CN110514894B - 一种基于漏电安全的电炉短网冷却水系统设计方法 - Google Patents

一种基于漏电安全的电炉短网冷却水系统设计方法 Download PDF

Info

Publication number
CN110514894B
CN110514894B CN201910670728.8A CN201910670728A CN110514894B CN 110514894 B CN110514894 B CN 110514894B CN 201910670728 A CN201910670728 A CN 201910670728A CN 110514894 B CN110514894 B CN 110514894B
Authority
CN
China
Prior art keywords
human body
cooling water
resistance
water
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910670728.8A
Other languages
English (en)
Other versions
CN110514894A (zh
Inventor
李英伟
余晨
王建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Engineering Group Co Ltd
Sinopec Nanjing Engineering Co Ltd
Original Assignee
Sinopec Engineering Group Co Ltd
Sinopec Nanjing Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Engineering Group Co Ltd, Sinopec Nanjing Engineering Co Ltd filed Critical Sinopec Engineering Group Co Ltd
Priority to CN201910670728.8A priority Critical patent/CN110514894B/zh
Publication of CN110514894A publication Critical patent/CN110514894A/zh
Application granted granted Critical
Publication of CN110514894B publication Critical patent/CN110514894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16547Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies voltage or current in AC supplies

Abstract

本发明公开了一种基于漏电安全的电炉短网冷却水系统的设计方法,该方法包括:根据电炉变压器低压出线的三角形接线方式的特点,绘制出短网冷却水系统及人体的电阻示意图,在进行一系列电阻变换后,计算出施加于人体的电位差及流经人体的泄露电流值,从而确定冷却水系统是否具有漏电安全性。本申请通过预设冷却水系统的参数,绘制出短网冷却水系统及人体触摸集水池示意图中各部位的电阻,计算出施加于人体的电位差及流经人体的泄露电流,以确定预设冷却水系统对于人体是否电气安全的。

Description

一种基于漏电安全的电炉短网冷却水系统设计方法
技术领域
本发明属于电气设计及安装技术领域,具体涉及一种基于漏电安全的电炉短网冷却水系统设计方法。
背景技术
矿用电炉通过短网将变压器低压出线端与电炉的电极连接,由于流经短网的电流非常大(20kA以上),因此短网上产生的热量也是非常惊人的。设计中我们一般会选用铜管作为短网,除了考虑到经济性外,便于冷却也是一个重要的因素。常用的铜管短网冷却方法是直接将自来水或脱盐水通过加压泵打入短网,并回收于一个集水池中,再通过换热器或其他散热方式将短网的热量带走。
铜管短网是裸铜导体,在与冷却水直接接触时,由于冷却水中有一定量的电解质,因此,将会在冷却水的引入/引出管(绝缘橡胶管)内产生一定的泄漏电流。当泄露电流足够大时,如果人体触摸到冷却水或集水池,可能造成触电危险。因此,在进行冷却水系统设计时,冷却水系统的漏电计算是非常必要的。通常三相变压器的低压出线端是三角形接线的,无中性线输出,因此,许多设计人员认为这样的接线是安全的,往往不进行冷却水系统泄露电流的计算。实际上,共用的集水池使得不同相之间具有了电气连接,电流是通过这种方式实现泄露的。当人体触摸到冷却水或集水池时,必然要承受一定的泄露电流及电压。
泄漏电流的大小主要取决于冷却水系统的电阻,电阻与电阻率及水管的截面积和长度有关。我们需要设计一个电阻足够大的冷却水系统,使得即便人体直接触摸集水池,在人体上的分压及漏电流也不会对人体造成危害。
发明内容
本发明的目的是提供一种新的设计方法,可以实现当人体直接接触集水池时,作用于人体上的电位差及泄露电流,对人体来讲是电气安全的。
本发明采取的技术方案是:
一种基于漏电安全的电炉短网冷却水系统设计方法,包括以下步骤:
S1:绘制短网冷却系统及人体触摸集水池的示意图,并标注各部位电阻符号;
S2:根据S1示意图,绘制以A、B相为例的等效电路图,并标注各部位电阻符号;
S3:对S2绘制的等效电路图进行电阻转化计算;
S4:计算作用于人体上的电位差及泄露电流;
S5:将S4计算的结果与安全电压及安全电流进行比较,当满足要求时结束计算;当不满足要求时,修正S2中水管参数,重复S2以后各步,直到满足要求为止。
优选的,S1中,各部位电阻符号为:
A相进水管等效电阻为R1a,A相短网等效电阻为R2a,A相回水管等效电阻为R3a;
B相进水管等效电阻为R1b,B相短网等效电阻为R2b,B相回水管等效电阻为R3b;
水池内冷却水等效电阻为Rc,水池金属壁等效电阻为Rb,人体等效电阻为Rr。
优选的,S2中,等效电路中,输入电压为A相和B相的电压差Uab,负载为串联的Ra、Rbcr、Rb,其中:
Ra=R1a//(R2a+R3a)_Rb=R1b//(R2b+R3b)
Rbcr=Rb//Rc//Rr。
优选的,S4中,人体上的电位差Ur和泄露电流Ir分别通过下式获得:
Ur=Uab*Rbcr/(Ra+Rb+Rbcr);
Ir=Ibcr-Ibc=Uab/(Ra+Rb+Rbcr)-Ur/Rbc;
其中,Rbc=Rb//Rc。
优选的,S5中,通过增大水管电阻修正水管参数。
本发明的有益效果是:通过预设冷却水系统的参数,绘制出短网冷却水系统及人体触摸集水池示意图中各部位的电阻,计算出施加于人体的电位差及流经人体的泄露电流,以确定预设冷却水系统对于人体是否电气安全的。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是短网冷却系统示意图(以A相为例)
图2是基于图1的等效电路图(以A、B两相为例)
图3是在图2的基础上的电阻转化图
图4是在图3的基础上的电阻转化图
附图标记如下:
Ua-短网A相电位;Ub-短网B相电位;Uab-短网A、B相间电位差;
R1a-A相进水管等效电阻;R2a-A相短网等效电阻;R3a-A相回水管等效电阻;
R1b-B相进水管等效电阻;R2b-B相短网等效电阻;R3b-B相回水管等效电阻;
Rc-水池内冷却水等效电阻;Rb-水池金属池壁等效电阻;Rr-人体等效电阻;
Ir-流过人体的电流;Ur-施加在人体上的电压。
具体实施方式
一、下面结合附图和具体实例对本发明进行详细说明。
S1.图1以A相为例,绘制短网冷却系统及人体触摸集水池的示意图,并标注各部位电阻符号:冷却水进水管内水的等效电阻为R1a,短网的等效电阻为R2a,冷却水回水管内水的等效电阻为R3a,金属集水池池壁的等效电阻为Rb,集水池内水的等效电阻为Rc,人体等效电阻为Rr。
S2.图2是基于图一绘制出等效的电路图。由于三相矿用电炉变压器的接线组别为Y,d11型,无论A相还是B/C相与大地之间均无直接的电的联系(忽略电容电流),图2以A、B相为例。图2增加了B相短网及冷却水系统的等效电阻:假设冷却水进水管内水的等效电阻为R1b,短网的等效电阻为R2b,冷却水回水管内水的等效电阻为R3b。我们接下来的主要目的是通过等效电路的转化,计算出人体等效电阻Rr两端的电位差Ur及流过它的电流Ir。
S3.图3和图4是将图2的电路图的等效电路,计算各电阻的等效电阻:
3.1冷却水的等效电阻:ρ.L/S
其中:
ρ为冷却水电阻率(ohm.mm2/m),可以通过水务公司发布的数据中得到。一般来讲一级自来水为10000,二级为1000,三级为200,计算时可根据实际需要选用。
L为水管的有效长度(m),不含插入集水池的部分。
S为水管内腔截面积(mm2),若D为管内径,则S=3.14×(D/2)2
3.2Lc为水池内冷却水的有效深度(m),Vc为水池内冷却水的有效体积(m3),冷却水的等效面积(m2)Sc=Vc/Lc,水池内冷却水的等效电阻(ohm)Rc=ρ.Lc/Sc。
3.3通过管状短网外径D2及内径D2,,计算出短网的实际截面积(mm2)S=3.14×(D2/2)2-3.14×(D2,/2)2,短网有效长度(m)L,铜质短网的电阻率ρ取0.017593。根据以上数据分别计算出A相及B相短网等效电阻(ohm)R2=ρ.L/S。
3.4正方形铁质集水池池壁高(m)Lb,池壁周长(m)Lb’(可自3.2条计算得出),壁厚(mm)Lb”,池壁等效截面积(mm2)Sb≈1000×Lb’×Lb”,池壁等效电阻率ρ取0.0978,池壁等效电阻Rb=ρ.Lb/Sb。
3.5基于GB/T 13870.1中400V接触电压数据,人体综合电阻(ohm)Rr取700。
S4.电流及电压计算
4.1根据电炉参数,查出短网A/B相间最大电压(V)Uab
4.2等效回路电阻进行如下转化:
Ra=Rb=(R2a+R3a)//R1a
Rbc=Rc//Rb
Rbcr=Rc//Rb//Rr
回路总电阻R=Ra+Rb+Rbc//Rr
4.3人体接触电压(mV)Ur=Uab.Rbcr/R,该数据与人体安全电压(取16V)进行比较。
4.4流过Rbc的电流(mA)Ibc=Ur/Rbc
4.5人体纵向泄露电流(mA)Ir=Ibcr-Ibc,该数据与人体安全电流(取30mA)进行比较。
S5.S4.3中得到的人体接触电压数据与人体安全电压(取16V)进行比较;S4.5中得到的人体纵向泄露电流数据与人体安全电流(取30mA)进行比较。
如果满足要求时结束计算;如果经过计算后人体的接触电压或人体纵向泄露电流不满足人体安全数据,通过调整冷却水管的长度的办法解决(重复S2以后各步,直到满足要求为止)。
以三级自来水,进水管2m,回水管5m,管内径65mm为条件,进行的实际计算:
3.1冷却水的等效电阻:ρ.L/S
其中:
ρ为冷却水电阻率(ohm.mm2/m)=200。
进水管的有效长度(m)=2。
回水管的有效长度(m)=5。
S为水管内腔截面积(mm2),若D为管内径=65,则S=3.14×(D/2)2=3316.625。则:
进水管等效电阻(ohm)R1a=R1b=ρ*L/S=0.12;
回水管等效电阻(ohm)R3a=R3b=ρ*L/S=0.30。
3.2Lc为水池内冷却水的有效深度(m)=1,Vc为水池内冷却水的有效体积(m3)=3,冷却水的等效面积(m2)Sc=Vc/Lc=3,水池内冷却水的等效电阻(ohm)Rc=ρ.Lc/Sc=6.67E-5。
3.3通过管状短网外径D2=90及内径D2=60,计算出短网的实际截面积(mm2)S=3.14×(D2/2)2-3.14×(D2,/2)2=3532.5,短网有效长度(m)L,铜质短网的电阻率ρ取0.017593。根据以上数据分别计算出A相及B相短网等效电阻(ohm)R2=ρ.L/S=4.98E-05。
3.4正方形铁质集水池池壁高(m)Lb=1.5,池壁周长(m)Lb’(可自3.2条计算得出)=3.46,壁厚(mm)Lb”=5,池壁等效截面积(mm2)Sb≈1000×Lb’×Lb”=17320.51,池壁等效电阻率ρ取0.0978,池壁等效电阻Rb=ρ.Lb/Sb=8.47E-06。
3.5基于GB/T 13870.1中400V接触电压数据,人体综合电阻(ohm)Rr取700。
S4.电流及电压计算
4.1根据电炉参数,查出短网A/B相间最大电压(V)Uab=420
4.2等效回路电阻进行如下转化:
Ra=Rb=(R2a+R3a)//R1a=0.09
Rbc=Rc//Rb=7.51E-06
Rbcr=Rc//Rb//Rr=7.51E-06
回路总电阻R=Ra+Rb+Rbc//Rr=0.17
4.3人体接触电压(mV)Ur=Uab.Rbcr/R=18.3178。
4.4流过Rbc的电流(mA)Ibc=Ur/Rbc=2437504.5789
4.5人体纵向泄露电流(mA)Ir=Ibcr-Ibc=2.62E-02。
S5.人体接触电压(mV)18.3178与人体安全电压(取16V)进行比较,属于安全范围内;人体纵向泄露电流(mA)2.62E-02与人体安全电流(取30mA)进行比较,属于安全范围内;结束。
以三级自来水,进水管10m,回水管15m,管内径25mm为条件,进行的实际计算:
3.1冷却水的等效电阻:ρ.L/S
其中:
ρ为冷却水电阻率(ohm.mm2/m)=200。
进水管的有效长度(m)=10。
回水管的有效长度(m)=15。
S为水管内腔截面积(mm2),若D为管内径=25,则S=3.14×(D/2)2=490.625。则:
进水管等效电阻(ohm)R1a=R1b=ρ*L/S=4.08;
回水管等效电阻(ohm)R3a=R3b=ρ*L/S=6.11。
3.2Lc为水池内冷却水的有效深度(m)=1,Vc为水池内冷却水的有效体积(m3)=3,冷却水的等效面积(m2)Sc=Vc/Lc=3,水池内冷却水的等效电阻(ohm)Rc=ρ.Lc/Sc=6.67E-5。
3.3通过管状短网外径D2=90及内径D2=60,计算出短网的实际截面积(mm2)S=3.14×(D2/2)2-3.14×(D2,/2)2=3532.5,短网有效长度(m)L,铜质短网的电阻率ρ取0.017593。根据以上数据分别计算出A相及B相短网等效电阻(ohm)R2=ρ.L/S=4.98E-05。
3.4正方形铁质集水池池壁高(m)Lb=1.5,池壁周长(m)Lb’(可自3.2条计算得出)=3.46,壁厚(mm)Lb”=5,池壁等效截面积(mm2)Sb≈1000×Lb’×Lb”=17320.51,池壁等效电阻率ρ取0.0978,池壁等效电阻Rb=ρ.Lb/Sb=8.47E-06。
3.5基于GB/T 13870.1中400V接触电压数据,人体综合电阻(ohm)Rr取700。
S4.电流及电压计算
4.1根据电炉参数,查出短网A/B相间最大电压(V)Uab=420
4.2等效回路电阻进行如下转化:
Ra=Rb=(R2a+R3a)//R1a=2.45
Rbc=Rc//Rb=7.51E-06
Rbcr=Rc//Rb//Rr=7.51E-06
回路总电阻R=Ra+Rb+Rbc//Rr=4.89
4.3人体接触电压(mV)Ur=Uab.Rbcr/R=0.6452。
4.4流过Rbc的电流(mA)Ibc=Ur/Rbc=85855.1766
4.5人体纵向泄露电流(mA)Ir=Ibcr-Ibc=9.22E-04。
S5.人体接触电压(mV)0.6452与人体安全电压(取16V)进行比较,属于安全范围内;人体纵向泄露电流(mA)9.22E-04与人体安全电流(取30mA)进行比较,属于安全范围内;结束。
以上显示和描述了本发明的基本原理、主要特征和优点。本领域的普通技术人员应该了解,上述实施例不以任何形式限制本发明的保护范围,凡采用等同替换等方式所获得的技术方案,均落于本发明的保护范围内。
本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims (3)

1.一种基于漏电安全的电炉短网冷却水系统设计方法,其特征在于包括以下步骤:
S1:绘制短网冷却系统及人体触摸集水池的示意图,并标注各部位电阻符号,各部位电阻符号为:
A相进水管等效电阻为R1a,A相短网等效电阻为R2a,A相回水管等效电阻为R3a;
B相进水管等效电阻为R1b,B相短网等效电阻为R2b,B相回水管等效电阻为R3b;
水池内冷却水等效电阻为Rc,水池金属壁等效电阻为Rb,人体等效电阻为Rr;
S2:根据S1示意图,绘制以A、B相为例的等效电路图,并标注各部位电阻符号;
S3:对S2绘制的等效电路图进行电阻转化计算,等效电路中,输入电压为A相和B相的电压差Uab,负载为串联的Ra、Rbcr、Rb,其中:
Ra=R1a//(R2a+R3a)_Rb=R1b//(R2b+R3b)
Rbcr=Rb//Rc//Rr;
S4:计算作用于人体上的电位差及泄露电流;
S5:将S4计算的结果与安全电压及安全电流进行比较,当满足要求时结束计算;当不满足要求时,修正S2中水管参数,重复S2以后各步,直到满足要求为止。
2.根据权利要求1所述的一种基于漏电安全的电炉短网冷却水系统设计方法,其特征在于S4中,人体上的电位差Ur和泄露电流Ir分别通过下式获得:
Ur=Uab*Rbcr/(Ra+Rb+Rbcr);
Ir=Ibcr-Ibc=Uab/(Ra+Rb+Rbcr)-Ur/Rbc;
其中,Rbc=Rb//Rc。
3.根据权利要求1所述的一种基于漏电安全的电炉短网冷却水系统设计方法,其特征在于S5中,通过增大水管电阻修正水管参数。
CN201910670728.8A 2019-07-24 2019-07-24 一种基于漏电安全的电炉短网冷却水系统设计方法 Active CN110514894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910670728.8A CN110514894B (zh) 2019-07-24 2019-07-24 一种基于漏电安全的电炉短网冷却水系统设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910670728.8A CN110514894B (zh) 2019-07-24 2019-07-24 一种基于漏电安全的电炉短网冷却水系统设计方法

Publications (2)

Publication Number Publication Date
CN110514894A CN110514894A (zh) 2019-11-29
CN110514894B true CN110514894B (zh) 2021-05-11

Family

ID=68623956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910670728.8A Active CN110514894B (zh) 2019-07-24 2019-07-24 一种基于漏电安全的电炉短网冷却水系统设计方法

Country Status (1)

Country Link
CN (1) CN110514894B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275180A (zh) * 2008-05-16 2008-10-01 昆明理工大学 应用脉冲电流消除合金结构钢、工具钢基体中缺陷组织的方法
CN101576737A (zh) * 2008-05-08 2009-11-11 肖艳义 一种电弧炉节能控制方法及系统
CN103134100A (zh) * 2011-11-25 2013-06-05 滕繁 一种超薄墙体电热膜采暖设备及其制造方法
CN104034157A (zh) * 2014-07-02 2014-09-10 徐心亿 一种坩埚感应电炉漏炉报警电路
CN104638531A (zh) * 2013-11-13 2015-05-20 天津市科惠生产力促进中心 一种智能一体化配电柜
CN106910556A (zh) * 2017-04-21 2017-06-30 欧阳和平 一种用于矿热炉短网多芯水冷电缆的冷却系统
CN206496643U (zh) * 2017-01-24 2017-09-15 西安电炉研究所有限公司 固废资源化电炉
CN107192258A (zh) * 2017-06-07 2017-09-22 宁夏金丝路新能源科技有限公司 矿热炉安全生产预警及紧急停车系统
CN206945876U (zh) * 2017-06-01 2018-01-30 重庆神舟电缆集团股份有限公司 一种线缆通电测试装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818475A (en) * 1988-02-12 1989-04-04 General Electric Company Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
CN101101173A (zh) * 2006-07-05 2008-01-09 内蒙古海吉氯碱化工股份有限公司 密闭电石炉的增容工艺方法
US20100298825A1 (en) * 2009-05-08 2010-11-25 Cellutions, Inc. Treatment System With A Pulse Forming Network For Achieving Plasma In Tissue
CN102455812B (zh) * 2010-10-29 2014-01-08 矽统科技股份有限公司 触碰显示装置
CN102507110A (zh) * 2011-11-03 2012-06-20 云南新立有色金属有限公司 一种用于高钛渣直流密闭电炉冷却水泄漏检测的方法
CN102692573A (zh) * 2012-05-28 2012-09-26 无锡北科自动化科技有限公司 矿热炉变压器负荷监测记录装置
CN102701213B (zh) * 2012-06-28 2015-02-11 佳科太阳能硅(龙岩)有限公司 定向凝固冶金法太阳能多晶硅提纯设备
CN103629953A (zh) * 2012-08-24 2014-03-12 高玉琴 一种水冷却器
CN103683996B (zh) * 2012-08-31 2016-08-17 西门子公司 一种逆变器
CN102954593B (zh) * 2012-11-06 2015-03-11 华帝股份有限公司 一种电热水器上的漏电感应及保护控制系统
CN203222837U (zh) * 2013-05-03 2013-10-02 王润明 一体化污水提升装置
CN203553891U (zh) * 2013-11-25 2014-04-16 吴宏伟 喷泉漏电提示保护器
CN106546862A (zh) * 2015-09-20 2017-03-29 国家电网公司 一种漏电检测装置
CN206274203U (zh) * 2016-12-19 2017-06-23 杨嘉奇 加热装置
CN107976604A (zh) * 2017-11-20 2018-05-01 深圳瑞湖科技有限公司 检测漏电的方法、检测漏电的装置和储水器件
CN208334486U (zh) * 2018-05-07 2019-01-04 成都市中朋达电气有限公司 矿热炉补偿器电压电流采集装置
CN208890371U (zh) * 2018-10-17 2019-05-21 湘潭华夏特种变压器有限公司 一种水内冷式大电流直流短网系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576737A (zh) * 2008-05-08 2009-11-11 肖艳义 一种电弧炉节能控制方法及系统
CN101275180A (zh) * 2008-05-16 2008-10-01 昆明理工大学 应用脉冲电流消除合金结构钢、工具钢基体中缺陷组织的方法
CN103134100A (zh) * 2011-11-25 2013-06-05 滕繁 一种超薄墙体电热膜采暖设备及其制造方法
CN104638531A (zh) * 2013-11-13 2015-05-20 天津市科惠生产力促进中心 一种智能一体化配电柜
CN104034157A (zh) * 2014-07-02 2014-09-10 徐心亿 一种坩埚感应电炉漏炉报警电路
CN206496643U (zh) * 2017-01-24 2017-09-15 西安电炉研究所有限公司 固废资源化电炉
CN106910556A (zh) * 2017-04-21 2017-06-30 欧阳和平 一种用于矿热炉短网多芯水冷电缆的冷却系统
CN206945876U (zh) * 2017-06-01 2018-01-30 重庆神舟电缆集团股份有限公司 一种线缆通电测试装置
CN107192258A (zh) * 2017-06-07 2017-09-22 宁夏金丝路新能源科技有限公司 矿热炉安全生产预警及紧急停车系统

Also Published As

Publication number Publication date
CN110514894A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN111245002B (zh) 基于mmc的双极柔性直流电网短路和接地故障电流预测方法
CN105356481B (zh) 一种基于多馈入短路比的动态无功补偿选点方法
CN106712107B (zh) 一种应用于并网变流器并联运行的优化功率分配方法
CN103412199B (zh) 一种同塔多回输电线路不平衡度的计算方法
CN111123041B (zh) 一种基于温度特性的电缆护层故障定位方法
CN103427354A (zh) 一种变电站接地网结构的早期确定方法
CN110514894B (zh) 一种基于漏电安全的电炉短网冷却水系统设计方法
CN105277773A (zh) 一种完整计算变电站入地短路电流的方法
CN108445342A (zh) 一种电缆护套单点金属性故障接地感应电流计算方法
CN111293676A (zh) 一种高压直流输电线路单端自适应保护方法
CN113300343B (zh) 一种基于余弦相似度的柔性直流电网故障线路识别方法
CN105842582B (zh) 基于emtr的柔性直流线路故障测距方法
CN102914683B (zh) 一种三相单电缆单相接地电流的采集方法
CN106528944A (zh) 获取不对称短路故障下海上风电场单条馈线最大暂态过电压的分析方法
CN107689734A (zh) 大功率变换系统
CN106159932A (zh) 10kV 中性点小电阻接地成套装置
CN203587620U (zh) 一种gis温升试验用端部回流结构
CN110556858A (zh) 一种基于三相不平衡的低压配电网网损分析的方法
CN113178889B (zh) 一种有源配电网接地装置的安全校核计算方法
CN214750546U (zh) 用于桥臂拓扑变流器的直流对地绝缘阻抗检测电路
CN108761167A (zh) 一种电缆金属护套多相多点接地下护层感应电流计算方法
CN210110505U (zh) 单相串联变压器及潮流控制系统
CN204205616U (zh) 一种柔性直流输电双极主接线装置
CN109245057B (zh) 输电线路时域全波形保护装置及相间突变量方向判断方法
CN108445341B (zh) 一种电缆护套多点接地下各段泄露电流的计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant