CN110523409A - 一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法 - Google Patents

一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法 Download PDF

Info

Publication number
CN110523409A
CN110523409A CN201910883348.2A CN201910883348A CN110523409A CN 110523409 A CN110523409 A CN 110523409A CN 201910883348 A CN201910883348 A CN 201910883348A CN 110523409 A CN110523409 A CN 110523409A
Authority
CN
China
Prior art keywords
tio
graphene
adulterates
coating
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910883348.2A
Other languages
English (en)
Other versions
CN110523409B (zh
Inventor
简明德
练国富
刘成武
书铁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN201910883348.2A priority Critical patent/CN110523409B/zh
Publication of CN110523409A publication Critical patent/CN110523409A/zh
Application granted granted Critical
Publication of CN110523409B publication Critical patent/CN110523409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法,1)对工件进行预处理;2)制备石墨烯掺杂Ag/TiO2复合浆料;3)将浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;4)采用真空感应烧结法,将形成基层后的工件置于烧结模具中,烧结后在工件表面形成预置层;5)将带有预置层的工件置于激光加工设备中进行激光熔覆,即得石墨烯掺杂Ag/TiO2光催化涂层。本发明方法提供的石墨烯掺杂Ag/TiO2光催化涂层,能够解决缩短催化剂的禁带宽度使吸收光谱向可见光扩展来提高太阳能利用率的问题。本发明充分利用掺杂物的性质,增强三组分的协同效应,提高复合材料的光催化性能,增加对污染物的降解效率。

Description

一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法
技术领域
本发明涉及光催化涂层领域,尤其涉及一种石墨烯掺杂Ag/TiO2 光催化涂层及其制备方法。
背景技术
近几年,由于光催化剂在各个领域都有潜在的应用价值,研究人员在发展新型光催化剂方面已经付出了巨大的努力。二氧化钛是一种无毒无害来源广泛的光催化材料,与其他半导体催化材料(CdS,SnO,ZnO,ZnS等等)相比,其光化学性能更加稳定,具有更高的催化效率和强氧化能力,综合考虑各方面的因素,TiO2 具有氧化能力强、降解完全和可以重复使用等优点,在污水处理、光电转换、清洁材料的制备等方面备受关注。 TiO2 因其自身无毒、廉价、无腐蚀性、广谱适用性强、光催化活性高、化学性质稳定等特点而成为广大科学工作者热门研究的光催化材料;更因其可以重复利用,且可能直接利用太阳光源作为反应光源等特点而被广泛应用于光催化降解有机污染物,是一种具有广阔发展及利用前景的绿色环境治理材料,已经成为最有应用前景的光催化剂。但TiO2的带隙较宽(约 3.2eV),只能在波长小于 378 nm 的紫外区显示光化学活性,对太阳能的利用率小于10%,同时其光生电子和空穴容易发生复合,而具有光氧化作用,从而降低光催化效率,这一性质使其推广应用受到限制。掺杂如金属离子,阴离子,不同半导体复合及贵金属修饰等方法提高光谱响应红移的一种有效办法,尤其是浅能级杂质掺杂更易将光谱响应移到可见光甚至近红外光范围,贵金属、过渡金属、稀土金属和镧系金属等掺杂 TiO2 形成的异质结光催化剂对光解水制氢、光降解有机物、CO 甲烷化和选择性有机燃料合成等反应体系具有优异的光催化活性和稳定性。相对于纯 TiO2光催化剂的用途更为广泛,不仅可用于光催化降解水中的污染物,还可用作光降解薄膜、抗菌涂料等的填料。因此,如何通过掺杂来提高 TiO2 光催化活性是研究其光催化技术实用的关键。金属/非金属掺杂是降低 TiO 2 的带隙能和提高光能吸收能力的重要途径之一。
贵金属颗粒和半导体接触界面会形成肖特基势垒使电子从半导体向金属迁移,抑制电子和空穴的复合;贵金属表面的等离子共振效应也会增强对可见光的吸收,从而拓展TiO2的光响应范围。银系材料作为优良的无机抗菌剂被广泛应用于多个领域,同时也是一种重要的无机光敏剂材料。相比 Pt、Au 和 Rh 等贵金属,通过控制银纳米粒子的结构、尺寸、形状等调整等离子体共振波长和共振强度,从而拓宽光催化剂吸收波长的响应范围,实现对可见光的有效利用。Ag在制备过程中更容易发生氧化和还原反应,更有利于纳米颗粒的形成,并且 Ag 的价格较为低廉,更适合实际应用。
石墨烯是一种新型的单原子厚度的二维石墨材料,其比表面积高达2600 m2/g,其特殊的二维平面结构及π-π 共轭体系对染料有较强的吸附作用,使染料分子和负载在GO 表面的半导体光催化剂充分接触,使光催化过程更容易进行。其次,其良好的导电性及化学稳定性,使其可以充当电子传递的桥梁,降低半导体光催化剂光生电子与空穴的复合几率,从而增大光催化剂的光电活性。同时,石墨烯在复合物中起到掺杂的作用,将降低半导体光催化剂的禁带宽度, 加强复合物在可见光区域的光催化性能。
发明内容
针对现有纯TiO2 存在催化剂量子产率低和带隙过宽而导致的光学响应范围较窄,只能被紫外光激发, 对太阳能利用率低等缺陷,限制了其在实际生产中的应用,本发明提供一种石墨烯掺杂Ag/TiO2 光催化涂层及其制备方法,解决缩短催化剂的禁带宽度使吸收光谱向可见光扩展来提高太阳能利用率的问题。
为了达到上述目的,本发明采用以下技术方案:
一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备石墨烯掺杂Ag/TiO2复合浆料;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,烧结后在工件表面形成预置层;
5)将带有预置层的工件置于激光加工设备中进行激光熔覆,即得石墨烯掺杂Ag/TiO2光催化涂层。
步骤1)中,工件表面预先进行打磨,并辅之以丙酮和无水乙醇清洗除去基材表面的油污。
步骤2)所述石墨烯掺杂Ag/TiO2复合浆料的制备方法如下:将石墨烯粉末、Ag、TiO2按质量份数混合后放入球磨机中球磨2-2.5 h,然后加入粘接剂溶液均匀混合,得到石墨烯掺杂Ag/TiO2复合浆料。
进一步的,所述石墨烯粉末、Ag、TiO2的质量比为1:3:16。
所述粘接剂溶液为质量百分比为3- 5%的聚乙烯醇水溶液或环氧聚酯粉末涂料。
步骤4)所述烧结的工艺参数如下:加热功率 10~50kW,升温速率 10~30℃/min,烧结温度 980~1200℃,基体预热温度 200~400℃,峰值温度保温时间 20~360min。
步骤5)所述激光熔覆的工艺参数如下:激光束功率为130-170W,扫描速度 800-1200 mm/s,扫描间距0.04-0.08mm,铺粉厚度 20-50μm,光斑直径0.05-0.15mm,氩气100-300ppm,搭接率10~80μm,成形型态为平行或斜角45度。
本发明采用以上技术方案,与其它TiO2光催化涂层相比具有下列优点和有益效果:采用真空加热烧结法制备石墨烯掺杂Ag/TiO2 复合材料涂层用于光催化降解有毒废气--甲苯。在石墨烯掺杂Ag/TiO2混合体系中,Ag具有无毒、相对价廉、改性效果明显等特点, 通过掺杂 Ag 可以提高 TiO2催化活性。引入石墨烯,因石墨烯具有较大的比表面积并且表面拥有较多的 π 电子可以和甲苯分子发生 π-π 键共轭作用,能够吸附更多的甲苯分子,并且石墨烯的掺杂能显著提高复合材料的光催化活性。在可见光条件下,石墨烯掺杂Ag/TiO2复合材料对甲苯的降解率远高于纯TiO2。本发明提出的石墨烯掺杂Ag/TiO2粉末复合材料,可以充分利用掺杂物的性质,增强三组分的协同效应,提高复合材料的光催化性能,增加对污染物的降解效率,不仅能将废水中的有机污染物催化降解为H2O和CO2,对空气中如甲醛、甲苯等易挥发性有机污染物同样具有较好的降解效果。本发明具有很强的可见光响应,利用光子晶体的慢光子效应,增强了可见光化学反应,异相结构有利于光生载流子的分离,提高了可见光催化能力。
本发明在可见光和太阳光为光源的条件下,可用于光催化降解有机污染物和光催化分解水制氢,也可直接应用于纺织、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中,具有广阔的应用前景。
具体实施方式
一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,包括以下步骤:
1)清理掉工件表面的灰尘后,对工件表面预先进行打磨,并辅之以丙酮和无水乙醇清洗除去基材表面的油污;
2)制备石墨烯掺杂Ag/TiO2复合浆料:将石墨烯粉末、Ag、TiO2按质量比为1:3:16混合后放入球磨机中球磨2-2.5 h,然后加入粘接剂溶液均匀混合,得到石墨烯掺杂Ag/TiO2复合浆料;
所述粘接剂溶液为质量百分比为3- 5%的聚乙烯醇水溶液或环氧聚酯粉末涂料;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,烧结后在工件表面形成预置层,所述烧结的工艺参数如下:加热功率 10~50kW,升温速率 10~30℃/min,烧结温度 980~1200℃,基体预热温度 200~400℃,峰值温度保温时间 20~360min;
5)将带有预置层的工件置于激光加工设备中进行激光熔覆,即得石墨烯掺杂Ag/TiO2光催化涂层,所述激光熔覆的工艺参数如下:激光束功率为130-170W,扫描速度 800-1200mm/s,扫描间距0.04-0.08mm,铺粉厚度 20-50μm,光斑直径0.05-0.15mm,氩气100-300ppm,搭接率10~80μm,成形型态为平行或斜角45度。
实施例1
一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,包括以下步骤:
1)清理掉工件表面的灰尘后,对工件表面预先进行打磨,并辅之以丙酮和无水乙醇清洗除去基材表面的油污;
2)制备石墨烯掺杂Ag/TiO2复合浆料:将石墨烯粉末、Ag、TiO2按质量比为1:3:16混合后放入球磨机中球磨2h,然后加入粘接剂溶液均匀混合,得到石墨烯掺杂Ag/TiO2复合浆料;
所述粘接剂溶液为质量百分比为3%的聚乙烯醇水溶液;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,烧结后在工件表面形成预置层,所述烧结的工艺参数如下:加热功率30kW,升温速率20℃/min,烧结温度1100℃,基体预热温度300℃,峰值温度保温时间 180min;
5)将带有预置层的工件置于激光加工设备中进行激光熔覆,即得石墨烯掺杂Ag/TiO2光催化涂层,所述激光熔覆的工艺参数如下:激光束功率为150W,扫描速度1000 mm/s,扫描间距0.06mm,铺粉厚度35μm,光斑直径0.10mm,氩气200ppm,搭接率45μm,成形型态为平行。
实施例2
一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,包括以下步骤:
1)清理掉工件表面的灰尘后,对工件表面预先进行打磨,并辅之以丙酮和无水乙醇清洗除去基材表面的油污;
2)制备石墨烯掺杂Ag/TiO2复合浆料:将石墨烯粉末、Ag、TiO2按质量比为1:3:16混合后放入球磨机中球磨2.5 h,然后加入粘接剂溶液均匀混合,得到石墨烯掺杂Ag/TiO2复合浆料;
所述粘接剂溶液为质量百分比为5%的聚乙烯醇水溶液;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,烧结后在工件表面形成预置层,所述烧结的工艺参数如下:加热功率 10kW,升温速率 10℃/min,烧结温度1200℃,基体预热温度 200℃,峰值温度保温时间 360min;
5)将带有预置层的工件置于激光加工设备中进行激光熔覆,即得石墨烯掺杂Ag/TiO2光催化涂层,所述激光熔覆的工艺参数如下:激光束功率为130W,扫描速度 800 mm/s,扫描间距0.04mm,铺粉厚度 20μm,光斑直径0.05mm,氩气100ppm,搭接率10μm,成形型态为斜角45度。
实施例3
一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,包括以下步骤:
1)清理掉工件表面的灰尘后,对工件表面预先进行打磨,并辅之以丙酮和无水乙醇清洗除去基材表面的油污;
2)制备石墨烯掺杂Ag/TiO2复合浆料:将石墨烯粉末、Ag、TiO2按质量比为1:3:16混合后放入球磨机中球磨2.5 h,然后加入粘接剂溶液均匀混合,得到石墨烯掺杂Ag/TiO2复合浆料;
所述粘接剂溶液为环氧聚酯粉末涂料;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,烧结后在工件表面形成预置层,所述烧结的工艺参数如下:加热功率50kW,升温速率 10℃/min,烧结温度 980℃,基体预热温度400℃,峰值温度保温时间 100min;
5)将带有预置层的工件置于激光加工设备中进行激光熔覆,即得石墨烯掺杂Ag/TiO2光催化涂层,所述激光熔覆的工艺参数如下:激光束功率为170W,扫描速度1200 mm/s,扫描间距0.08mm,铺粉厚度50μm,光斑直径0.15mm,氩气300ppm,搭接率80μm,成形型态为平行。
取石墨烯掺杂Ag/TiO2光催化涂层的用量为 0.20 g,放于200ml浓度为10mg /L的罗丹明 B水溶液中,置于光反应器中,电磁搅拌 10min后,开启反应器中心的光源为 250W 的日光色镝灯汞灯并在功率 300 W 紫外光下光照, 进行光催化实验。考察光催化涂层对罗丹明 B的降解率。
实验结果显示:1、本发明制备的石墨烯掺杂Ag/TiO2光催化涂层对浓度为10 mg/L罗丹明 B 溶液的光催化降解, 在光照 3h 后降解率达到98%,催化剂重复使用4次后,罗丹明 B的降解率仍在 90%以上。
2、本发明制备的石墨烯掺杂Ag/TiO2光催化涂层对罗丹明 B 的降解率相比 TiO2涂层对罗丹明 B 的降解率分别为 98%和 76%,说明石墨烯掺杂Ag/TiO2能够有效地提高TiO2薄膜的光催化活性。
本发明与现有技术比较还具有以下优点 :
1.本发明制备的石墨烯掺杂Ag/TiO2光催化涂层可以实现太阳能聚光装置日光辐照,可见光区(约530 nm附近) Ag纳米颗粒的局部表面等离子共振(LSPR)
波效应, 提高了对可见光的吸收,提高太阳能去污效率、改进催化剂,使反应的响应光谱向可见光扩展,从而使含有机废水快速、彻底地降解。
2、 本发明制备的石墨烯掺杂Ag/TiO2光催化涂层,为反应物分子提供更多的反应活性位, 增强催化剂对可见光的吸收并能增大比表面积,吸收光谱的红移及颗粒细化, 提高载流子的迁移速率,从而改善对光敏性差的有机染料污染物的光催化活性。

Claims (8)

1.一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其特征在于:其包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备石墨烯掺杂Ag/TiO2复合浆料;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,烧结后在工件表面形成预置层;
5)将带有预置层的工件置于激光加工设备中进行激光熔覆,即得石墨烯掺杂Ag/TiO2光催化涂层。
2.根据权利要求1所述的一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其特征在于:步骤1)中,工件表面预先进行打磨,并辅之以丙酮和无水乙醇清洗除去基材表面的油污。
3.根据权利要求1所述的一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其特征在于:步骤2)所述石墨烯掺杂Ag/TiO2复合浆料的制备方法如下:将石墨烯粉末、Ag、TiO2按质量份数混合后放入球磨机中球磨2-2.5h,然后加入粘接剂溶液均匀混合,得到石墨烯掺杂Ag/TiO2复合浆料。
4.根据权利要求3所述的一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其特征在于:所述石墨烯粉末、Ag、TiO2的质量比为1:3:16。
5.根据权利要求3所述的一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其特征在于:所述粘接剂溶液为质量百分比为3- 5%的聚乙烯醇水溶液或环氧聚酯粉末涂料。
6.根据权利要求1所述的一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其特征在于:步骤4)所述烧结的工艺参数如下:加热功率 10~50kW,升温速率 10~30℃/min,烧结温度980~1200℃,基体预热温度 200~400℃,峰值温度保温时间 20~360min。
7.根据权利要求1所述的一种石墨烯掺杂Ag/TiO2光催化涂层的制备方法,其特征在于:步骤5)所述激光熔覆的工艺参数如下:激光束功率为130-170W,扫描速度 800-1200 mm/s,扫描间距0.04-0.08mm,铺粉厚度 20-50μm,光斑直径0.05-0.15mm,氩气100-300ppm,搭接率10~80μm,成形型态为平行或斜角45度。
8.根据权利要求1-7任一方法得到的石墨烯掺杂Ag/TiO光催化涂层。
CN201910883348.2A 2019-09-18 2019-09-18 一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法 Active CN110523409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910883348.2A CN110523409B (zh) 2019-09-18 2019-09-18 一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910883348.2A CN110523409B (zh) 2019-09-18 2019-09-18 一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN110523409A true CN110523409A (zh) 2019-12-03
CN110523409B CN110523409B (zh) 2022-07-19

Family

ID=68669227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910883348.2A Active CN110523409B (zh) 2019-09-18 2019-09-18 一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110523409B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036234A (zh) * 2019-12-05 2020-04-21 福建工程学院 一种光催化剂复合涂层及其制备工艺
CN113813944A (zh) * 2021-10-22 2021-12-21 上海科技大学 一种单原子铑催化剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861575A (zh) * 2014-02-27 2014-06-18 常州耀春格瑞纺织品有限公司 一种掺杂改性TiO2/石墨烯复合材料的制备方法
CN105382251A (zh) * 2015-11-07 2016-03-09 大连理工大学 一种固结预置碳纳米管共混金属纳米粉末的激光熔覆涂层方法
CN105386040A (zh) * 2015-11-27 2016-03-09 西北有色金属研究院 一种在钛合金表面制备wc/石墨复合涂层的方法
CN106861688A (zh) * 2017-03-16 2017-06-20 福建工程学院 一种石墨烯‑Au‑TiO2多元复合纳米管材料的制备方法
CN107930617A (zh) * 2017-11-29 2018-04-20 江南大学 一种具有高催化降解活性的钨掺杂TiO2/石墨烯复合物的制法
CN108677183A (zh) * 2018-05-03 2018-10-19 福建工程学院 一种纳米粉末制备复合涂层的工艺
CN109300572A (zh) * 2018-09-26 2019-02-01 福建工程学院 纳米银掺杂石墨烯的车用玻璃除雾线导电浆料及制备方法
CN109364992A (zh) * 2018-10-16 2019-02-22 中国科学院上海硅酸盐研究所 一种氮掺杂石墨烯/纳米二氧化钛光催化剂及其制备方法和应用
CN109482179A (zh) * 2018-11-28 2019-03-19 华东理工大学 TiO2/石墨烯/纳米银复合光催化剂的制备及其对甲醛的降解
CN109647384A (zh) * 2019-01-31 2019-04-19 河北宇轩纳米科技有限责任公司 石墨烯负载纳米TiO2/Ag光催化复合材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861575A (zh) * 2014-02-27 2014-06-18 常州耀春格瑞纺织品有限公司 一种掺杂改性TiO2/石墨烯复合材料的制备方法
CN105382251A (zh) * 2015-11-07 2016-03-09 大连理工大学 一种固结预置碳纳米管共混金属纳米粉末的激光熔覆涂层方法
CN105386040A (zh) * 2015-11-27 2016-03-09 西北有色金属研究院 一种在钛合金表面制备wc/石墨复合涂层的方法
CN106861688A (zh) * 2017-03-16 2017-06-20 福建工程学院 一种石墨烯‑Au‑TiO2多元复合纳米管材料的制备方法
CN107930617A (zh) * 2017-11-29 2018-04-20 江南大学 一种具有高催化降解活性的钨掺杂TiO2/石墨烯复合物的制法
CN108677183A (zh) * 2018-05-03 2018-10-19 福建工程学院 一种纳米粉末制备复合涂层的工艺
CN109300572A (zh) * 2018-09-26 2019-02-01 福建工程学院 纳米银掺杂石墨烯的车用玻璃除雾线导电浆料及制备方法
CN109364992A (zh) * 2018-10-16 2019-02-22 中国科学院上海硅酸盐研究所 一种氮掺杂石墨烯/纳米二氧化钛光催化剂及其制备方法和应用
CN109482179A (zh) * 2018-11-28 2019-03-19 华东理工大学 TiO2/石墨烯/纳米银复合光催化剂的制备及其对甲醛的降解
CN109647384A (zh) * 2019-01-31 2019-04-19 河北宇轩纳米科技有限责任公司 石墨烯负载纳米TiO2/Ag光催化复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIN XIAO ET AL.: "Facile synthesis of mesoporous titanium dioxide doped by Ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation", 《RSC ADVANCES》 *
WENHAO WANG ET AL.: "Enhanced photoresponse and photocatalytic activities of graphene quantum dots sensitized Ag/TiO2 thin film", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
李静等: "Ag—GO—Ti02复合薄膜光催化降解双酚A", 《天津师范大学学报(自然科学版)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036234A (zh) * 2019-12-05 2020-04-21 福建工程学院 一种光催化剂复合涂层及其制备工艺
CN111036234B (zh) * 2019-12-05 2023-05-02 福建工程学院 一种光催化剂复合涂层及其制备工艺
CN113813944A (zh) * 2021-10-22 2021-12-21 上海科技大学 一种单原子铑催化剂及其制备方法和应用
CN113813944B (zh) * 2021-10-22 2024-03-15 上海科技大学 一种单原子铑催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN110523409B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
Chen et al. Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: enhanced photocatalytic activities for water purification
Feng et al. Synthesis of branched WO3@ W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance
Sun et al. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance
Tang et al. In-situ fabrication of Z-scheme CdS/BiOCl heterojunctions with largely improved photocatalytic performance
US20180264440A1 (en) A composite photocatalyst, preparation method hereof and use thereof
CN103785434B (zh) 一种g-C3N4纳米片/CdS复合可见光催化剂
Smith et al. Quasi-core-shell TiO 2/WO 3 and WO 3/TiO 2 nanorod arrays fabricated by glancing angle deposition for solar water splitting
Lei et al. Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes
Yu et al. Facile synthesis of Bi-modified Nb-doped oxygen defective BiOCl microflowers with enhanced visible-light-driven photocatalytic performance
Li et al. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation
Cheng et al. Efficient Photocatalytic Hydrogen Evolution via Band Alignment Tailoring: Controllable Transition from Type‐I to Type‐II
Zhao et al. Efficient visible light photocatalytic activity of p–n junction CuO/TiO 2 loaded on natural zeolite
Rashid et al. ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater
CN103191766A (zh) CdS/g-C3N4复合可见光催化剂、制备方法及应用
CN109225273B (zh) 一种硫化铜/硫化钨复合光催化剂及其制备方法
CN104785280A (zh) 一种片状二氧化钛/溴氧化铋复合光催化剂及其制备方法
Bai et al. Synthesis and photocatalytic properties of palladium-loaded three dimensional flower-like anatase TiO2 with dominant {0 0 1} facets
Kong et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance
Lee et al. Synthesis and characterization of ZnO/TiO 2 photocatalyst decorated with PbS QDs for the degradation of aniline blue solution
Liu et al. S-scheme heterojunction ZnO/g-C3N4 shielding polyester fiber composites for the degradation of MB
CN110523409A (zh) 一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法
CN108579768B (zh) 少层MoS2修饰Ag-TiO2纳米复合薄膜的制备方法
Wang et al. Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures
Wang et al. Synthesis, characterization and photocatalytic activity of TiO2 film/Bi2O3 microgrid heterojunction
Asjad et al. An intriguing case of morphology control and phase transitions in TiO2 nanostructures with enhanced photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant