CN110499151A - 一种树枝状放大的荧光信号探针及其制法和应用 - Google Patents

一种树枝状放大的荧光信号探针及其制法和应用 Download PDF

Info

Publication number
CN110499151A
CN110499151A CN201910806252.6A CN201910806252A CN110499151A CN 110499151 A CN110499151 A CN 110499151A CN 201910806252 A CN201910806252 A CN 201910806252A CN 110499151 A CN110499151 A CN 110499151A
Authority
CN
China
Prior art keywords
fluorescence signal
amplification
probe
reaction
tdt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910806252.6A
Other languages
English (en)
Inventor
接贵芬
蔡倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201910806252.6A priority Critical patent/CN110499151A/zh
Publication of CN110499151A publication Critical patent/CN110499151A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种树枝状放大的荧光信号探针;以及所述荧光信号探针的制备方法及检测Hg2+的分析应用。本发明的技术方案是通过末端脱氧核苷酸转移酶(TdT)催化的DNA聚合延伸结合生物条形码扩增策略,构建了一种树枝状放大的荧光信号探针,实现了对Hg2+的灵敏分析。目标Hg2+首先引发链置换扩增(SDA)反应,产生大量模拟目标(MT)。MT与SiO2微球上捕获探针1杂交,利用TdT催化作用结合AuNPs表面的条形码技术,构建了放大的树枝状结构,可组装大量的Cy5荧光信号探针,实现了Hg2+的超灵敏检测。该研究在环境和生物领域分析中具有很好的应用潜力。

Description

一种树枝状放大的荧光信号探针及其制法和应用
技术领域:
本发明涉及一种树枝状放大的荧光信号探针;以及所述荧光信号探针的制备方法及其检测Hg2+的分析应用。
背景技术:
汞离子是毒性最大的重金属之一,即使在极低浓度下也会对环境和人体器官产生严重的不利影响[Tchounwou,P.B.;Ayensu,W.K.et.al.Environ.Toxicol.2010,18,149-175.]。脱氧核糖核酸(DNAs)由于其序列可编程性和特殊的识别特性,已被用于制造各种纳米结构和器件[Li,J.;Green,A,A.;Yan,H.Nat.Chem.2017,9,1056-1067.]。组装好的DNA纳米结构作为信号放大器,有效地提高了生物传感平台的性能[Li,C.;Li,H.;Ge,J.Chem.Commun.2019,55,3919-3922.]。树枝状DNA纳米结构具有高稳定性、良好的生物相容性、高度支化的纳米结构和单分散性等特点,在生物传感器、生物成像探针、药物载体等生物应用领域得到了广泛的研究[Li,J.;Mo,L.;Lu,C.H.Chem.Soc.Rev.2016,45,1410-1431.]。
本工作采用末端脱氧核苷酸转移酶(TdT)催化无模板聚合延伸技术,结合生物条形码(BBC)扩增策略,于SiO2微球表面可控地制备了一种新型树枝状放大的荧光信号探针,用于Hg2+的灵敏检测。
发明内容:
本发明的目的之一提供一种新型树枝状放大的荧光信号探针;以及所述荧光信号探针的制备方法及其检测Hg2+的分析应用。
具体包括以下步骤:
步骤1.靶向Hg2+诱导扩增过程:首先,不同浓度的Hg2+样品溶液和30μM机器DNA在40μL 1×NEB缓冲溶液中37℃下反应1小时。然后,加入包含phi29DNA聚合酶(5U)、Nt.BbvCI(5U)和500μM dNTPs的混合物,在37℃下温育2h,获得大量的MT序列。最后,80℃热处理10min,停止上述反应,冷却至室温。
步骤2.制备SiO2-C1和C2/报告探针-AuNPs:取0.5μL羧基二氧化硅微球,加入15μL0.1M EDC和15μL 0.025M NHS在室温下活化2h,再加30μL捕获探针1(C1,10μM)37℃下反应6h。离心去除多余的DNA序列,沉淀分散在10μL去离子水中,在4℃储存。1μL AuNPs,0.9μL捕获探针2(C2,2μM)和8.1μL报告探针(2μM)混合,在37℃反应16h,形成C2/报告探针-AuNPs复合物。
步骤3.二氧化硅微球表面树枝状荧光信号探针的制备及检测:上述MT溶液与含有10μL SiO2-C1溶液、750mM NaCl和75mM柠檬酸钠的溶液混合,在37℃下反应1h。离心后,取5U(TdT)加到20μL含有该沉淀产物、2μLdGTPs(100mM)、2μL 10×末端转移酶反应液、2μLCoCl2(2.5mM)的混合溶液,在37℃下进行聚合反应2h。随后,50μLC2/报告探针-AuNPs加到上面聚合产物溶液中,室温反应1h。多余的TdT、dTTPs等通过离心除去。
TdT-催化的第二次聚合扩展反应:5U(TdT)加到20μL聚合反应体系,含有上述沉淀产物、2μL dTTPs(100mM)、2μL 10×末端转移酶反应缓冲液、2μL CoCl2(2.5mM),37℃下反应2h。离心后,加入信号探针37℃下反应1h。离心除去上清液,沉淀分散在50μL水,测量荧光信号。
附图说明:
图1二氧化硅微球表面树枝状放大的荧光信号探针制备及检测Hg2+的原理图。
图2电泳表征:(A)SDA过程,(B)TdT催化的聚合延伸过程。
图3荧光信号探针的(A)AFM图,(B)AFM高度图,(C)TEM图。(D)二氧化硅微球表面聚合产物探针的TEM图。
图4(A)不同浓度目标Hg2+对应的荧光信号。(B)荧光信号变化和Hg2+浓度的关系,插图:测定Hg2+的矫正曲线。
具体实施方式:
实施例1.荧光信号探针的制备及对目标Hg2+的检测
Hg2+诱导扩增过程:不同浓度的Hg2+溶液和30μM机器DNA 37℃下反应1小时。再加入phi29DNA(5U),Nt.BbvCI(5U)和500μM dNTPs在37℃温育2h,获得大量MT序列的溶液。
荧光信号探针的制备及对目标Hg2+的检测:
取0.5μL SiO2溶液,加入15μL 0.1M EDC和15μL 0.025M NHS在室温下活化2h,再加30μL捕获探针1(10μM)37℃下反应6h。离心去除多余的DNA序列,沉淀分散在10μL去离子水中,得到SiO2-C1。
1μL AuNPs,0.9μL捕获探针2(2μM)和8.1μL报告探针(2μM)在37℃反应16h,形成C2/报告探针-AuNPs。
上述MT溶液与含有10μL SiO2-C1溶液、750mM NaCl和75mM柠檬酸钠的溶液混合,在37℃下反应1h。离心后,取5U(TdT)加到20μL含有该沉淀产物、2μL dGTPs(100mM)、2μL 10×末端转移酶反应液、2μL CoCl2(2.5mM)的反应体系,在37℃下进行聚合反应2h。随后,50μLC2/报告探针-AuNPs加到上面聚合产物溶液中,室温反应1h。多余的TdT、dTTPs等通过离心除去。
荧光信号探针的制备及检测:5U(TdT)加到20μL含有上述沉淀产物、2μL dTTPs(100mM)、2μL 10×末端转移酶反应缓冲液、2μL CoCl2(2.5mM)的反应体系,37℃下反应2h。离心后,加入信号探针37℃下反应1h。离心除去上清液,沉淀分散在50μL水,测量荧光信号。
实施例2.荧光信号探针的制备及对目标Hg2+的检测
将“不同浓度的Hg2+溶液和30μM机器DNA 37℃下反应1小时。”改为“不同浓度的Hg2 +溶液和30μM机器DNA 37℃下反应1.5小时。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Hg2+检测的结果同实施例1。
实施例3.荧光信号探针的制备及对目标Hg2+的检测
将“1μL AuNPs,0.9μL捕获探针2(2μM)和8.1μL报告探针(2μM)在37℃反应16h,形成C2/报告探针-AuNPs。”改为“1μL AuNPs,0.9μL捕获探针2(2μM)和8.1μL报告探针(2μM)在37℃反应12h,形成C2/报告探针-AuNPs。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Hg2+检测的结果同实施例1。
实施例4.荧光信号探针的制备及对目标Hg2+的检测
将“再与phi29DNA(10U/μL)、Nt.BbvCI(10U/μL)和500μM dNTPs在37℃温育2h,获得大量MT序列的溶液。”改为“再与phi29DNA(10U/μL)、Nt.BbvCI(10U/μL)和600μM dNTPs在37℃温育2h,获得大量MT序列的溶液。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Hg2+检测的结果同实施例1。
实施例5.荧光信号探针的制备及对目标Hg2+的检测
将“5U(TdT)加到20μL含有上述沉淀产物、2μL dTTPs(100mM)、2μL 10×末端转移酶反应缓冲液、2μL CoCl2(2.5mM)的反应体系,37℃下反应2h。离心后,加入信号探针37℃下反应1h。”改为“6U(TdT)加到20μL含有上述沉淀产物、2μL dTTPs(100mM)、2μL 10×末端转移酶反应缓冲液、2μL CoCl2(2.5mM)的反应体系,37℃下反应2h。离心后,加入信号探针37℃下反应1h。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Hg2+检测的结果同实施例1。

Claims (2)

1.一种树枝状放大的荧光信号探针,其特征是:利用末端脱氧核苷酸转移酶(TdT)催化的聚合延伸技术结合生物条形码扩增策略,构建了一种树枝状放大的荧光信号探针,实现了对Hg2+的灵敏分析。目标Hg2+首先引发链置换扩增(SDA)反应,产生大量模拟目标(MT)。MT与SiO2微球上捕获探针1杂交,利用TdT催化作用结合AuNPs表面的条形码技术,构建了一种放大的树枝状DNA结构,可组装大量的荧光信号探针,实现了Hg2+的超灵敏检测。
2.一种制备权利要求1所述的树枝状放大的荧光信号探针的方法和应用,其特征方法由下列步骤组成:
步骤1.靶向Hg2+诱导扩增过程:首先,不同浓度的Hg2+样品溶液和30μM机器DNA在40μL 1×NEB缓冲溶液中37℃下反应1小时。然后,加入包含phi29 DNA聚合酶(5U)、Nt.BbvCI(5U)和500μM dNTPs的混合物,在37℃温育2h,获得大量的MT序列。最后,80℃热处理10min,停止上述反应,冷却至室温。
步骤2.制备SiO2-C1和C2/报告探针-AuNPs:取0.5μL羧基二氧化硅微球,加入15μL 0.1MEDC和15μL 0.025M NHS在室温下活化2h,再加30μL捕获探针1(C1,10μM)37℃下反应6h。离心去除多余的DNA序列,沉淀分散在10μL去离子水中,在4℃储存。1μLAuNPs,0.9μL捕获探针2(C2,2μM)和8.1μL报告探针(2μM)混合,在37℃反应16h,形成C2/报告探针-AuNPs复合物。
步骤3.二氧化硅微球表面树枝状荧光信号探针的制备及检测:上述MT溶液与含有10μLSiO2-C1溶液、750mM NaCl和75mM柠檬酸钠的溶液混合,在37℃下反应1h。离心后,取5U(TdT)加到20μL含有该沉淀产物、2μLdGTPs(100mM)、2μL 10×末端转移酶反应液、2μLCoCl2(2.5mM)的反应体系,在37℃下进行聚合反应2h。随后,50μLC2/报告探针-AuNPs复合物加到上面聚合产物溶液中,室温反应1h。多余的TdT、dTTPs等通过离心除去。
TdT-催化的第二次聚合扩展反应:取5U(TdT)加到20μL含有上述沉淀产物、2μL dTTPs(100mM)、2μL 10×末端转移酶反应缓冲液、2μL CoCl2(2.5mM)的反应体系,37℃下反应2h。离心后,加入信号探针37℃下反应1h。离心除去上清液,沉淀分散在50μL水,测量荧光信号。
CN201910806252.6A 2019-08-29 2019-08-29 一种树枝状放大的荧光信号探针及其制法和应用 Withdrawn CN110499151A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910806252.6A CN110499151A (zh) 2019-08-29 2019-08-29 一种树枝状放大的荧光信号探针及其制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910806252.6A CN110499151A (zh) 2019-08-29 2019-08-29 一种树枝状放大的荧光信号探针及其制法和应用

Publications (1)

Publication Number Publication Date
CN110499151A true CN110499151A (zh) 2019-11-26

Family

ID=68590261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910806252.6A Withdrawn CN110499151A (zh) 2019-08-29 2019-08-29 一种树枝状放大的荧光信号探针及其制法和应用

Country Status (1)

Country Link
CN (1) CN110499151A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155790A (zh) * 2021-02-05 2021-07-23 江南大学 一种基于DNA-Cu NMs的荧光检测复杂基质中Pb2+的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1342599A (en) * 1997-11-29 1999-06-16 Secretary Of State For Defence, The Fluorimetric detection system of a nucleic acid
CN108588284A (zh) * 2018-05-10 2018-09-28 山东师范大学 基于酶催化可控自组装生物条码检测htlv-ii dna的方法
CN109536577A (zh) * 2018-11-21 2019-03-29 暨南大学 一种末端脱氧核酸酶活力的测定方法与应用
CN109576342A (zh) * 2018-11-21 2019-04-05 暨南大学 一种用于检测碱性磷酸酶的荧光化学方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1342599A (en) * 1997-11-29 1999-06-16 Secretary Of State For Defence, The Fluorimetric detection system of a nucleic acid
CN108588284A (zh) * 2018-05-10 2018-09-28 山东师范大学 基于酶催化可控自组装生物条码检测htlv-ii dna的方法
CN109536577A (zh) * 2018-11-21 2019-03-29 暨南大学 一种末端脱氧核酸酶活力的测定方法与应用
CN109576342A (zh) * 2018-11-21 2019-04-05 暨南大学 一种用于检测碱性磷酸酶的荧光化学方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155790A (zh) * 2021-02-05 2021-07-23 江南大学 一种基于DNA-Cu NMs的荧光检测复杂基质中Pb2+的方法

Similar Documents

Publication Publication Date Title
Cao et al. Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes
CN105821132B (zh) 一种基于核酸外切酶和核酸探针的电化学检测特定单链dna浓度的方法
CN105164279A (zh) 靶核酸的多重分析
WO2006016978A1 (en) Analog probe complexes
CN104651491A (zh) 一种dna四面体纳米结构信号探针及其应用
Liu et al. A sensitive and accurate fluorescent genosensor for Staphylococcus aureus detection
Wu et al. A novel recyclable surface-enhanced Raman spectroscopy platform with duplex-specific nuclease signal amplification for ultrasensitive analysis of microRNA 155
CN107574226A (zh) 一种基因检测探针及基因检测方法
CN106520913A (zh) 基于酶切循环放大的石墨烯氧化物‑dna传感器的制备方法和在检测凝血酶上的应用
CN113025315B (zh) 一种核酸功能化金属纳米探针及其制备方法
CN106957908A (zh) miRNA和/或具有核酸适配体的靶标分子的检测方法及检测探针
JPWO2012077819A1 (ja) 標的核酸の検出方法及びキット
Cao et al. An ultrasensitive biosensor for virulence ompA gene of Cronobacter sakazakii based on boron doped carbon quantum dots-AuNPs nanozyme and exonuclease III-assisted target-recycling strategy
Balaban Hanoglu et al. Recent approaches in magnetic nanoparticle-based biosensors of miRNA detection
Gao et al. A novel electrochemical biosensor for DNA detection based on exonuclease III-assisted target recycling and rolling circle amplification
CN110499151A (zh) 一种树枝状放大的荧光信号探针及其制法和应用
CN111235216A (zh) 一种智能生物探针的致病微生物精准检测及杀灭方法
CN112432980B (zh) 基于dna步行器和纳米花结构的致病菌电化学检测方法
Seo et al. Isothermal amplification-mediated lateral flow biosensors for in vitro diagnosis of gastric cancer-related microRNAs
Yadavalli et al. Tailed‐Hoogsteen Triplex DNA Silver Nanoclusters Emit Red Fluorescence upon Target miRNA Sensing
CN111808925B (zh) 基于发卡结构变换的双重信号放大AuNPs-DNA步行器及制备方法
CN109444098A (zh) 一种基于循环扩增技术和羧基碳量子点的荧光生物传感器及其制法和应用
US20140228247A1 (en) Sequence-specific analysis of nucleic acids
Xiang et al. Graphene oxide and molecular beacons-based multiplexed DNA detection by synchronous fluorescence analysis
CN110057797B (zh) 一种基于量子点构建的网状结构检测microRNA-155的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20191126

WW01 Invention patent application withdrawn after publication