMISTRY》 *
张慧君等: "响应面优化酶解法提取亚麻粕蛋白的工艺研究", 《食品工业》 *
潘文洁等: "茭白壳膳食纤维提取工艺及性能的研究", 《食品工业科技》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113334520A (zh) * 2021-04-22 2021-09-03 孙明一 一种香料原料的除杂提纯装置

Also Published As

Publication number Publication date
CO2019011981A2 (es) 2020-01-17
MX2019011611A (es) 2020-01-30
CL2019002740A1 (es) 2020-03-20
US20210106040A1 (en) 2021-04-15
RU2019130986A (ru) 2021-04-28
SG11201907827UA (en) 2019-09-27
WO2018178116A1 (de) 2018-10-04
RU2019130986A3 (zh) 2021-07-05
CN110536610B (zh) 2023-02-17
ZA201907078B (en) 2021-01-27
EP3599901A1 (de) 2020-02-05

Similar Documents

Publication Publication Date Title
EP3372093B2 (en) Process for obtaining citrus fiber from citrus peel
MX2013000857A (es) Proceso para modificar las propiedades de la fibra de citricos.
JP5192139B2 (ja) 大豆の超微粉砕物の製造方法
TW200836640A (en) Method of separating fat from soy materials and compositions produced therefrom
MX2013000858A (es) Proceso para obtener fibra citrico a partir de la pulpa del citrico.
TW200803750A (en) Methods of separating fat from soy materials and compositions produced therefrom
WO2006033697A1 (en) Process of extracting citrus fiber from citrus vesicles
CN101304667A (zh) 高纤维大豆制品及其制备方法
JP2007082415A (ja) ゲル化剤
CN106659205A (zh) 即饮蛋白质饮料
AU2018241915B2 (en) Disintegrated and decompacted cellulose-based vegetable fibre materials use and method for acquisition and production
CN110536610A (zh) 植物壳材料与成分的崩解/分离和分解方法,以获得并生产植物成分和植物-基纤维产物
RU2767338C2 (ru) Способ отделения/разделения компонентов растительного сырья, а также их извлечение
CN1329836A (zh) 无花果袋泡茶及其制造方法
JPH0358770A (ja) 水性ペースト状組成物及びその製造法
RU2772845C2 (ru) Способ дезинтеграции/разделения, а также выщелачивания растительных оболочечных материалов и компонентов для извлечения и получения растительных ингредиентов и растительных волокнистых продуктов
WO2021250154A1 (de) Verwendung einer aktivierbaren pektinhaltigen apfelfaser zur herstellung von erzeugnissen
OA19678A (en) Method for disintegrating/separating and decomposing plant shell materials and constituents in order to obtain and produce plant ingredients and plant fiber products.
TW200816935A (en) Method for manufacturing a γ-aminobutyric acid or a composition containing γ-aminobutyric acid
WO2022029153A1 (de) Verwendung einer aktivierbaren, entesterten fruchtfaser zur herstellung von erzeugnissen
JP2024014778A (ja) キノコ類を原料としたハイドロコロイドの製造方法、キノコ粉製造方法、キノコ類を原料としたハイドロコロイド、及びキノコ粉
WO2022029134A1 (de) Verwendung einer aktivierbaren, entesterten, pektin-konvertierten fruchtfaser zur herstellung von erzeugnissen
CA3221364A1 (en) Dietary fibre preparation from macauba fruit and method of producing same
DE102021122122A1 (de) Pektin-konvertierte Fruchtfaser
JP2002354990A (ja) 沙蒿種子表皮部分の改質方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant