CN110487315B - 一种仪表漂移的分析系统及方法 - Google Patents

一种仪表漂移的分析系统及方法 Download PDF

Info

Publication number
CN110487315B
CN110487315B CN201910804667.XA CN201910804667A CN110487315B CN 110487315 B CN110487315 B CN 110487315B CN 201910804667 A CN201910804667 A CN 201910804667A CN 110487315 B CN110487315 B CN 110487315B
Authority
CN
China
Prior art keywords
data
verification
module
unit group
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910804667.XA
Other languages
English (en)
Other versions
CN110487315A (zh
Inventor
罗文博
唐博文
谢征宇
梁小玉
吴益文
解永奎
张勇
圣国龙
吴顺贵
陈海岳
刘高明
佟英奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
CGN Power Co Ltd
Guangdong Nuclear Power Joint Venture Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Original Assignee
China General Nuclear Power Corp
CGN Power Co Ltd
Guangdong Nuclear Power Joint Venture Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, CGN Power Co Ltd, Guangdong Nuclear Power Joint Venture Co Ltd, Suzhou Nuclear Power Research Institute Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN201910804667.XA priority Critical patent/CN110487315B/zh
Publication of CN110487315A publication Critical patent/CN110487315A/zh
Application granted granted Critical
Publication of CN110487315B publication Critical patent/CN110487315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种仪表漂移的分析系统及方法。该系统包括数据采集模块、数据预处理模块、正态分布验证模块、时间相关性分析模块和漂移量预估模块。数据采集模块采集多个仪表的以往的校验数据,将多个所述仪表成多个单元组;数据预处理模块根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;正态分布验证模块验证同属于一个单元组的仪表的校验数据是否服从正态分布;时间相关性分析模块对所述单元组的仪表的漂移数据与时间的相关性进行分析;漂移量预估模块计算出校验周期延长后的仪表漂移。从而,该系统通过分析仪表的以往的校验数据来预测仪表校验周期延长后的漂移量,为仪表校验间隔延长提供依据,从而确保核电厂的安全运行。

Description

一种仪表漂移的分析系统及方法
技术领域
本发明涉及仪表性能分析技术领域,具体涉及一种仪表漂移的分析系统及方法。
背景技术
在核电厂实际运行中,使用了大量的仪表来对核电厂的各项运行参数进行测量,仪表所测得的值随使用时间的增加而逐渐偏离原值的现象称为仪表漂移。仪表漂移可能会使仪表的精度超出可接受范围从而无法准确的测量所需参数值,因此需要定期对仪表进行校验,确保仪表的精度在可以接受范围之内。
为了提高核电厂利用率,减少大修成本,需要对燃料循环进行延长,相关的仪表定期校验间隔也会随之延长。为了确保校验间隔延长之后仪表的漂移程度仍然在可接受的精度范围之内,需要确认校验间隔延长之后的仪表漂移量的变化趋势,以便于判断是否可以延长校验周期。
仪表漂移具有随机性,受到众多因素的影响,比如仪表的制造材料、机械结构、电路构造、使用环境等,并且每个仪表还有个体差异。目前,还没有能够准确分析出仪表在校验间隔延长之后的漂移程度。
发明内容
本发明所要解决的技术问题是,针对现有技术中的上述的问题,提供一种仪表漂移的分析系统及方法,通过所述方法或所述系统来预测仪表在校验周期延长后的漂移量,为仪表校验间隔延长提供依据,从而确保核电厂的安全运行。
本发明解决其技术问题所采用的技术方案是:提供一种仪表漂移的分析系统,所述系统包括数据采集模块、数据预处理模块、正态分布验证模块、时间相关性分析模块和漂移量预估模块;
所述数据采集模块用于采集多个仪表的以往的校验数据,并将多个所述仪表成多个单元组,功能相关的所述仪表归集为同一个所述单元组;
所述数据预处理模块用于根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;
所述正态分布验证模块用于验证同属于一个单元组的仪表的校验数据是否服从正态分布;
所述时间相关性分析模块用于当所述正态分布验证模块验证同属于一个单元组的仪表的校验数据服从正态分布后,对所述单元组的仪表的漂移数据与时间的相关性进行分析;
所述漂移量预估模块用于根据所述时间相关性分析模块分析得出的所述单元组的仪表的漂移数据与时间的相关性结果,计算出校验周期延长后的仪表漂移。
本发明提供的仪表漂移的分析系统中,所述系统还包括异常数据分析模块,所述异常数据分析模块用于采用T测试来找出收集到的校验数据中的异常数据,并对所述异常数据进行剔除或纠正。
本发明提供的仪表漂移的分析系统中,所述正态分布验证模块包括第一验证子模块,所述第一验证子模块用于在同属于一个所述单元组的仪表的校验数据的数量小于50的情况下,采用W验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
本发明提供的仪表漂移的分析系统中,所述正态分布验证模块包括第二验证子模块,所述第二验证子模块用于在同属于一个所述单元组的仪表的校验数据的数量大于等于50的情况下,采用D-prime验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
本发明提供的仪表漂移的分析系统中,所述正态分布验证模块包括覆盖分析子模块,所述覆盖分析子模块用于当所述第一验证子模块和所述第二验证子模块均不能验证同属于一个所述单元组的仪表的校验数据是属于正态分布时,将同属于一个所述单元组的仪表的校验数据保守处理为正态分布。
相应的,本发明还提供了一种仪表漂移的分析方法,所述方法包括如下步骤:
步骤S1,数据采集模块采集多个仪表的以往的校验数据,并将多个所述仪表成多个单元组,功能相关的所述仪表归集为同一个所述单元组;
步骤S2,数据预处理模块根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;
步骤S3,正态分布验证模块验证同属于一个单元组的仪表的校验数据是否服从正态分布;
步骤S4,时间相关性分析模块在所述正态分布验证模块验证同属于一个单元组的仪表的校验数据服从正态分布后,对所述单元组的仪表的漂移数据与时间的相关性进行分析;
步骤S5,漂移量预估模块根据所述时间相关性分析模块分析得出的所述单元组的仪表的漂移数据与时间的相关性结果,计算出校验周期延长后的仪表漂移。
本发明提供的仪表漂移的分析方法中,所述方法还包括如下步骤SA:异常数据分析模块采用T测试来找出收集到的校验数据中的异常数据,并对所述异常数据进行剔除或纠正;所述步骤SA在所述步骤S3之前实施。
本发明提供的仪表漂移的分析方法中,所述正态分布验证模块包括第一验证子模块,所述步骤S3包括步骤S31:
所述第一验证子模块在同属于一个所述单元组的仪表的校验数据的数量小于50的情况下,采用W验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
本发明提供的仪表漂移的分析方法中,所述正态分布验证模块包括第二验证子模块,所述步骤S3包括步骤S32:
所述第二验证子模块在同属于一个所述单元组的仪表的校验数据的数量大于等于50的情况下,采用D-prime验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
本发明提供的仪表漂移的分析方法中,所述正态分布验证模块包括覆盖分析子模块,所述步骤S3包括步骤S33:
所述覆盖分析子模块在所述第一验证子模块和所述第二验证子模块均不能验证同属于一个所述单元组的仪表的校验数据是属于正态分布的情况下,将同属于一个所述单元组的仪表的校验数据保守处理为正态分布。
实施本发明提供的仪表漂移的分析系统,可以达到以下有益效果:所述系统包括数据采集模块、数据预处理模块、正态分布验证模块、时间相关性分析模块和漂移量预估模块;所述数据采集模块用于采集多个仪表的以往的校验数据,并将多个所述仪表成多个单元组,功能相关的所述仪表归集为同一个所述单元组;所述数据预处理模块用于根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;所述正态分布验证模块用于验证同属于一个单元组的仪表的校验数据是否服从正态分布;所述时间相关性分析模块用于当所述正态分布验证模块验证同属于一个单元组的仪表的校验数据服从正态分布后,对所述单元组的仪表的漂移数据与时间的相关性进行分析;所述漂移量预估模块用于根据所述时间相关性分析模块分析得出的所述单元组的仪表的漂移数据与时间的相关性结果,计算出校验周期延长后的仪表漂移。如此,所述系统通过分析仪表的以往的校验数据来预测仪表校验周期延长后的漂移量,为仪表校验间隔延长提供依据,从而确保核电厂的安全运行。
同样的,实施本发明提供的仪表漂移的分析方法也可以达到以上有益效果。
附图说明
图1为本发明实施例一提供的仪表漂移的分析系统的方框图;
图2为本发明实施例二提供的仪表漂移的分析方法的流程图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本实施例提供一种仪表漂移的分析系统,所述系统包括数据采集模块、数据预处理模块、正态分布验证模块、时间相关性分析模块和漂移量预估模块;所述数据采集模块用于采集多个仪表的以往的校验数据,并将多个所述仪表成多个单元组,功能相关的所述仪表归集为同一个所述单元组;所述数据预处理模块用于根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;所述正态分布验证模块用于验证同属于一个单元组的仪表的校验数据是否服从正态分布;所述时间相关性分析模块用于当所述正态分布验证模块验证同属于一个单元组的仪表的校验数据服从正态分布后,对所述单元组的仪表的漂移数据与时间的相关性进行分析;所述漂移量预估模块用于根据所述时间相关性分析模块分析得出的所述单元组的仪表的漂移数据与时间的相关性结果,计算出校验周期延长后的仪表漂移。优选的,所述系统还包括异常数据分析模块,所述异常数据分析模块用于采用T测试来找出收集到的校验数据中的异常数据,并对所述异常数据进行剔除或纠正。所述数据采集模块、数据预处理模块、正态分布验证模块、时间相关性分析模块、漂移量预估模块和异常数据分析模块均可以采用微处理器或是单片机。
为了更好的说明所述系统,下面对所述系统的工作原理进行详细说明。
分析仪表漂移需要大量的数据作为支撑,因此所述系统通过所述数据采集模块需要收集仪表的历史校验数据。目前国内在运核电厂众多,核电厂运行过程中所执行的仪表校验都有详细的历史记录,为了确保数据量满足数理统计的要求,需要收集到足够的校验数据。由于制造差异以及使用环境差异等一系列的因素,每个仪表都有独特的漂移特性,因此所述数据采集模块可以根据仪表的厂家及型号、测量类型、使用环境、操作量程、校验点、校验方法等因素将多个仪表分成多个单元组。分组的目的是尽可能的将功能相关的仪表合并到同一个单元组,用同属于一个单元组的仪表的历史校验数据来分析这一单元组的仪表的漂移特性。
考虑到不同仪表的量程存在差异,所述系统通过所述数据预处理模块采用当前次校验的值与前一次校验的值的差值与仪表的量程的比值来表示当前次校验与前一次校验间隔中仪表的漂移量,公式表示如下:
Figure BDA0002183290540000061
上式中,
dn为第n次校验与第n-1次校验间隔中仪表的漂移量;
Dn为第n次校验的值;
D'n-1为第n-1次校验仪表调整后的值;
L为仪表的量程。
由于单个仪表的漂移量不具有代表性,因此所述数据预处理模块在计算了单个仪表的漂移量后,还将继续统计同属于一个单元组的仪表的各项基本数据,所述基本数据包括平均值、标准差、数据点数量等。根据所述基本数据可以计算出该单元组的仪表的计算漂移值,计算公式如下:
AD=ADbias±ADrandom
上式中,
AD为计算漂移值;
ADbias为计算漂移值的偏差漂移部分,等于漂移量的平均值μ,即ADbias=μ;
ADrandom为随机漂移部分,等于漂移量的标准差σ乘容许因子k,即ADrandom=σ×k,k根据n的值在表4(见后文)中95/95%容许因子这一列中查找。
校验数据记录错误、校验错误、校验设备故障、刻度或设定值改变、仪表故障、设计/制造/安装缺陷均有可能造成异常数据的产生。异常数据对分析结果的正确性会产生极大的影响。因此,所述系统在利用收集到的校验数据之前通过所述异常数据分析模块将其中的异常数据进行剔除或纠正。本发明提供的系统中,所述异常数据分析模块采用T测试来分析确定收集到的校验数据中哪些是异常数据,具体包括如下步骤:
根据如下公式计算出校验数据对应的T值,
Figure BDA0002183290540000062
上式中,x为校验数据的值。
将计算出的T值与对应的临界值进行对比,若计算出的T值超过临界值(T临界值表见表1),则判断对应的校验数据可能为异常数据。可能为异常的校验数据需要进一步查找校验历史记录来进行确认。如果异常数据是由于某些可以识别的错误造成的,可以将该异常数据剔除或纠正。
表1
Figure BDA0002183290540000071
数理统计中的正态分布是描述随机量的最常用分布之一,本发明提供的系统的可正常运行的前提是所采集的校验数据是服从正态分布的。本发明提供的系统的所述正态分布验证模块包括第一验证子模块、第二验证子模块和覆盖分析子模块。
所述第一验证子模块用于在同属于一个所述单元组的仪表的校验数据的数量小于50的情况下,采用W验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
具体的,所述的W验证方法适用于所采集的校验数据的数量小于50的情况,其是通过将计算出的W值与表2中查得的W临界值进行对比来验证所采集的校验数据是否服从正态分布,具体步骤如下:
1)将所采集的校验数据从小到大进行排列;
2)计算S2值,S2=(n-1)×s2,式中,n为所采集的校验数据的个数,s2为所采集的校验数据的方差;
3)计算b值,b=∑[an-i+1×(xn-i+1-xi)],式中,i为从1到m的自然数,如果n为偶数,则m=n/2,如果n为奇数,m=(n-1)/2;
4)计算W值,
Figure BDA0002183290540000081
5)根据所需的重要度(1%或5%)以及所采集的校验数据的个数n在表2中查找对应的W临界值,并将计算出的W值与W临界值比较,如果计算出的W值大于W临界值,则认为所采集的校验数据服从正态分布。
表2
Figure BDA0002183290540000082
Figure BDA0002183290540000091
所述第二验证子模块用于在同属于一个所述单元组的仪表的校验数据的数量大于等于50的情况下,采用D-prime验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
具体的,所述的D-prime验证方法则适用于所采集的校验数据的数量大于等于50的情况,其是通过将计算出的D值与表3中查得的D临界值进行对比来验证所采集的校验数据是否服从正态分布,具体步骤如下:
1)将所采集的校验数据从小到大进行排列;
2)计算S2值,S2=(n-1)×s2,式中,n为所采集的校验数据的个数,s2为所采集的校验数据的方差;
3)计算t值,
Figure BDA0002183290540000092
其中,式中,i为从1到n的自然数;
4)计算D值,
Figure BDA0002183290540000093
5)根据所采集的校验数据的个数n在表3中查找可接受区间(根据n进行插值),将计算出的D值与可接受区间进行对比,如果D值在可接受区间内,则认为所采集的校验数据属于正态分布。表3给出了重要度为5%的可接受区间。
表3
Figure BDA0002183290540000094
Figure BDA0002183290540000101
所述覆盖分析子模块用于当所述第一验证子模块和所述第二验证子模块均不能验证同属于一个所述单元组的仪表的校验数据是属于正态分布时,将同属于一个所述单元组的仪表的校验数据保守处理为正态分布。
具体的,所述覆盖分析子模块采用的方法包括的步骤如下:
1)计算所采集的校验数据的平均值μ和标准差σ;
2)根据表4查找相应的容许因子TF;
3)计算AF值,使得所采集的校验数据中有(n-1)/n或97.5%(两者取小值)的数据在μ±(TF×σ×AF)的范围之内;
4)使用平均值μ和标准差σ×AF的正态分布来保守的覆盖所采集的校验数据。
表4
Figure BDA0002183290540000102
Figure BDA0002183290540000111
所述时间相关性分析模块在确认所采集的校验数据服从正态分布后,分析该单元组的仪表的漂移数据与时间的相关性。
首先,所述时间相关性分析模块进行随机漂移的时间相关性分析及相关性强弱分析。
所述时间相关性分析模块采用分段分析的方法来判断随机漂移的时间相关性。将所采集的校验数据按照校验间隔进行分组,如0-1C、1-2C、2-3C等,每组数据的个数应当尽可能的多,使得分析结果更具有统计学意义,分别求出每组数据的标准偏差,计算其中最大标准差与最小标准差比值的平方Fcalc
Figure BDA0002183290540000112
式中,SDmax为最大标准差,SDmin为最小标准差;
在表5中根据ν1和ν2以及对应的置信度q为0.95查得对应的临界值Fcritical,并将Fcritical与Fcalc进行比较,如果Fcalc>Fcritical,则认为时间相关性是存在的。其中,ν1为最大标准差对应分组的样本数-1,ν2为最小标准差对应分组的样本数-1。
表5
Figure BDA0002183290540000113
Figure BDA0002183290540000121
如果自由度未在表中列出但需要确定临界值时,可以从插值获得该值,或者可以使用ν1、ν2的下一个较大的值。
所述时间相关性分析模块分析随机漂移具有时间相关性之后继续分析随机漂移时间相关性的强弱。
具体的,所述时间相关性分析模块将所采集的校验数据按照校验间隔进行分组(如0-1C,1-2C,2-3C等),对每组校验数据分别计算其平均校验间隔(代数平均)、其标准差与单周期数据标准差之比、以及其平均校验间隔与单周期平均校验间隔之比的平方根,并进行比较。根据比较结果判断时间相关性的强弱,若多周期平均校验间隔与单周期平均校验间隔之比的平方根小于其多周期与单周期标准差之比,则认为随机漂移具有强时间相关性,否则认为随机漂移具有中等时间相关性。
然后,根据所述时间相关性分析模块进行偏差漂移的时间相关性分析及相关性强弱分析。
具体的,基于所采集的校验数据的数量n以及标准差,根据表6查出对应的非偏差均值最大值,如果偏差漂移大于非偏差均值最大值,则保守认为具有强时间相关性,否则认为偏差漂移没有时间相关性,在计算周期延长后漂移量时可以忽略偏差漂移部分。
表6
Figure BDA0002183290540000131
具体的,校验周期延长后的仪表漂移量的计算。
同属一个单元组的仪表的漂移量由偏差漂移部分和随机漂移部分组成,也即,校验周期延长后的仪表漂移ADE=±ADE,bias±ADrandom,其中,ADE,bias为校验周期延长后的偏差漂移,ADrandom为校验周期延长后的随机漂移。
在校验周期延长后,偏差漂移部分和随机漂移部分的计算解释如下。
偏差漂移部分:
若偏差漂移判断为强时间相关性,则校验周期延长后的偏差漂移
Figure BDA0002183290540000132
其中,ADbias为校验周期延长前的偏差漂移,TIE为校验周期延长后的校验间隔,TIO为校验周期延长前的平均校验间隔;
若偏差漂移判断为无时间相关性,则校验周期延长后的偏差漂移ADE,bias=0。
随机漂移部分:
若随机漂移判断为强时间相关性,则校验周期延长后的随机漂移
Figure BDA0002183290540000141
其中,TIE为校验周期延长后的校验间隔,TIO为校验周期延长前的平均校验间隔,ADrandom为校验周期延长前的随机漂移;
ADrandom=σ×k×NAF,其中,σ为校验周期延长前的标准差,k为容许因子,k可根据n的值在表4中95/95%容许因子这一列中查找,NAF为进行了覆盖分析所确定的调整因子。
若随机漂移判断为中等时间相关性,则校验周期延长后的随机漂移
Figure BDA0002183290540000142
实施例二
本发明提供的仪表漂移的分析方法,用于对校验间隔延长后的仪表的漂移量进行定量分析,以此为仪表校验间隔延长提供依据,从而确保核电厂的安全运行。所述方法包括如下步骤:
步骤S1,数据采集模块采集多个仪表的以往的校验数据,并将多个所述仪表成多个单元组,功能相关的所述仪表归集为同一个所述单元组;
步骤S2,数据预处理模块根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;
步骤S3,正态分布验证模块验证同属于一个单元组的仪表的校验数据是否服从正态分布;
步骤S4,时间相关性分析模块在所述正态分布验证模块验证同属于一个单元组的仪表的校验数据服从正态分布后,对所述单元组的仪表的漂移数据与时间的相关性进行分析;
步骤S5,漂移量预估模块根据所述时间相关性分析模块分析得出的所述单元组的仪表的漂移数据与时间的相关性结果,计算出校验周期延长后的仪表漂移。
优选的,所述方法还包括如下步骤SA:异常数据分析模块采用T测试来找出收集到的校验数据中的异常数据,并对所述异常数据进行剔除或纠正;所述步骤SA在所述步骤S3之前实施。
优选的,所述正态分布验证模块包括第一验证子模块,所述步骤S3包括步骤S31:
所述第一验证子模块在同属于一个所述单元组的仪表的校验数据的数量小于50的情况下,采用W验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
优选的,所述正态分布验证模块包括第二验证子模块,所述步骤S3包括步骤S32:
所述第二验证子模块在同属于一个所述单元组的仪表的校验数据的数量大于等于50的情况下,采用D-prime验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
优选的,所述正态分布验证模块包括覆盖分析子模块,所述步骤S3包括步骤S33:
所述覆盖分析子模块在所述第一验证子模块和所述第二验证子模块均不能验证同属于一个所述单元组的仪表的校验数据是属于正态分布的情况下,将同属于一个所述单元组的仪表的校验数据保守处理为正态分布。
本实施例提供的所述仪表漂移的分析方法的具体实施方式可参见实施一中关于仪表漂移的分析系统的工作原理,这里不再赘述。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (4)

1.一种仪表漂移的分析系统,其特征在于,所述系统包括数据采集模块、数据预处理模块、正态分布验证模块、时间相关性分析模块和漂移量预估模块;
所述数据采集模块用于采集多个仪表的以往的校验数据,并将多个所述仪表分成多个单元组,功能相关的所述仪表归集为同一个所述单元组;
所述数据预处理模块用于根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;
所述正态分布验证模块用于验证同属于一个单元组的仪表的校验数据是否服从正态分布;
所述时间相关性分析模块用于当所述正态分布验证模块验证同属于一个单元组的仪表的校验数据服从正态分布后,对所述单元组的仪表的漂移数据与时间的相关性进行分析;
所述漂移量预估模块用于根据所述时间相关性分析模块分析得出的所述单元组的仪表的漂移数据与时间的相关性结果,计算出校验周期延长后的仪表漂移;
所述正态分布验证模块包括第一验证子模块、第二验证子模块和覆盖分析子模块;
所述覆盖分析子模块用于当所述第一验证子模块和所述第二验证子模块均不能验证同属于一个所述单元组的仪表的校验数据是属于正态分布时,将同属于一个所述单元组的仪表的校验数据保守处理为正态分布;所述覆盖分析子模块采用的方法包括的步骤如下:
1)计算所采集的校验数据的平均值μ和标准差σ;
2)查找相应的容许因子TF;
3)当(n-1)/n>97.5%时,n为所采集的校验数据的量,计算AF值,使得所采集的校验数据中有97.5%的数据在μ±(TF×σ×AF)的范围之内;
当(n-1)/n≤97.5%时,计算AF值,使得所采集的校验数据中有(n-1)/n的数据在μ±(TF×σ×AF)的范围之内;
4)使用平均值μ和标准差σ×AF的正态分布来保守的覆盖所采集的校验数据;
所述第一验证子模块用于在同属于一个所述单元组的仪表的校验数据的数量小于50的情况下,采用W验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布;所述第二验证子模块用于在同属于一个所述单元组的仪表的校验数据的数量大于等于50的情况下,采用D-prime验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
2.根据权利要求1所述仪表漂移的分析系统,其特征在于,所述系统还包括异常数据分析模块,所述异常数据分析模块用于采用T测试来找出收集到的校验数据中的异常数据,并对所述异常数据进行剔除或纠正。
3.一种仪表漂移的分析方法,其特征在于,所述方法包括如下步骤:
步骤S1,数据采集模块采集多个仪表的以往的校验数据,并将多个所述仪表成多个单元组,功能相关的所述仪表归集为同一个所述单元组;
步骤S2,数据预处理模块根据同属于一个单元组的仪表的基本数据计算出所述单元组的仪表的计算漂移值;
步骤S3,正态分布验证模块验证同属于一个单元组的仪表的校验数据是否服从正态分布;
步骤S4,时间相关性分析模块在所述正态分布验证模块验证同属于一个单元组的仪表的校验数据服从正态分布后,对所述单元组的仪表的漂移数据与时间的相关性进行分析;
步骤S5,漂移量预估模块根据所述时间相关性分析模块分析得出的所述单元组的仪表的漂移数据与时间的相关性结果,计算出校验周期延长后的仪表漂移;
所述正态分布验证模块包括第一验证子模块、第二验证子模块和覆盖分析子模块,所述步骤S3包括步骤S33:
所述覆盖分析子模块在所述第一验证子模块和所述第二验证子模块均不能验证同属于一个所述单元组的仪表的校验数据是属于正态分布的情况下,将同属于一个所述单元组的仪表的校验数据保守处理为正态分布;
所述覆盖分析子模块采用的方法包括的步骤如下:
1)计算所采集的校验数据的平均值μ和标准差σ;
2)查找相应的容许因子TF;
3)当(n-1)/n>97.5%时,n为所采集的校验数据的量,计算AF值,使得所采集的校验数据中有97.5%的数据在μ±(TF×σ×AF)的范围之内;
当(n-1)/n≤97.5%时,计算AF值,使得所采集的校验数据中有(n-1)/n的数据在μ±(TF×σ×AF)的范围之内;
4)使用平均值μ和标准差σ×AF的正态分布来保守的覆盖所采集的校验数据;
所述步骤S3包括步骤S31:
所述第一验证子模块在同属于一个所述单元组的仪表的校验数据的数量小于50的情况下,采用W验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布;
所述步骤S3包括步骤S32:
所述第二验证子模块在同属于一个所述单元组的仪表的校验数据的数量大于等于50的情况下,采用D-prime验证方法来验证同属于一个所述单元组的仪表的校验数据是否服从正态分布。
4.根据权利要求3所述仪表漂移的分析方法,其特征在于,所述方法还包括如下步骤SA:异常数据分析模块采用T测试来找出收集到的校验数据中的异常数据,并对所述异常数据进行剔除或纠正;所述步骤SA在所述步骤S3之前实施。
CN201910804667.XA 2019-08-28 2019-08-28 一种仪表漂移的分析系统及方法 Active CN110487315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910804667.XA CN110487315B (zh) 2019-08-28 2019-08-28 一种仪表漂移的分析系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910804667.XA CN110487315B (zh) 2019-08-28 2019-08-28 一种仪表漂移的分析系统及方法

Publications (2)

Publication Number Publication Date
CN110487315A CN110487315A (zh) 2019-11-22
CN110487315B true CN110487315B (zh) 2021-09-28

Family

ID=68555249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910804667.XA Active CN110487315B (zh) 2019-08-28 2019-08-28 一种仪表漂移的分析系统及方法

Country Status (1)

Country Link
CN (1) CN110487315B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834025B (zh) * 2020-07-07 2022-08-23 广东核电合营有限公司 核电厂安全相关仪表校验类监督项目周期延长的评价方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271339A (zh) * 2008-05-04 2008-09-24 山东省果树研究所 果蔬冷凉库温度测控仪表温度漂移双相抑制装置
CN102495858A (zh) * 2011-11-21 2012-06-13 浙江省电力试验研究院 一种电能质量指标95概率大值获取方法和系统
CN103235350A (zh) * 2013-04-12 2013-08-07 中国海洋石油总公司 放射性测井仪器稳定性检测及刻度方法与装置
CN106779371A (zh) * 2016-12-05 2017-05-31 国网江西省电力公司经济技术研究院 一种基于设备全寿命周期的配电系统可靠性评估方法
CN106855990A (zh) * 2015-12-09 2017-06-16 中核核电运行管理有限公司 核电机组仪表通道测量误差论证方法
CN107705018A (zh) * 2017-10-10 2018-02-16 苏州热工研究院有限公司 一种用于核电厂定期试验周期延长的论证方法
CN108897954A (zh) * 2018-06-29 2018-11-27 龙源(北京)风电工程技术有限公司 基于BootStrap置信度计算的风电机组温度预警方法及其系统
CN108984381A (zh) * 2018-07-19 2018-12-11 武汉新芯集成电路制造有限公司 数据异常分析的方法及系统
CN109255555A (zh) * 2018-10-16 2019-01-22 中国电力科学研究院有限公司 基于历史运行信息的电力大数据设备生命周期估计方法
CN109376904A (zh) * 2018-09-18 2019-02-22 广东电网有限责任公司 一种基于dwt和lstm的短期风力发电功率预测方法及系统
CN109524139A (zh) * 2018-10-23 2019-03-26 中核核电运行管理有限公司 一种基于设备工况变化的实时设备性能监测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640812A (en) * 1984-06-11 1987-02-03 General Electric Company Nuclear system test simulator
JP3037765B2 (ja) * 1991-02-13 2000-05-08 日本原子力研究所 核融合装置における磁場測定方法
CN102997957B (zh) * 2012-11-30 2015-09-09 中广核工程有限公司 一种核电厂半速汽轮机监视系统调试方法
CN104833932B (zh) * 2014-07-03 2017-12-08 北汽福田汽车股份有限公司 电流传感器的漂移量计算方法和计算装置
CN108172312B (zh) * 2017-12-13 2020-01-31 广东核电合营有限公司 核电站堆外核仪表系统的轴向功率偏差的校准方法
CN108397574B (zh) * 2018-03-06 2020-01-03 苏州热工研究院有限公司 一种核电厂计量标准器防沾污隔离阀及其使用方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271339A (zh) * 2008-05-04 2008-09-24 山东省果树研究所 果蔬冷凉库温度测控仪表温度漂移双相抑制装置
CN102495858A (zh) * 2011-11-21 2012-06-13 浙江省电力试验研究院 一种电能质量指标95概率大值获取方法和系统
CN103235350A (zh) * 2013-04-12 2013-08-07 中国海洋石油总公司 放射性测井仪器稳定性检测及刻度方法与装置
