CN110524005B - 一种支化钯银铂纳米环及其制备方法 - Google Patents

一种支化钯银铂纳米环及其制备方法 Download PDF

Info

Publication number
CN110524005B
CN110524005B CN201910907192.7A CN201910907192A CN110524005B CN 110524005 B CN110524005 B CN 110524005B CN 201910907192 A CN201910907192 A CN 201910907192A CN 110524005 B CN110524005 B CN 110524005B
Authority
CN
China
Prior art keywords
silver
palladium
platinum
branched
nanoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910907192.7A
Other languages
English (en)
Other versions
CN110524005A (zh
Inventor
程丝
陆文雅
夏新月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910907192.7A priority Critical patent/CN110524005B/zh
Publication of CN110524005A publication Critical patent/CN110524005A/zh
Application granted granted Critical
Publication of CN110524005B publication Critical patent/CN110524005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种支化钯银铂纳米环及其制备方法。本发明以氯钯酸,硝酸银,氯铂酸作为金属前驱体,抗坏血酸为还原剂,通过置换反应和还原反应一步制备得到一种三金属纳米环。制备的三金属合金纳米粒子为环状形貌,并且表面布满很多台阶原子以及原子缺陷。本发明提供的三金属合金纳米环的制备方法具有条件温和,实验步骤简单,产率高,可大规模生产的特点;得到的产品钯银铂合金纳米环,具有环状形貌和支化结构,纳米粒子表面暴露的大量台阶原子以及缺陷位,可以作为活性位点,有利于提高催化性能。

Description

一种支化钯银铂纳米环及其制备方法
技术领域
本发明涉及一种贵金属纳米材料及其制备方法,特别涉及一种支化钯银铂纳米环及其制备方法,属贵金属纳米材料技术领域。
背景技术
贵金属纳米材料由于其独特的物理化学性质,如磁性,超导性,催化活性,储氢能力等,在电学、光学、热、催化等领域有着广泛的应用前景。同时,贵金属纳米材料的尺寸,形貌和组成在很大程度上影响着它们的理化性能。因此,合理地调控纳米粒子的组成和形貌一直是纳米材料领域的研究热门。目前为止,各种形貌的贵金属纳米粒子已经被制备出来,如球形,棒状,线状,锥形,立方体等等。
纳米环状形貌和传统的块体材料相比,可以有效地增大比表面积以及暴露更多活性原子。研究表明,只有暴露在表面和边缘的原子才能作为有效的催化活性位点,而在块体内部的原子实际上并不能参与到催化反应中。因此,构筑多孔或支化结构可以降低金属载量,提高原子利用率,增强催化活性。同时最近研究表明多金属的纳米合金相较于双金属或单金属的纳米材料更有利于碳-碳键的裂解,这是因为金属合金的形成导致电子结构发生改变而且不同金属元素之间存在协同作用,从而对醇氧化反应展现出优异的催化活性。
目前,关于双金属纳米环的合成有一些报导,多为模板法两步合成,并且合成的多是实心的单金属或双金属纳米环,鲜有关于多金属支化纳米环合成的文献报道。这是因为不同金属元素之间的晶格常数以及还原电位相差较大,要想成功制备多金属,必须仔细协调不同金属间的还原电位和晶格常数等因素。因此,提供一种条件温和,步骤简单的制备多金属合金支化纳米环状结构的方法具有实际意义。
发明内容
本发明针对现有制备金属纳米环状结构存在的不足,提供一种结构独特,催化性能优异的环状支化钯银铂合金纳米粒子及其制备方法。
实现本发明目的的技术方案是提供一种支化钯银铂纳米环的制备方法:将浓度为5~10 mM的氯钯酸溶液、浓度为5~10 mM的硝酸银溶液和浓度为5~10 mM的氯铂酸溶液加入到浓度为5~10 mM的十八烷基三甲基氯化铵溶液中,超声条件下充分混合均匀,再加入浓度为80~100 mM的还原剂抗坏血酸,按摩尔比,十八烷基三甲基氯化铵:氯钯酸:硝酸银:氯铂酸:抗坏血酸为50~100:1~2:0.5~1: 3~6:72~90;在温度为15~20℃的条件下反应,再经离心处理,得到一种具有环状形貌、支化结构、表面暴露有台阶原子和缺陷的钯银铂三金属合金纳米粒子。
在温度为20℃的条件下反应10~14 h,是本发明制备支化钯银铂纳米环的一种优选方案。
本发明技术方案还包括按上述制备方法得到的一种支化钯银铂纳米环。
按本发明技术方案制备的纳米粒子其形貌为环状结构,其成形的机理是:氯化钯在抗坏血酸作用下优先被还原并进一步催化Ag+和Pt4+的还原形成支化的纳米片,溶液中剩余的Pt4+一部分与已经形成的Pd和Ag原子发生置换反应,纳米片的中心部分被刻蚀,一部分与置换出的Pd2+, Ag+共还原并选择性地沉积到边缘区域,最终形成三金属合金纳米环。
由于上述技术方案的实施,本发明的有益效果是:
1.现有技术制备得到的纳米环状粒子多为单金属或双金属的实心纳米环,其制备方法采用的多为模板-刻蚀两步法。本发明采用一步法湿法合成,制备得到一种支化钯银铂三金属合金环状纳米粒子。
2.本发明提供的制备支化钯银铂三金属合金环状纳米粒子的方法,工艺条件温和,通过简单的一步反应就能得到形貌均一的产物,可进行大规模生产。
3.与现有的块体结构相比,本发明提供的支化的环状结构,表面和侧面裸露更多活性原子,提高了原子利用率,有效地增强了醇氧化催化活性。
附图说明
图1为本发明实施例1制备的三金属合金钯银铂纳米环的低分辨和高分辨透射电子显微镜图。
图2为本发明实施例1中制备的纳米环的原子力显微分析,图2中的a为原子力显微镜扫描图,图2中的b为a中对应的纳米环的厚度,横坐标为位置 Position (nm), 纵坐标为厚度 Height (nm)。
图3为本发明实施例1提供的产物纳米环的电催化氧化乙醇的性能图;在图3中,横坐标为电位Potential/V vs SCE,纵坐标为质量电流密度Current Density /(mA mg-1)。
具体实施方式
下面结合附图和实施例对本发明技术方案作进一步的阐述。
实施例1
将1.42 g十八烷基三甲基氯化铵,200 mL水加入到250 mL玻璃瓶中,混合均匀,分别加入浓度为8 mM氯钯酸溶液4 mL,硝酸银溶液2mL, 氯铂酸溶液12 mL, 超声处理10min,充分混合均匀,再加入18 mL 浓度为 80 mM的抗坏血酸溶液,在20 ℃水浴条件下反应14 h,离心浓缩后得到钯银铂纳米环。
将制得纳米粒子进行形貌分析,参见附图1,为本实施例制备的三金属合金钯银铂纳米环的低分辨和高分辨透射电子显微镜图,图1中的a的透射电子显微镜图显示,粒子直径约137 nm,呈现支化的环状结构,环宽~49 nm;图1中的b~d 为环状纳米粒子的高分辨透射电子显微镜图,从图中可以看出粒子的表面和边缘布满了很多原子缺陷,栾晶边界以及台阶原子。
参见附图2,为本实施例中制备的纳米环的原子力显微分析,其中,图2中的a为原子力显微镜扫描图,图2中的b为a图中对应的切线截面厚度,横坐标为位置 Position(nm), 纵坐标为厚度 Height (nm),纳米粒子的环厚度~40 nm。
实施例2
以实施例1合成的钯银铂纳米环为催化剂,在1 M 氢氧化钾 + 1 M 乙醇的溶液中测试其对乙醇的电催化氧化性能。
参见附图3,为实施例1提供的产物纳米环的电催化氧化乙醇的性能图;在图3中,横坐标为电位Potential/V vs SCE,纵坐标为质量电流密度Current Density /(mA mg-1);图3中的a为钯银铂纳米环与商业Pt/C催化剂的电催化乙醇氧化活性对比图,从图中可以看出,本发明合成的纳米环具有良好的电催化活性,其最大电流密度为2190 mA mg-1,是商业Pt/C催化剂的3.2倍;图3中的b为纳米环与商业Pt/C催化剂的电催化乙醇氧化稳定性对比图,测试结果表明,经过3600 s的测试以后纳米环依然保持了37 %的活性,而商业Pt/C催化剂只保留了2 %的活性。

Claims (3)

1.一种支化钯银铂纳米环的制备方法,其特征在于:将浓度为5~10 mM的氯钯酸溶液、浓度为5~10 mM的硝酸银溶液和浓度为5~10 mM的氯铂酸溶液加入到浓度为5~10 mM的十八烷基三甲基氯化铵溶液中,超声条件下充分混合均匀,再加入浓度为80~100 mM的还原剂抗坏血酸,按摩尔比,十八烷基三甲基氯化铵:氯钯酸:硝酸银: 氯铂酸:抗坏血酸为50~100:1~2:0.5~1: 3~6:72~90;在温度为15~20℃的条件下反应,再经离心处理,得到一种具有环状形貌、支化结构、表面暴露有台阶原子和缺陷的钯银铂三金属合金纳米粒子。
2.根据权利要求1所述的一种支化钯银铂纳米环的制备方法,其特征在于:在温度为20℃的条件下反应10~14 h。
3.按权利要求1制备方法得到的一种支化钯银铂纳米环。
CN201910907192.7A 2019-09-24 2019-09-24 一种支化钯银铂纳米环及其制备方法 Active CN110524005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910907192.7A CN110524005B (zh) 2019-09-24 2019-09-24 一种支化钯银铂纳米环及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910907192.7A CN110524005B (zh) 2019-09-24 2019-09-24 一种支化钯银铂纳米环及其制备方法

Publications (2)

Publication Number Publication Date
CN110524005A CN110524005A (zh) 2019-12-03
CN110524005B true CN110524005B (zh) 2022-06-07

Family

ID=68669993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910907192.7A Active CN110524005B (zh) 2019-09-24 2019-09-24 一种支化钯银铂纳米环及其制备方法

Country Status (1)

Country Link
CN (1) CN110524005B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115815612A (zh) * 2022-10-22 2023-03-21 上海微淳生物科技有限公司 一种环状金银纳米颗粒的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588678A (zh) * 2015-01-09 2015-05-06 中国科学院合肥物质科学研究院 金-银复合纳米环的制备方法
KR101527522B1 (ko) * 2014-01-16 2015-06-18 주식회사 효성 은 나노 고리의 제조방법 및 그에 따라 제조된 은 나노 고리
CN104985178A (zh) * 2015-07-06 2015-10-21 宁波大学 一种银核金壳六边纳米环的制备方法
CN105473256A (zh) * 2013-11-28 2016-04-06 Lg化学株式会社 中空金属粒子、包含所述中空金属粒子的电极催化剂、包含所述电极催化剂的电化学电池,以及制备中空金属粒子的方法
CN105478797A (zh) * 2015-12-29 2016-04-13 浙江大学 一种金纳米环的制备方法
CN106735291A (zh) * 2016-12-01 2017-05-31 苏州大学 一种树枝状二维钯银纳米片及其制备方法
CN107414069A (zh) * 2017-08-07 2017-12-01 国家纳米科学中心 银纳米圆片、其制备方法及采用其制备的金纳米环和组装体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358648B2 (ja) * 2010-11-05 2013-12-04 田中貴金属工業株式会社 免疫学的測定用青色金ナノ粒子、その製造方法およびそれを用いた測定方法
CN102554262B (zh) * 2012-02-23 2013-10-09 山东大学 一种中空多孔球形铂银合金纳米材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473256A (zh) * 2013-11-28 2016-04-06 Lg化学株式会社 中空金属粒子、包含所述中空金属粒子的电极催化剂、包含所述电极催化剂的电化学电池,以及制备中空金属粒子的方法
KR101527522B1 (ko) * 2014-01-16 2015-06-18 주식회사 효성 은 나노 고리의 제조방법 및 그에 따라 제조된 은 나노 고리
CN104588678A (zh) * 2015-01-09 2015-05-06 中国科学院合肥物质科学研究院 金-银复合纳米环的制备方法
CN104985178A (zh) * 2015-07-06 2015-10-21 宁波大学 一种银核金壳六边纳米环的制备方法
CN105478797A (zh) * 2015-12-29 2016-04-13 浙江大学 一种金纳米环的制备方法
CN106735291A (zh) * 2016-12-01 2017-05-31 苏州大学 一种树枝状二维钯银纳米片及其制备方法
CN107414069A (zh) * 2017-08-07 2017-12-01 国家纳米科学中心 银纳米圆片、其制备方法及采用其制备的金纳米环和组装体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation";Lv, Hao,等;《Chemical science》;20190221;第1986-1993页 *

Also Published As

Publication number Publication date
CN110524005A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Zhang et al. Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions
Yun et al. Synthesis of PdM (M= Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation
Xu et al. Facile fabrication of novel PdRu nanoflowers as highly active catalysts for the electrooxidation of methanol
Lu et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires
Huang et al. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties
Cao et al. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells
Xiang et al. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction
Chao et al. Design of noble metal electrocatalysts on an atomic level
Xu et al. Sub-5nm monodispersed PdCu nanosphere with enhanced catalytic activity towards ethylene glycol electrooxidation
Raghavendra et al. Reduced graphene oxide-supported Pd@ Au bimetallic nano electrocatalyst for enhanced oxygen reduction reaction in alkaline media
Feng et al. One-pot fabrication of reduced graphene oxide supported dendritic core-shell gold@ gold-palladium nanoflowers for glycerol oxidation
CN111224117A (zh) 一种纳米线结构Pt合金催化剂及其制备方法与应用
Xie et al. Facile synthesis of platinum-rhodium alloy nanodendrites as an advanced electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions
Gao et al. Facile synthesis of low-dimensional pdpt nanocrystals for high-performance electrooxidation of C 2 alcohols
Xiong et al. Concave Pd–Ru nanocubes bounded with high active area for boosting ethylene glycol electrooxidation
You et al. Tunable long-chains of core@ shell PdAg@ Pd as high-performance catalysts for ethanol oxidation
Gao et al. Trimetallic platinum-nickel-palladium nanorods with abundant bumps as robust catalysts for methanol electrooxidation
CN110576189B (zh) 一种铑铂核壳双金属纳米枝的制备方法及应用
Liu et al. Defect-rich ultrathin AuPd nanowires with Boerdijk–Coxeter structure for oxygen reduction electrocatalysis
Jin et al. Modification of Ag nanoparticles/reduced graphene oxide nanocomposites with a small amount of Au for glycerol oxidation
Yang et al. Surface-limited synthesis of Pt nanocluster decorated Pd hierarchical structures with enhanced electrocatalytic activity toward oxygen reduction reaction
Lopez-Coronel et al. Highly active PdNi bimetallic nanocubes electrocatalysts for the ethylene glycol electro-oxidation in alkaline medium
CN110524005B (zh) 一种支化钯银铂纳米环及其制备方法
Wang et al. One-pot synthesis of PdPtAg porous nanospheres with enhanced electrocatalytic activity toward polyalcohol electrooxidation
Zou et al. One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant