CN110519037B - 超混沌伪随机序列的图像加密方法 - Google Patents

超混沌伪随机序列的图像加密方法 Download PDF

Info

Publication number
CN110519037B
CN110519037B CN201910678184.XA CN201910678184A CN110519037B CN 110519037 B CN110519037 B CN 110519037B CN 201910678184 A CN201910678184 A CN 201910678184A CN 110519037 B CN110519037 B CN 110519037B
Authority
CN
China
Prior art keywords
image
sequence
values
value
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910678184.XA
Other languages
English (en)
Other versions
CN110519037A (zh
Inventor
朱幼莲
黄成�
宋伟
徐建博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Laite Beidou Information Technology Co ltd
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201910678184.XA priority Critical patent/CN110519037B/zh
Publication of CN110519037A publication Critical patent/CN110519037A/zh
Application granted granted Critical
Publication of CN110519037B publication Critical patent/CN110519037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • H04L9/0656Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
    • H04L9/0662Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/44Secrecy systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Image Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本发明公开了一种超混沌伪随机序列的图像加密方法,首先选定四阶超混沌Chen系统,产生超混沌伪随机序列,把超混沌伪随机序列的初值作为密钥;其次对图像进行预处理并定义图像行列变换关系,对图像的行列做进一步的扰乱处理,行列变换关系的参数由超混沌伪随机序列动态确定;再次定义图像像素值的变换关系,变换关系的参数由超混沌伪随机序列动态确定;最后对变换后的图像进行加密得到加密图像。本发明可灵活、方便地产生初始敏感性、随机性、平稳性和自相关等特性更好的伪随机序列,从而得到更好的密钥;对图像像素的位置及像素值进行动态扰乱进一步降低了图像的相关性,进一步提高了保密效果,可满足用户对图像加密的更高要求,实用性更强。

Description

超混沌伪随机序列的图像加密方法
技术领域
本发明属于混沌伪随机序列产生和图像加密技术领域,具体涉及超混沌伪随机序列的产生即密钥的生成及图像变换方法。本发明的序列产生及图像变换方法尤其适用于图像加密领域。
背景技术
图像加密包含两个过程,一是选择密钥即密钥的生成,二是像素位置和像素值的变换即密钥的使用。当前,非线性学科中经常被探讨的方向之一就是混沌系统,混沌系统的随机性、平稳性、初始敏感性等特点,在加密措施中得到广泛应用。但是,由于混沌序列的周期性退化,尤其是低维混沌映射的混沌序列其周期退化更为明显,所以基于低维混沌系统的伪随机序列用于图像加密是不安全的。为了提高加密的安全性,常采用不同的方法来提高混沌伪随机序列生成方法的安全性。这些方法可分为两类:一类是利用高维混沌映射或多重混沌映射相结合来提高算法的安全性;另一类是将混沌映射与其它技术相结合来提高算法的安全性。这两类都存在共性问题,即混沌系统迭代方程时计算量大,导致加密算法效率不高,实用性不强。
发明内容
1、本发明的目的
本发明要解决的技术问题是提供一种有效的图像加密方法,以满足用户对图像加密的更高要求。为解决上述技术问题,本发明提供了一种超混沌伪随机序列的加密方法。
2、本发明所采用的技术方案
本发明公开了一种超混沌伪随机序列的图像加密方法,包括如下步骤:
步骤1、采用四阶超混沌Chen系统产生伪随机序列,所述的四阶超混沌Chen系统是一个四阶微分方程
Figure GDA0004015584960000021
公式(1)中的x'1,x'2,x'3,x'4为状态参量,x1,x2,x3,x4为系统参量,w1、w2、w3、w4、w5均为系统参数;设定四个初值x1_0、x2_0、x3_0、x4_0,并提供初始时间点t_0、结束时间点t_1,以及步长h,对公式(1)用四阶Runge-Kutta进行求解,输出超混沌伪随机序列{x1}、{x2}、{x3}、{x4},初始值作为密钥;
步骤2、对原图像进行预处理,扰乱像素位置:扰乱关系如公式(2)所示;
Figure GDA0004015584960000022
其中i、j为原始图像的坐标,i'、j'是变换后图像的坐标,图像大小为N×N,N为任意整数,a、b为常系数;
步骤3、用超混沌伪随机序列对像素位置的行列做动态变换;
步骤4、用超混沌伪随机序列对像素值做动态处理得到新的图像P′;
步骤5、对图像P′进行加密。
更进一步,所述步骤3用超混沌伪随机序列对像素位置的行列做动态变换,具体为:
令P是m×n的灰度图像,其表示方式如(3)所示:
Figure GDA0004015584960000023
下标(1×1,1×n,…,m×1,m×n)表示像素的位置序号;
定义行变换参数r
r=mod((abs(x1)-floor(abs(x1)))×1014,m) (4)
其中mod表示取余运算,abs表示取绝对值运算,floor表示取整运算。x1表示超混沌Chen系统伪随机序列{x1},选取第100至m+99这m个序列值经过公式(3)产生m个r值,表示为r1、r2....rm,即r为一个m维的向量[r1、r2....rm],这个向量中的m个值经过公式(4-3)处理会只取0至(m-1)的整数;把原图像的矩阵的第一行与第r1行互换,然后将新的矩阵的第一行与第r2行互换,以此类推,最后把矩阵的第一行与第rm行互换;图像变换之后可以得到新的矩阵Pr,如(4)所示:
Figure GDA0004015584960000031
定义列变换参数c:
c=mod((abs(x2)-floor(abs(x2)))×1014,n) (6)
x2表示超混沌伪随机序列{x2},选取第100至n+99这n个序列值经过公式(5)产生n个c值,表示为c1,c2...cn,即c为一个n维的向量[c1,c2...cn],这个向量中的n个值经过公式(5)处理后,只取0至(n-1)的整数;将公式(5)的矩阵,即行变换后图像的矩阵的第一列与第c1列互换,然后将新的矩阵的第一列与第c2列互换,以此类推,最后是将矩阵的第一列与第cn列互换;将图像再进行列变换之后可以得到新的矩阵Prc,如(6)所示:
Figure GDA0004015584960000032
更进一步,所述步骤4用超混沌伪随机序列对像素值做动态处理得到新的图像P′,所述的动态处理方法是定义:
xi=mod((abs(xi)-floor(abs(xi)))×1014,256) (8)
xi(i=1,2,3,4)表示四组超混沌伪随机序列{x1}、{x2}、{x3}、{x4}中的第i组,每组序列取m×n个序列值;经过公式(7)处理,可以将序列值只取0到255的整数值;
Figure GDA0004015584960000033
Figure GDA0004015584960000041
只能取0到255的整数值,并且在实际处理时
Figure GDA0004015584960000042
取m×n个序列值。
更进一步,所述步骤5对图像P′加密,所述的加密方法是对新的图像与
Figure GDA0004015584960000044
做异或运算。即
Figure GDA0004015584960000043
矩阵P′含有m×n个像素值,并且每个像素值必定为0到255的整数值;
Figure GDA0004015584960000045
含有m×n个序列值,并且每个序列值必定为0到255的整数值;采用MATLAB中的bitxor函数进行m×n次异或,每次异或都为一个像素值和一个序列值进行异或;bitxor函数会自动把十进制转变为二进制,因此十进制的像素值和序列值的异或实际上是各自十进制相应的二进制对应位的异或;最终异或的结果保存在矩阵E中;再通过公式(10)将矩阵E中各像素的取值约束为0到255的整数:
E=mod(E,256) (11)
这样就完成了图像加密。
3、本发明所采用的有益效果
(1)本发明采用四阶超混沌系统产生超混沌伪随机序列,序列的产生方法简单灵活,用于图像加密密钥空间更大,安全性高,代价小,容易实现。
(2)本发明对图像位置和像素进行动态变换,加密效果更好,攻击性更强。
附图说明
图1随机性对比图,(a)三维Chen系统的混沌吸引子,(b)超混沌Chen系统的混沌吸引子。
图2平稳性对比图,(a)三维Chen系统混沌伪随机序列的平稳性图,(b)超混沌Chen系统伪随机序列的平稳性图。
图3自相关性对比图,(a)三维Chen序列的自相关特性,(b)超混沌Chen序列的自相关特性。
图4加密解密图,图(a)原图像,图(b)加密图像,图(c)正确密钥解密图像,图(d)错误解密图像。
图5图像像素相关性对比图,图(a)原图像的像素相关性,图(b)本发明密文图像的像素相关性。
具体实施方式
下面结合本发明实例中的附图,对本发明实例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域技术人员在没有做创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实例作进一步地详细描述。
实施例1
采用四阶超混沌Chen系统公式(1)作为伪随机序列的产生模型
Figure GDA0004015584960000051
公式(1)中的x'1,x'2,x'3,x'4为状态参量,x1,x2,x3,x4为系统参量,设置参数w1=35、w2=3、w3=12、w4=7、w5=0.58。
3、设定初值x1_0、x2_0、x3_0、x4_0,并提供初始时间点t_0、结束时间点t_1,以及步长h,对公式(1)求解,输出超混沌伪随机序列{x1}、{x2}、{x3}、{x4},序列的初始值作为密钥。
(c)对原图像进行预处理,扰乱像素位置:扰乱关系如公式(2)所示。其中i、j为原始图像的坐标,i'、j'是变换后图像的坐标,图像大小为N×N,a、b为常系数,a取3,b取5,N任意整数。
Figure GDA0004015584960000052
(d)令P是m×n的灰度图像,如(3)所示:
Figure GDA0004015584960000053
下标(1×1,1×n,…,m×1,m×n)表示像素的位置序号。
定义行变换参数r
r=mod((abs(x1)-floor(abs(x1)))×1014,m) (4)
其中mod表示取余运算,abs表示取绝对值运算,floor表示取整运算。x1表示超混沌Chen系统伪随机序列{x1},选取第100至m+99这m个序列值经过公式(3)产生m个r值,表示为r1、r2....rm,即r为一个m维的向量[r1、r2....rm],这个向量中的m个值经过公式(4-3)处理会只取0至(m-1)的整数。把原图像的矩阵的第一行与第r1行互换,然后将新的矩阵的第一行与第r2行互换,以此类推,最后把矩阵的第一行与第rm行互换。图像变换之后可以得到新的矩阵Pr,如(5)所示:
Figure GDA0004015584960000061
定义列变换参数c:
c=mod((abs(x2)-floor(abs(x2)))×1014,n) (6)
x2表示超混沌伪随机序列{x2},选取第100至n+99这n个序列值经过公式(5)产生n个c值,表示为c1,c2...cn,即c为一个n维的向量[c1,c2...cn],这个向量中的n个值经过公式(6)处理会只取0至(n-1)的整数。将行变换后图像的矩阵的第一列与第c1列互换,然后将新的矩阵的第一列与第c2列互换,以此类推,最后是将矩阵的第一列与第cn列互换。将图像再进行列变换之后可以得到新的矩阵Prc,如(7)所示:
Figure GDA0004015584960000062
(e)定义
xi=mod((abs(xi)-floor(abs(xi)))×1014,256) (8)
xi(i=1,2,3,4)表示四组超混沌伪随机序列{x1}、{x2}、{x3}、{x4}中的第i组,每组序列取m×n个序列值。经过公式(8)处理,可以将序列值只取0到255的整数值。
定义:
Figure GDA0004015584960000071
Figure GDA0004015584960000075
只能取0到255的整数值,并且在实际处理时
Figure GDA0004015584960000076
取m×n个序列值。
超混沌伪随机序列对像素值(即灰度值)做动态处理得到新的图像P′
(f)对图像P′进行加密,令
Figure GDA0004015584960000073
矩阵P′含有m×n个像素值,并且每个像素值必定为0到255的整数值;
Figure GDA0004015584960000074
含有m×n个序列值,并且每个序列值必定为0到255的整数值。采用MATLAB中的bitxor函数进行m×n次异或,每次异或都为一个像素值和一个序列值进行异或。bitxor函数会自动把十进制转变为二进制,因此十进制的像素值和序列值的异或实际上是各自十进制相应的二进制对应位(0或1)的异或。最终异或的结果保存在矩阵E中。再通过公式(11)将矩阵E中各像素的取值约束为0到255的整数:
E=mod(E,256) (11)
实验验证
在MATLAB R2016a的实验环境下,在初值[2,4,6,8]、起始时间点0、终止时间点200、步长0.001的条件下,生成四组序列{x1}、{x2}、{x3}、{x4}。
1.分别对三维Chen系统和超混沌Chen系统做随机性分析,得到图所示1。
2.对序列{x1}进行二值化处理,大于或等于0记为“1”,小于0记为“0”。分别用50000、100000、150000个序列值进行测试,得到平稳性,结果如图2所示。
3.对{x1}做相关性检测,结果如图3所示。
4.在MATLAB R2016a的实验环境下,分别读入格式为JPEG大小为256×256的Cameraman标准测试图像,如图4(a)所示。输入密钥为[2468]进行加密(密钥的数值情况很多,可取[-100,100]内的任意实数),得到加密图,如图4(b)所;然后输入密钥[2468]进行解密,得到正确的解密图,如图4(c)所示。再输入错误密钥[2.000000000000001468],即失败的解密图,如图4(d)所示。
5.对原图进行像素相关性分析,得到结果如图5(a)所示。对加密后的图像即密文做相关性分析,得到结果如图5(b)所示。
图1为随机性对比图,将本发明采用的混沌系统与三维Chen系统产生序列的随机性对比,说明本发明产生序列的随机性更强。图2平稳性对比图说明超混沌Chen系统伪随机序列的平稳性更好。图3自相关性对比图说明超混沌Chen系统伪随机序列的自相关特性更好。图4加密解密图:密钥正确,解密成功,密钥错误,解密失效。图5图像像素相关性对比图,可见本发明的密文图像像素之间的相关性很低,说明本发明的加密安全性高,攻击性强。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (1)

1.一种超混沌伪随机序列的图像加密方法,其特征在于:包括如下步骤:
步骤1、采用四阶超混沌Chen系统产生伪随机序列,所述的四阶超混沌Chen系统是一个四阶微分方程
Figure FDA0004015584950000011
公式(1)中的x'1,x'2,x'3,x'4为状态参量,x1,x2,x3,x4为系统参量,w1、w2、w3、w4、w5均为系统参数;设定四个初值x1_0、x2_0、x3_0、x4_0,并提供初始时间点t_0、结束时间点t_1,以及步长h,对公式(1)用四阶Runge-Kutta进行求解,输出超混沌伪随机序列{x1}、{x2}、{x3}、{x4},序列的初始值作为密钥;
步骤2、对原图像进行预处理,扰乱像素位置:扰乱关系如公式(2)所示;
Figure FDA0004015584950000012
其中i、j为原始图像的坐标,i'、j'是变换后图像的坐标,图像大小为N×N,N为任意整数,a、b为常系数;
步骤3、用超混沌伪随机序列对像素位置的行列做动态变换;
步骤4、用超混沌伪随机序列对像素值做动态处理得到新的图像P′;
步骤5、对图像P′进行加密;
所述步骤3用超混沌伪随机序列对像素位置的行列做动态变换,具体为:
令P是m×n的灰度图像,其表示方式如(3)所示:
Figure FDA0004015584950000013
下标(1×1,1×n,…,m×1,m×n)表示像素的位置序号;
定义行变换参数r
r=mod((abs(x1)-floor(abs(x1)))×1014,m)      (4)
其中mod表示取余运算,abs表示取绝对值运算,floor表示取整运算;x1表示超混沌Chen系统伪随机序列{x1},选取第100至m+99这m个序列值经过公式(4)产生m个r值,表示为r1、r2....rm,即r为一个m维的向量[r1、r2....rm],这个向量中的m个值经过公式(4)处理会只取0至(m-1)的整数;把原图像的矩阵的第一行与第r1行互换,然后将新的矩阵的第一行与第r2行互换,以此类推,最后把矩阵的第一行与第rm行互换;图像变换之后得到新的矩阵Pr,如(5)所示:
Figure FDA0004015584950000021
定义列变换参数c:
c=mod((abs(x2)-floor(abs(x2)))×1014,n)      (6)
x2表示超混沌伪随机序列{x2},选取第100至n+99这n个序列值经过公式(6)产生n个c值,表示为c1,c2...cn,即c为一个n维的向量[c1,c2...cn],这个向量中的n个值经过公式(6)处理后,只取0至(n-1)的整数;将公式(5)的矩阵,即行变换后图像的矩阵的第一列与第c1列互换,然后将新的矩阵的第一列与第c2列互换,以此类推,最后是将矩阵的第一列与第cn列互换;将图像再进行列变换之后得到新的矩阵Prc,如(7)所示:
Figure FDA0004015584950000022
所述步骤4用超混沌伪随机序列对像素值做动态处理得到新的图像P′,所述的动态处理方法是定义:
xi=mod((abs(xi)-floor(abs(xi)))×1014,256)      (8)
xi(i=1,2,3,4)表示四组超混沌伪随机序列{x1}、{x2}、{x3}、{x4}中的第i组,每组序列取m×n个序列值;经过公式(8)处理,将序列值只取0到255的整数值;
Figure FDA0004015584950000031
Figure FDA0004015584950000032
只能取0到255的整数值,并且在实际处理时
Figure FDA0004015584950000033
取m×n个序列值;
所述步骤5对图像P′加密,所述的加密方法是对新的图像与
Figure FDA0004015584950000034
做异或运算,即
Figure FDA0004015584950000035
矩阵P′含有m×n个像素值,并且每个像素值必定为0到255的整数值;
Figure FDA0004015584950000036
含有m×n个序列值,并且每个序列值必定为0到255的整数值;采用MATLAB中的bitxor函数进行m×n次异或,每次异或都为一个像素值和一个序列值进行异或;bitxor函数会自动把十进制转变为二进制,因此十进制的像素值和序列值的异或实际上是各自十进制相应的二进制对应位的异或;最终异或的结果保存在矩阵E中;再通过公式(11)将矩阵E中各像素的取值约束为0到255的整数:
E=mod(E,256)        (11)。
CN201910678184.XA 2019-07-23 2019-07-23 超混沌伪随机序列的图像加密方法 Active CN110519037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910678184.XA CN110519037B (zh) 2019-07-23 2019-07-23 超混沌伪随机序列的图像加密方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910678184.XA CN110519037B (zh) 2019-07-23 2019-07-23 超混沌伪随机序列的图像加密方法

Publications (2)

Publication Number Publication Date
CN110519037A CN110519037A (zh) 2019-11-29
CN110519037B true CN110519037B (zh) 2023-04-07

Family

ID=68624060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910678184.XA Active CN110519037B (zh) 2019-07-23 2019-07-23 超混沌伪随机序列的图像加密方法

Country Status (1)

Country Link
CN (1) CN110519037B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698077A (zh) * 2020-06-04 2020-09-22 北京石油化工学院 一种采用动态整数混沌的hevc视频加密方法
CN111934848B (zh) * 2020-09-08 2021-01-05 南京信息工程大学 一种智能优化四维混沌矢量加密正交传输方法
CN113536377B (zh) * 2021-07-20 2023-09-05 南京邮电大学 一种基于超混沌伪随机序列的加密域跨模态信息检索方法
CN113872747B (zh) * 2021-09-18 2023-06-30 大连大学 一种基于改进类提升方案的图像加密方法
CN115278181B (zh) * 2022-09-27 2022-12-20 中科金勃信(山东)科技有限公司 一种用于智能安防监控系统的图像处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913369A (zh) * 2016-04-08 2016-08-31 西安电子科技大学 基于三维猫脸变换与超混沌系统的分数域图像加密方法
CN109803063A (zh) * 2018-12-20 2019-05-24 福建师范大学福清分校 一种基于五维超混沌系统的图像加密方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103455971B (zh) * 2013-09-04 2016-06-08 上海理工大学 三维Arnold变换和混沌序列结合的图像加密方法
CN106709854B (zh) * 2016-12-20 2020-02-21 西安电子科技大学 基于猫脸变换和混沌的图像信息融合加密方法
CN109104544B (zh) * 2018-08-07 2020-09-22 东北大学 一种基于复杂网络同步的混沌图像加密方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913369A (zh) * 2016-04-08 2016-08-31 西安电子科技大学 基于三维猫脸变换与超混沌系统的分数域图像加密方法
CN109803063A (zh) * 2018-12-20 2019-05-24 福建师范大学福清分校 一种基于五维超混沌系统的图像加密方法

Also Published As

Publication number Publication date
CN110519037A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN110519037B (zh) 超混沌伪随机序列的图像加密方法
CN113538203B (zh) 基于新型二维复合混沌映射与sha-256的图像加密方法和装置
Rohith et al. Image encryption and decryption using chaotic key sequence generated by sequence of logistic map and sequence of states of Linear Feedback Shift Register
CN102982499B (zh) 基于多分数阶混沌系统的彩色图像加密和解密方法
CN113556223B (zh) 基于分数阶驱动响应系统有限时间同步的图像加密方法
CN110570344B (zh) 基于随机数嵌入和dna动态编码的图像加密方法
CN107094072B (zh) 一种基于广义Henon映射的混合混沌加密方法
Sivakumar et al. A novel image encryption using calligraphy based scan method and random number
CN109361830B (zh) 一种基于明文的图像加密方法
CN111988144B (zh) 一种基于多重密钥的dna一次一密图像加密方法
Rashid et al. Image encryption algorithm based on the density and 6D logistic map.
Kang et al. Fast image encryption algorithm based on (n, m, k)-PCMLCA
CN110225222B (zh) 一种基于3d正交拉丁方和混沌系统的图像加密方法
Singh et al. Image encryption algorithm based on circular shift in pixel bit value by group modulo operation for medical images
CN109639423B (zh) 一种解密算法的构成装置
CN116309164A (zh) 一种图像处理方法及装置
CN113992811B (zh) 一种基于新型三维分数阶离散混沌映射的图像加密方法
Jeyaram et al. New cellular automata‐based image cryptosystem and a novel non‐parametric pixel randomness test
Allawi Image encryption based on chaotic mapping and random numbers
Loidreau Analysis of a public-key encryption scheme based on distorted Gabidulin codes
Brindha Periodicity analysis of Arnold Cat Map and its application to image encryption
Naskar et al. A Key Based Secure Threshold Cryptography for Secret Image.
Sivakumar et al. A novel Image encryption method with Z-Order curve and random number
Huma et al. Wavelet and LSB-based encrypted watermarking approach to Hide Patient’s information in medical image
JP7158635B2 (ja) 暗号システム、暗号化装置、復号装置及び鍵生成装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231023

Address after: 213, Block A, Maker Service Center, No. 1, Xihu Road, Wujin National High-tech Industrial Development Zone, Changzhou City, Jiangsu Province, 213000

Patentee after: JIANGSU LAITE BEIDOU INFORMATION TECHNOLOGY CO.,LTD.

Address before: 213001 No. 1801 Wu Cheng Road, Changzhou, Jiangsu

Patentee before: JIANGSU University OF TECHNOLOGY

TR01 Transfer of patent right