CN106855990A (zh) * 2015-12-09 2017-06-16 中核核电运行管理有限公司 核电机组仪表通道测量误差论证方法
CN106779371A (zh) * 2016-12-05 2017-05-31 国网江西省电力公司经济技术研究院 一种基于设备全寿命周期的配电系统可靠性评估方法
CN107705018A (zh) * 2017-10-10 2018-02-16 苏州热工研究院有限公司 一种用于核电厂定期试验周期延长的论证方法
CN108897954A (zh) * 2018-06-29 2018-11-27 龙源(北京)风电工程技术有限公司 基于BootStrap置信度计算的风电机组温度预警方法及其系统
CN108984381A (zh) * 2018-07-19 2018-12-11 武汉新芯集成电路制造有限公司 数据异常分析的方法及系统
CN109376904A (zh) * 2018-09-18 2019-02-22 广东电网有限责任公司 一种基于dwt和lstm的短期风力发电功率预测方法及系统
CN109255555A (zh) * 2018-10-16 2019-01-22 中国电力科学研究院有限公司 基于历史运行信息的电力大数据设备生命周期估计方法
CN109524139A (zh) * 2018-10-23 2019-03-26 中核核电运行管理有限公司 一种基于设备工况变化的实时设备性能监测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于改进AFAL分析法的核电厂仪表校验周期延长研究;陈云 等;《核动力工程》;20170430;第38卷(第2期);第64-66页 *
核电厂长燃料循环仪表定期试验周期论证的研究;陈云;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20180415(第4期);第C042-639页,尤其是正文第3章 *
陈云 等.基于改进AFAL分析法的核电厂仪表校验周期延长研究.《核动力工程》.2017,第38卷(第2期), *

Also Published As

Publication number Publication date
CN110487315A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
US9354968B2 (en) Systems and methods for data quality control and cleansing
US9239760B2 (en) Systems and methods for detecting, correcting, and validating bad data in data streams
CN109558295B (zh) 一种性能指标异常检测方法及装置
CN107478455A (zh) 一种适用于威布尔分布型产品的定时截尾可靠性试验方法
EP2551650B1 (en) Calibration method
CN113239132B (zh) 一种电压互感器的超差在线辨识方法
CN111998919A (zh) 燃气表校准方法及装置
CN110487315B (zh) 一种仪表漂移的分析系统及方法
CN110580387A (zh) 基于熵权法的直流保护系统混合威布尔可靠性评价方法
CN116125361A (zh) 电压互感器误差评估方法、系统、电子设备及存储介质
CN117269649A (zh) 一种用于电能能源调度的安全检测方法及系统
CN113985339B (zh) 智能电表的误差诊断方法及系统、设备、存储介质
CN117332205B (zh) 压电阻抗温度补偿高精度自动优化方法及装置
CN106855990B (zh) 核电机组仪表通道测量误差论证方法
CN112819373A (zh) 一种配网电压异常数据检测方法及装置
CN109447512B (zh) 基于均匀设计的大电网可靠性评估方法
CN116771611A (zh) 一种风电机组功率监测方法及装置
CN109799379B (zh) 充电检测方法、充电检测装置和插座
CN112965966B (zh) 一种基于实测飞参数据的快速预处理方法、系统及计算机相关产品
CN112965964B (zh) 一种实测飞参数据的野值检测方法、系统及计算机相关产品
CN112567241A (zh) 环境传感器协同校准方法
CN112685449A (zh) 一种热力系统性能计算方法、装置及设备
CN114970311A (zh) 一种远端模块寿命预测模型的建立方法与寿命预测方法
CN111177012A (zh) 一种电力系统的pas系统评估方法及装置
CN114965794B (zh) 一种天然气分析系统性能评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant