CN110511134B - 一种3-羟基丙酸的制备方法 - Google Patents

一种3-羟基丙酸的制备方法 Download PDF

Info

Publication number
CN110511134B
CN110511134B CN201910881572.8A CN201910881572A CN110511134B CN 110511134 B CN110511134 B CN 110511134B CN 201910881572 A CN201910881572 A CN 201910881572A CN 110511134 B CN110511134 B CN 110511134B
Authority
CN
China
Prior art keywords
chamber
solution
acid
keeping
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910881572.8A
Other languages
English (en)
Other versions
CN110511134A (zh
Inventor
丁永良
康小玲
唐曦
郑伯川
梁勇军
郑晨
唐波
邹志刚
邓晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Donggeng Chemical Technology Co ltd
Original Assignee
Shanghai Donggeng Chemical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Donggeng Chemical Technology Co ltd filed Critical Shanghai Donggeng Chemical Technology Co ltd
Priority to CN201910881572.8A priority Critical patent/CN110511134B/zh
Publication of CN110511134A publication Critical patent/CN110511134A/zh
Application granted granted Critical
Publication of CN110511134B publication Critical patent/CN110511134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及化工技术领域,具体提供一种3‑羟基丙酸的制备方法,包括如下步骤:(1)在催化剂作用下,氰化氢和环氧乙烷反应生成3‑羟基丙腈;(2)向步骤(1)所得3‑羟基丙腈中加入碱液,反应生成3‑羟基丙酸盐和氨;(3)将步骤(2)所得反应液中的氨脱除,然后用双极膜电渗析分离反应液分别得到碱液和3‑羟基丙酸,所得的碱液蒸发浓缩后可直接应用于步骤(2)中。采用本方法制备3‑羟基丙酸能够高收率得到高含量的目标产物,减少碱的用量,不副产无机盐,有效减少废水、废气和废渣,降低生产成本。

Description

一种3-羟基丙酸的制备方法
技术领域
本发明涉及化工领域,特别是涉及一种3-羟基丙酸的制备方法。
背景技术
3-羟基丙酸(3-hydroxypropionic acid,简写3-HP),分子式为C3H6O3,分子量为90.08,是一种具有三个碳原子的非手性有机酸,酸解离常数(pKa)为4.5,呈液态,具有黏性,无色无味,可溶于水、乙醇、乙醚,可以用于丙烯酸等多种化学品的合成。3-HP和乳酸是同分异构体,但3-HP的分子带有两个官能团羟基和羧基,因此3-HP的化学性质更为活泼。在工业上,不论作为单体,还是作为合成相应衍生物的原料,3-HP的应用都十分广泛,例如,3-HP经氧化、氢化、脱水、酯化反应等可以转化为多种重要的化学物质,如丙烯酸、1,3-丙二醇、丙二酸、聚3-HP等;3-HP可作为食品或饲料的添加剂和防腐剂;3-HP是很多光学活性物质的前体,能够作为生物源聚合物的单体。3-HP的这些优良特性使其在商业上具有重大的开发价值,从而受到各国科学家的广泛关注。2004年8月,美国能源部报告将3-HP列为当前世界上12种最具开发潜力的化工产品之一。
目前,3-HP的制备方法有化学方法和微生物发酵方法。微生物发酵法产量低,分离成本高,不利于大规模生产。化学方法主要有以下几种:
1、丙烯酸水合法
Figure BDA0002206059910000011
该方法在《3-羟基丙酸高温水合法的制备及表征》(刘焕梅等,化学世界,2015,2,80-83)中有报道,其反应温度为215℃,因为反应为可逆反应,所以转化率只有40.2%,产品收率很低。在《树脂催化丙烯酸水合反应动力学的研究》(温丽媛等,化学与生物工程,2014,31(10),36-38)中报道,可以通过加酸性树脂催化丙烯酸水合反应来提高产品收率,反应温度在120℃左右,转化率可达60%;《质子酸催化丙烯酸水合制备3-羟基丙酸》(温丽媛等,化学与生物工程,2013,30(1),51-53)中提到,以磷酸为催化剂,在V(丙烯酸):V(水)=1:5、反应温度为120℃、pH值为0.6、反应时间为3h的最佳条件下,丙烯酸的转化率为78.81%,3-羟基丙酸的选择性为92.38%。上述两篇文章中的方法虽然提高了丙烯酸水合法制备3-羟基丙酸的产率,但收率仍不是很高。
2、3-羟基丙醛(3-HPA)氧化法
Figure BDA0002206059910000021
德国的Thomas Haas等人研究了3-羟基丙醛催化氧化可以制备3-羟基丙酸,该反应在O2或者是O2混合气中,在铂族金属如Pd、Pt的存在下,pH控制在7.5-9,温度在40-60℃下,m(催化剂):m(3-HPA)=1:10-1:5中进行,最终3-HPA的转化率在80.5%-92.7%,3-HP的选择性89.5%-93.7%,并且随催化剂用量增加,3-PH产率会增加。该方法虽然收率高,但是生产工艺繁琐,生产成本高。
3、1,3-丙二醇氧化法
Figure BDA0002206059910000022
该方法是以1,3-丙二醇为原料催化氧化得到3-羟基丙酸。在20世纪90年代,ArnoBehr Duesseldorf等在专利US5321156中介绍了具体合成方法,在碱金属的水溶液中,以负载型的Pd为催化剂(载体为活性炭或Al2O3),温度为40-55℃,pH在8~12范围内,得到的3-羟基丙酸产率为70.5%~81.8%。该方法的产品收率也不高。
4、3-羟基丙腈水解法
Figure BDA0002206059910000023
该方法是将3-羟基丙腈加入氢氧化钠溶液中,在30℃反应,反应混合物减压蒸发至干,继续升高温度直至产物变为糊状;冷却,加硫酸搅拌,用乙醚提取生成的3-羟基丙酸,蒸除乙醚,得含量75%~80%的糖浆状3-羟基丙酸,收率28%~31%。该反应收率低,产品质量差,而且还会消耗大量的酸和碱,并副产低价的无机盐。
上述用于制备3-羟基丙酸的化学方法均存在生产工艺繁琐、产品收率低及能耗高等缺陷,因此,亟需提出了一种更为经济、有效的制备3-羟基丙酸的方法。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种3-羟基丙酸的制备方法,用于解决现有技术中的3-羟基丙酸制备方法生产工艺繁琐、产品收率低及能耗高的问题。
为实现上述目的及其他相关目的,本发明提供一种3-羟基丙酸的制备方法,包括如下步骤:
(1)在催化剂作用下,氰化氢和环氧乙烷反应生成3-羟基丙腈;
(2)向步骤(1)所得3-羟基丙腈中加入碱液,反应生成3-羟基丙酸盐和氨;
(3)将步骤(2)所得反应液中的氨脱除,然后用双极膜电渗析分离反应液分别得到碱液和3-羟基丙酸,所得的碱液蒸发浓缩后可直接应用于步骤(2)中。
可选地,步骤(1)中,所述氰化氢与环氧乙烷的摩尔比为(1.0-1.1):1,优选为(1.0-1.05):1。氰化氢过量可使环氧乙烷反应完全,而过量的氰化氢可回收再利用。
可选地,步骤(1)中,所述氰化氢选自气体氢氰酸、液体氢氰酸、氢氰酸水溶液中的至少一种;优选为液体氢氰酸或氢氰酸水溶液。
可选地,步骤(1)中,所述催化剂选自有机碱、氰化物、无机碱或多元有机酸盐中的至少一种。
可选地,所述有机碱选自三乙胺、N,N-二甲基吡啶中的至少一种。
可选地,所述氰化物选自氰化钠、氰化钾中的至少一种。
可选地,所述无机碱选自无机强碱、无机弱碱中的至少一种。
可选地,所述无机强碱选自氢氧化钠、氢氧化钾中的至少一种。
可选地,所述无机弱碱选自碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾中的至少一种。
可选地,所述多元有机酸盐选自酒石酸、柠檬酸钠盐或者钾盐的至少一种。
可选地,步骤(1)在无溶剂条件下进行,或在溶剂中进行,优选在有溶剂条件下进行。无溶剂条件的好处在于反应浓度高,产能大,有溶剂条件的好处在于反应温和易控制。
可选地,步骤(1)在溶剂中进行时,所述溶剂为水。由于步骤(2)的水解反应要加入氢氧化钠或者氢氧化钾水溶液,因此步骤(1)中的溶剂宜选用水。
可选地,步骤(2)中,所述碱与3-羟基丙腈的摩尔比为(1.0-1.2):1,优选为(1.0-1.05):1。理论上碱的摩尔比应该与3-羟基丙腈相同,但碱过量可以保证反应完全,碱量不足会导致水解反应不完全。
可选地,步骤(2)中,所述碱液为氢氧化钠或氢氧化钾中的至少一种。
本发明所涉及的化学反应的反应方程式如下:
Figure BDA0002206059910000031
如上所述,本发明的3-羟基丙酸的制备方法,具有以下有益效果:
本发明采用双极膜处理3-羟基丙腈碱解液,碱解液中过量的氢氧化钠(钾)与其它组分分离,汇集于双极膜碱室,从而降低了废水量以及废水中的含盐量;而且,在双极膜的处理下,能将3-羟基丙酸盐(3-羟基丙酸钠/3-羟基丙酸钾)全部转化为3-羟基丙酸和氢氧化钠(钾),得到的氢氧化钠(钾)又能够重新用于3-羟基丙腈的水解,能够避免现有技术(3-羟基丙腈水解法)中后续酸化3-羟基丙酸盐时使用酸而生成大量副产低价的无机盐的问题。
综上所述,采用本方法制备3-羟基丙酸能够高收率得到高含量的目标产物,得到碱液可以重新回收利用,能够减少碱的用量,不副产无机盐,有效减少废水、废气和废渣,降低了生产成本。
附图说明
图1显示为本发明实施例中制备3-羟基丙酸的工艺流程图。
图2显示为本发明实施例中的双极膜示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
以下实施例中采用的材料和试剂如下:
双极膜亦称双极性膜,是由一张阳膜和一张阴膜制成的阴阳复合膜,属于离子交换膜。本发明的实施例中采用的双极膜的来源没有特殊限制,为一般市售品即可,如可以为购自浙江赛特膜技术有限公司、廊坊市亚德世环保设备有限公司或杭州蓝然环境技术有限公司等厂家的双极膜产品。
试剂如下:氢氰酸水溶液:重庆紫光国际化工股份有限公司即产即用;三乙胺:成都科龙化工化工试剂厂,AR;环氧乙烷:成都点纯科技有限公司,AR;柠檬酸钠:成都科龙化工化工试剂厂,AR;氢氧化钠:成都科龙化工化工试剂厂,AR;氢氧化钾:成都科龙化工化工试剂厂,AR。
图1显示为以下实施例中的3-羟基丙酸的合成流程图;图2显示为以下本发明实施例中的双极膜示意图。
实施例1
向密闭耐压的氰化反应釜中加入20%的氢氰酸水溶液275g(2.04mol)和三乙胺0.5g(催化剂),保持温度在15-20℃加入环氧乙烷(纯度99%)88.9g(2.0mol),反应2h;取样GC分析显示环氧乙烷含量小于1%时,停止反应,向反应液中加入50%的氢氧化钠溶液168g(2.1mol),加完后升温至60-65℃反应3h,再升温至沸腾反应1h,直到无氨气溢出,蒸馏直到蒸出液pH显中性,冷却至室温,用双极膜电渗析分离(采用三室型双极膜电渗析装置,盐室中装有3-羟基丙酸钠溶液,酸室和碱室初始溶液均为蒸馏水,极室采用阴阳两极室联通,用电导为5000~10000μs/cm的NaOH溶液作为循环液,实验过程中酸碱盐室的流速保持一致,阴阳两极室的流速保持一致,双极膜由杭州蓝然环境技术有限公司提供,流速40L/h,电压15v)得到氢氧化钠溶液和3-羟基丙酸溶液,得到氢氧化钠溶液蒸发浓缩后可直接应用于水解反应釜中。
将3-羟基丙酸溶液减压蒸馏浓缩、结晶后得到固体产品164.6g,含量98.5%(采用HPLC外标法测定),收率采用以下所列的计算方式计算,为90.1%(以环氧乙烷计)。
3-羟基丙酸的收率计算方式:
Figure BDA0002206059910000051
实施例2
向密闭耐压的氰化反应釜中加入20%的氢氰酸水溶液275g(2.04mol)和氰化钠0.5g(催化剂),保持温度在15-20℃加入环氧乙烷(纯度99%)88.9g(2.0mol),反应2h;取样GC分析显示环氧乙烷含量小于1%时,停止反应,向反应液中加入50%的氢氧化钾溶液231g(2.06mol),加完后升温至60-65℃反应3h,再升温至沸腾反应1h,此时直到无氨气溢出,蒸馏直到蒸出液pH显中性,冷却至室温,用双极膜电渗析分离(采用三室型双极膜电渗析装置,盐室中装有3-羟基丙酸钠溶液,酸室和碱室初始溶液均为蒸馏水,极室采用阴阳两极室联通,用电导为5000~10000μs/cm的KOH溶液作为循环液,实验过程中酸碱盐室的流速保持一致,阴阳两极室的流速保持一致,双极膜由杭州蓝然环境技术有限公司提供,流速40L/h,电压15v),得到氢氧化钾溶液和3-羟基丙酸溶液,得到氢氧化钾溶液蒸发浓缩后可直接应用于水解反应釜中。
将3-羟基丙酸溶液减压蒸馏浓缩、结晶、后得到固体产品162.5g,含量98.0%(采用HPLC外标法测定),收率采用实施例1中的计算方式计算,为88.5%。
实施例3
向密闭耐压的氰化反应釜中加入99%的液体氢氰酸57.3g(2.1mol)和柠檬酸钠1.0g(催化剂),保持温度在10-15℃匀速加入环氧乙烷(纯度99%)88.9g(2.1mol),加料时间1.0h,加完后继续反应2h;取样GC分析显示环氧乙烷含量小于1%时,停止反应,将反应液加入30%的氢氧化钾溶液(392g,2.12mol)中,加完后升温至60-65℃反应3h,再升温至沸腾反应1h,此时直到无氨气溢出,蒸馏直到蒸出液pH显中性,冷却至室温,用双极膜电渗析分离(采用三室型双极膜电渗析装置,盐室中装有3-羟基丙酸钠溶液,酸室和碱室初始溶液均为蒸馏水,极室采用阴阳两极室联通,用电导为5000~10000μs/cm的KOH溶液作为循环液,实验过程中酸碱盐室的流速保持一致,阴阳两极室的流速保持一致。双极膜由杭州蓝然环境技术有限公司提供,流速40L/h,电压15v),得到氢氧化钾溶液和3-羟基丙酸溶液,得到氢氧化钾溶液蒸发浓缩后可直接应用于水解反应釜中。
将3-羟基丙酸溶液减压蒸馏浓缩、结晶、后得到固体产品163.8g,含量97.8%(采用HPLC外标法测定),收率采用实施例1中的计算方式计算,89.0%。
综上所述,采用本方法制备3-羟基丙酸能够高收率得到高含量的目标产物,得到碱液可以重新回收利用,能够减少碱的用量,不副产无机盐,有效减少废水、废气和废渣,降低了生产成本。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (1)

1.一种3-羟基丙酸的制备方法,其特征在于,所述制备方法选自以下三种方法中的一种:
(1)向密闭耐压的氰化反应釜中加入20%的氢氰酸水溶液2.04mol和三乙胺0.5g,保持温度在15-20℃加入纯度99%的环氧乙烷2.0mol,反应2h;取样GC分析显示环氧乙烷含量小于1%时,停止反应,向反应液中加入50%的氢氧化钠溶液2.1mol,加完后升温至60-65℃反应3h,再升温至沸腾反应1h,直到无氨气溢出,蒸馏直到蒸出液pH显中性,冷却至室温,用双极膜电渗析分离得到氢氧化钠溶液和3-羟基丙酸溶液,双极膜电渗析分离采用三室型双极膜电渗析装置,盐室中装有3-羟基丙酸钠溶液,酸室和碱室初始溶液均为蒸馏水,极室采用阴阳两极室联通,用电导为5000~10000μs/cm的NaOH溶液作为循环液,实验过程中酸碱盐室的流速保持一致,阴阳两极室的流速保持一致,流速40L/h,电压15v;得到氢氧化钠溶液蒸发浓缩后可直接应用于水解反应釜中;
(2)向密闭耐压的氰化反应釜中加入20%的氢氰酸水溶液2.04mol和氰化钠0.5g,保持温度在15-20℃加入纯度99%的环氧乙烷2.0mol,反应2h;取样GC分析显示环氧乙烷含量小于1%时,停止反应,向反应液中加入50%的氢氧化钾溶液2.06mol,加完后升温至60-65℃反应3h,再升温至沸腾反应1h,直到无氨气溢出,蒸馏直到蒸出液pH显中性,冷却至室温,用双极膜电渗析分离得到氢氧化钾溶液和3-羟基丙酸溶液,双极膜电渗析分离采用三室型双极膜电渗析装置,盐室中装有3-羟基丙酸钠溶液,酸室和碱室初始溶液均为蒸馏水,极室采用阴阳两极室联通,用电导为5000~10000μs/cm的KOH溶液作为循环液,实验过程中酸碱盐室的流速保持一致,阴阳两极室的流速保持一致,流速40L/h,电压15v;得到氢氧化钾溶液蒸发浓缩后可直接应用于水解反应釜中;
(3)向密闭耐压的氰化反应釜中加入99%的液体氢氰酸2.1mol和柠檬酸钠1.0g,保持温度在10-15℃匀速加入纯度99%的环氧乙烷2.1mol,加料时间1.0h,加完后继续反应2h;取样GC分析显示环氧乙烷含量小于1%时,停止反应,将反应液加入2.12mol 30%的氢氧化钾溶液中,加完后升温至60-65℃反应3h,再升温至沸腾反应1h,此时直到无氨气溢出,蒸馏直到蒸出液pH显中性,冷却至室温,用双极膜电渗析分离得到氢氧化钾溶液和3-羟基丙酸溶液,双极膜电渗析分离采用三室型双极膜电渗析装置,盐室中装有3-羟基丙酸钠溶液,酸室和碱室初始溶液均为蒸馏水,极室采用阴阳两极室联通,用电导为5000~10000μs/cm的KOH溶液作为循环液,实验过程中酸碱盐室的流速保持一致,阴阳两极室的流速保持一致,流速40L/h,电压15v;得到氢氧化钾溶液蒸发浓缩后可直接应用于水解反应釜中。
CN201910881572.8A 2019-09-18 2019-09-18 一种3-羟基丙酸的制备方法 Active CN110511134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910881572.8A CN110511134B (zh) 2019-09-18 2019-09-18 一种3-羟基丙酸的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910881572.8A CN110511134B (zh) 2019-09-18 2019-09-18 一种3-羟基丙酸的制备方法

Publications (2)

Publication Number Publication Date
CN110511134A CN110511134A (zh) 2019-11-29
CN110511134B true CN110511134B (zh) 2021-04-23

Family

ID=68632636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910881572.8A Active CN110511134B (zh) 2019-09-18 2019-09-18 一种3-羟基丙酸的制备方法

Country Status (1)

Country Link
CN (1) CN110511134B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081120A (zh) * 1992-07-09 1994-01-26 清华大学 双极性膜电渗析法制备有机酸的设备与工艺
CN101472882A (zh) * 2006-06-14 2009-07-01 赢创罗姆有限责任公司 用于连续制备亚乙基氰醇的装置和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081120A (zh) * 1992-07-09 1994-01-26 清华大学 双极性膜电渗析法制备有机酸的设备与工艺
CN101472882A (zh) * 2006-06-14 2009-07-01 赢创罗姆有限责任公司 用于连续制备亚乙基氰醇的装置和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Synthesis and antitumour activity of b-hydroxyisovalerylshikonin analogues;Zhen Rao等;《European Journal of Medicinal Chemistry》;20111231;第46卷;P3934-3941 *
双极膜电渗析分离发酵液中L-乳酸;李娟 等;《生物加工过程》;20091130;第7卷(第6期);第45-50页 *
双极膜电渗析法制备乳酸;罗铁红 等;《膜科学与技术》;20070831;第27卷(第4期);第66-69页 *

Also Published As

Publication number Publication date
CN110511134A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
KR101198866B1 (ko) 고순도 알킬락테이트 및 젖산의 회수 방법
CA2625511A1 (en) Process for the direct production of esters of carboxylic acids from fermentation broths
CN109232178B (zh) 制备高纯度羟基酪醇的新方法
CN107501098B (zh) 苯甲酸重副产物苯甲酸苄酯的脱色方法
CN101225073B (zh) 一种离子液体及制备方法及在生物转酯合成中的应用
US4247716A (en) Process for producing pyruvic acid
CN110511134B (zh) 一种3-羟基丙酸的制备方法
CN112076776B (zh) 用于选择性光催化氧化醇生成酯的质子化氮化碳及其应用
CN111056971A (zh) 一种2-羟基羧酸酯的合成方法
CN107778141B (zh) 一种1,4-丁二醇的纯化方法
CN110498740A (zh) 一种生产3-羟基丙酸的方法
CN110577467A (zh) 一种3-羟基丙酸的合成方法
CN101824627B (zh) 制备丁二酸二甲酯的方法
US4242525A (en) Process for producing salts of pyruvic acid
CN112321399B (zh) 一种化工中间体的制备方法
CN101070282A (zh) 室温离子液体催化制备亚油酸乙酯的方法
CN113668002B (zh) 一种用甲酸制备丙酮的方法
CN111253343B (zh) 一种无金属催化剂制备环氧苯乙烷的方法
CN110016689B (zh) 一种烯丙醇的电化学制备方法
Fournier et al. An electrochemical process to prepare and recycle biobased ionic liquids
CN108586303B (zh) 一种三甲基碳酸氢锍的合成方法
KR820000822B1 (ko) 피루빈산염의 제조방법
CN110004458B (zh) 一种丙烯醛的电化学制备方法
CN109400468B (zh) 一种l-二苯甲酰酒石酸二甲酯的制备方法
RU2671827C1 (ru) Способ электрохимического окисления спиртов

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant