CN110479270A - 一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用 - Google Patents

一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN110479270A
CN110479270A CN201910715634.8A CN201910715634A CN110479270A CN 110479270 A CN110479270 A CN 110479270A CN 201910715634 A CN201910715634 A CN 201910715634A CN 110479270 A CN110479270 A CN 110479270A
Authority
CN
China
Prior art keywords
cufe
chitosan
catalyst
graphene
composite photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910715634.8A
Other languages
English (en)
Inventor
曾功昶
曾和平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910715634.8A priority Critical patent/CN110479270A/zh
Publication of CN110479270A publication Critical patent/CN110479270A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种壳聚糖石墨烯‑Cu‑CuFe2O4复合光催化剂及其制备方法与应用,涉及复合光催化剂应用印染污水领域,所述复合光催化剂,其原料包括由壳聚糖制得的壳聚糖石墨烯‑Cu‑CuFe2O4复合光催化剂。所述制备方法安全环保、成本低,在利用壳聚糖石墨烯/Cu/CuFe2O4光催化印染废液制氢的同时,还可降解印染废水中的有机物,生产工艺过程环保,容易操作。

Description

一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与 应用
技术领域
本发明涉及复合光催化剂应用印染污水领域,尤其是一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用。
背景技术
近年来,随着工业化进程的加快,产生了大量不达标的工业废水,使工业废水的治理成为亟待解决的环境问题。染料废水是工业废水的主要组成部分,它主要来自印刷、食品、印染、纺织及染料生产等行业。2010年,我国染料的产量达到了75.6万吨,占到了当年世界染料总产量60%。染料的生产过程伴随着大量水资源的使用;有数据表明,我国每生产1t的染料就会产生大约744m3的废水。而且在生产和使用染料的过程中流失的染料占到了全部染料产量的15%。染料废水危害极大,主要有以下危害:
1)色度高,大部分合成有机染料都存在芳香环,如苯、蒽、萘、醌等结构,并带有显色团和助色团,使其溶于水后色度很高且化学性质稳定不易分解、难以处理;
2)化学需氧量(COD)高,水溶性极强;通常,酚类、蒽醌类、萘类、芳香类有机物是染料成产所需的原料,在生产过程中原料和染料的流失使得废水中COD含量极高;
3)水质条件波动大,由于染料生产和使用条件的不同,导致染料废水的温度、pH值、色度等具有很大差异,例如硫化染料产生的废水的pH值就可达到10左右;
4)成分复杂,毒性强,染料及染料的中间体都具有可对人类及其他生物产生“三致”(致癌、致畸、致突变)作用的化学结构,具有很强的生物毒性;
5)可生化性差,由于染料及其中间体的化学性质稳定,且废水成分十分复杂多样,使得染料废水的可生化性很差。
2015年4月,我国发布《水污染防治行动计划》,将印染行业列入专项治理的十大重点行业之一,制定了专项治理方案,突显了染料废水治理的重要性。为了处理染料废水,基于物理、化学、生物基础产生的吸附、离子交换、混凝-絮凝、高级氧化、电化学、生物、膜分离等技术被广泛研究。
发明内容
本发明旨在提供一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用,该方法安全环保、成本低,在利用壳聚糖石墨烯/Cu/CuFe2O4光催化印染废液制氢的同时,还可降解印染废水中的有机物,生产工艺过程环保,容易操作。
为了实现上述目的,本发明提供的技术方案是:一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂,其特征在于,其原料包括由壳聚糖制得的壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂。
一种如上所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂的制备方法,包括以下步骤:
1)取壳聚糖干粉在氮气氛围下进行加热升温至550-900℃,得到壳聚糖碳产物,将壳聚糖碳产物与醋酸钾混合进行升温加热反应,即得到壳聚糖石墨烯;
2)将Cu(NO3)2与Fe(NO3)3分别溶解后,按1:1-4的比例逐滴加入100-200mL 2M的柠檬酸溶液中,然后加入1-5g壳聚糖石墨烯,加热至70-90℃恒温搅拌一个小时形成前驱体溶液;然后将其放置在120-150℃的烘箱中将水蒸干,得到CuFe2O4胶体,随后将CuFe2O4胶体放置在400-600℃的马弗炉中高温煅烧,并持续通入空气,确保得到的产物中Cu:Fe的化学计量比为1:1-4的CuFe2O4,即得壳聚糖石墨烯-CuFe2O4复合光催化剂;
3)在含10-20ml乳酸的60-100ml印染污水溶液中,加入1-5g聚乙二醇作为分散剂,加入1-20ml 2mmol/L醋酸铜溶液、铜铁氧体0.05-5g和壳聚糖石墨烯1-5g,搅拌、降温、密封、抽真空,光照,即得原位合成的壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂。
所述步骤1)中壳聚糖碳产物与醋酸钾混合为1:1~10。
所述步骤1)中升温加热反应的反应温度为550-900℃,反应时间为1-5h。
所述步骤3)中铜铁氧体为CuFe2O4和/或壳聚糖石墨烯/Cu/CuFe2O4
所述步骤3)中光照条件为300W的氙灯,光照时间为3h。
一种如权上所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂用于将印染废液制氢及降解废水中的有机物。
本发明与现有技术相比,具有以下优点:
本发明采用壳聚糖石墨烯/Cu/CuFe2O4光催化剂对环境友好,可以将印染污水制备氢气的同时,降解水中有机物;本发明生产工艺简单,成本低廉,安全环保,可以实现连续工业化生产,具有广阔的市场应用前景。
本发明是利用非铁元素与铁元素之间的共沉淀作用生成铁氧体,去除废水中重金属和部分有机污染物、泥沙、微生物及其他可溶性无机盐的一种方法。研究表明,新生态的氧化物往往具有更大的比表面积和更好的吸附性能。故采用铁氧体法处理染料废水,在新生态铁氧体材料生成的同时,很可能实现对染料和重金属的同步有效去除,同时铁氧体自身的磁性会使固液分离更加简捷。
用铜铁氧体/壳聚糖石墨烯/Cu复合光催化剂降解染料废水中的罗丹明B、亚甲基蓝等染料废水的同时,还产生了清洁能源氢。铜铁氧体法具有投资小、设备简单、易操作、处理量大、去除率高、净化效果好和能回收磁性材料等优点,从效果与成本来看,铁氧体法是种较为理想实用的方法,因此在印染工业废水处理中有着广泛应用。
附图说明
图1为实施例1所得壳聚糖石墨烯的拉曼图谱;
图2为壳聚糖石墨烯/Cu/CuFe2O4光催化印染污水制氢。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明做进一步的说明,但本发明的实施方式不限于此。
实施例1
一种利用壳聚糖为原料制备石墨烯材料/Cu/CuFe2O4制备光催化剂的方法取10ml2mmol/L醋酸铜溶液放入到70ml水溶液中,含60ml超纯水,10ml乳酸,1g PEG和5mg壳聚糖石墨烯/Cu/CuFe2O4光催化剂,磁力搅拌,冷却循环水(5℃)降温,将反应温度控制在5℃,在反应器与石英盖间放入橡胶圈,然后打开真空泵,将反应容器内部慢慢抽至真空状态。然后打开光源(300W,PLS-SXE300CUV,Perfect light.Co.Ltd.,Beijing,氙灯),反应3小时后再次抽真空,光照,即得原位合成的壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂。
在此之后为检测催化剂性能,采用气相色谱每1小时检测一次。检测条件为:选用氮气作为载气,设置柱温箱温度为40℃,设置进样口温度为130℃,设置检测器温度为150℃,设置检测桥电流为50mA。壳聚糖石墨烯/Cu/CuFe2O4光催化印染废水产氢效果1.23mmol/g-1h-1
经显微拉曼光谱仪测试,壳聚糖拉曼图谱如图1所示,图2为壳聚糖石墨烯/Cu/CuFe2O4光催化印染废水产氢图。
实施例2
一种利用壳聚糖为原料制备石墨烯材料/Cu/CuFe2O4制备光催化剂的方法,取1ml2mmol/L醋酸铜溶液放入到70ml水溶液中,含60ml超纯水,10ml乳酸,1g PEG和10mg壳聚糖石墨烯/Cu/CuFe2O4光催化剂,磁力搅拌,冷却循环水(5℃)降温,将反应温度控制在5℃,在反应器与石英盖间放入橡胶圈,然后打开真空泵,将反应容器内部慢慢抽至真空状态。然后打开光源(300W,PLS-SXE300CUV,Perfect light.Co.Ltd.,Beijing,氙灯),反应3小时后再次抽真空,在此之后使用气相色谱每1小时检测一次。检测条件为:选用氮气作为载气,设置柱温箱温度为40℃,设置进样口温度为130℃,设置检测器温度为150℃,设置检测桥电流为50mA。壳聚糖石墨烯/Cu/CuFe2O4光催化印染废水产氢效果2.26mmol/g-1h-1
实施例3
一种利用壳聚糖为原料制备石墨烯材料/Cu/CuFe2O4制备光催化剂的方法,取5ml2mmol/L醋酸铜溶液放入到70ml水溶液中,含60ml超纯水,15ml乳酸,1g PEG和15mg壳聚糖石墨烯/Cu/CuFe2O4光催化剂,磁力搅拌,冷却循环水(5℃)降温,将反应温度控制在5℃,在反应器与石英盖间放入橡胶圈,然后打开真空泵,将反应容器内部慢慢抽至真空状态。然后打开光源(300W,PLS-SXE300CUV,Perfect light.Co.Ltd.,Beijing,氙灯),反应3小时后再次抽真空,在此之后使用气相色谱每1小时检测一次。检测条件为:选用氮气作为载气,设置柱温箱温度为40℃,设置进样口温度为130℃,设置检测器温度为150℃,设置检测桥电流为50mA。壳聚糖石墨烯/Cu/CuFe2O4光催化印染废水产氢效果1.63mmol/g-1h-1
实施例4
一种利用壳聚糖为原料制备石墨烯材料/Cu/CuFe2O4制备光催化剂的方法,取15ml2mmol/L醋酸铜溶液放入到75ml水溶液中,含60ml超纯水,15ml乳酸,1g PEG和10mg壳聚糖石墨烯/Cu/CuFe2O4光催化剂,磁力搅拌,冷却循环水(5℃)降温,将反应温度控制在5℃,在反应器与石英盖间放入橡胶圈,然后打开真空泵,将反应容器内部慢慢抽至真空状态。然后打开光源(300W,PLS-SXE300CUV,Perfect light.Co.Ltd.,Beijing,氙灯),反应3小时后再次抽真空,在此之后使用气相色谱每1小时检测一次。检测条件为:选用氮气作为载气,设置柱温箱温度为40℃,设置进样口温度为130℃,设置检测器温度为150℃,设置检测桥电流为50mA。壳聚糖石墨烯/Cu/CuFe2O4光催化印染废水产氢效果1.29mmol/g-1h-1
实施例5:
一种利用壳聚糖为原料制备石墨烯材料/Cu/CuFe2O4制备光催化剂的方法,取10ml2mmol/L醋酸铜溶液放入到70ml水溶液中,含60ml超纯水,20ml乳酸,1g PEG和10mg壳聚糖石墨烯/Cu/CuFe2O4光催化剂,磁力搅拌,冷却循环水(5℃)降温,将反应温度控制在5℃,在反应器与石英盖间放入橡胶圈,然后打开真空泵,将反应容器内部慢慢抽至真空状态。然后打开光源(300W,PLS-SXE300CUV,Perfect light.Co.Ltd.,Beijing,氙灯),反应3小时后再次抽真空,在此之后使用气相色谱每1小时检测一次。检测条件为:选用氮气作为载气,设置柱温箱温度为40℃,设置进样口温度为130℃,设置检测器温度为150℃,设置检测桥电流为50mA。壳聚糖石墨烯/Cu/CuFe2O4光催化印染废水产氢效果0.94mmol/g-1h-1

Claims (7)

1.一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂,其特征在于,其原料包括由壳聚糖制得的壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂。
2.一种如权利要求1所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂的制备方法,其特征在于,包括以下步骤:
1)取壳聚糖干粉在氮气氛围下进行加热升温至550-900℃,得到壳聚糖碳产物,将壳聚糖碳产物与醋酸钾混合进行升温加热反应,即得到壳聚糖石墨烯;
2)将Cu(NO3)2与Fe(NO3)3分别溶解后,按1:1-4的比例逐滴加入100-200mL 2M的柠檬酸溶液中,然后加入1-5g壳聚糖石墨烯,加热至70-90℃恒温搅拌一个小时形成前驱体溶液;然后将其放置在120-150℃的烘箱中将水蒸干,得到CuFe2O4胶体,随后将CuFe2O4胶体放置在400-600℃的马弗炉中高温煅烧,并持续通入空气,确保得到的产物中Cu:Fe的化学计量比为1:1-4的CuFe2O4,即得壳聚糖石墨烯-CuFe2O4复合光催化剂;
3)在含10-20ml乳酸的60-100ml印染污水溶液中,加入1-5g聚乙二醇作为分散剂,加入1-20ml 2mmol/L醋酸铜溶液、铜铁氧体0.05-5g和壳聚糖石墨烯1-5g,搅拌、降温、密封、抽真空,光照,即得原位合成的壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂。
3.根据权利要求2所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂的制备方法,其特征在于,所述步骤1)中壳聚糖碳产物与醋酸钾混合为1:1~10。
4.根据权利要求2所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂的制备方法,其特征在于,所述步骤1)中升温加热反应的反应温度为550-900℃,反应时间为1-5h。
5.根据权利要求2所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂的制备方法,其特征在于,所述步骤3)中铜铁氧体为CuFe2O4和/或壳聚糖石墨烯/Cu/CuFe2O4
6.根据权利要求2所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂的制备方法,其特征在于,所述步骤3)中光照条件为300W的氙灯,光照时间为3h。
7.一种如权利要求1所述壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂用于将印染废液制氢及降解废水中的有机物。
CN201910715634.8A 2019-08-05 2019-08-05 一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用 Withdrawn CN110479270A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910715634.8A CN110479270A (zh) 2019-08-05 2019-08-05 一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910715634.8A CN110479270A (zh) 2019-08-05 2019-08-05 一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN110479270A true CN110479270A (zh) 2019-11-22

Family

ID=68549376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910715634.8A Withdrawn CN110479270A (zh) 2019-08-05 2019-08-05 一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110479270A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112642461A (zh) * 2020-12-30 2021-04-13 江苏东方维德环保科技有限公司 一种富含氧空位的改性铁酸亚铜催化剂及其制备方法和应用
CN113509931A (zh) * 2021-03-12 2021-10-19 大连工业大学 一种Cu2O/CuO@CA光催化剂的制备及其在光催化氧化木糖合成乳酸中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862814A (zh) * 2018-05-24 2018-11-23 华东师范大学 一种利用铁酸铜催化剂进行污水处理的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862814A (zh) * 2018-05-24 2018-11-23 华东师范大学 一种利用铁酸铜催化剂进行污水处理的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YONGSHENG FU: "Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage", 《IND. ENG. CHEM. RES.》 *
周芳灵: "纳米尖晶石型铁氧体—石墨烯复合材料的制备及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
王安: "铜铁尖晶石表面修饰光催化剂的合成及其光催化产氢性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112642461A (zh) * 2020-12-30 2021-04-13 江苏东方维德环保科技有限公司 一种富含氧空位的改性铁酸亚铜催化剂及其制备方法和应用
CN113509931A (zh) * 2021-03-12 2021-10-19 大连工业大学 一种Cu2O/CuO@CA光催化剂的制备及其在光催化氧化木糖合成乳酸中的应用
CN113509931B (zh) * 2021-03-12 2023-05-30 大连工业大学 一种Cu2O/CuO@CA光催化剂的制备及其在光催化氧化木糖合成乳酸中的应用

Similar Documents

Publication Publication Date Title
Hu et al. The band structure control of visible-light-driven rGO/ZnS-MoS2 for excellent photocatalytic degradation performance and long-term stability
Xu et al. Photocatalytic activity and mechanism of bisphenol a removal over TiO2− x/rGO nanocomposite driven by visible light
CN105032465B (zh) 金属氧化物/氮化碳复合材料及其制备方法和应用
Wei et al. Green and controllable synthesis of one-dimensional Bi2O3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr (VI)
Welter et al. Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B
Chen et al. Visible-light-driven photocatalysis of carbon dioxide and organic pollutants by MFeO2 (M= Li, Na, or K)
CN110342490A (zh) 一种七种颜色荧光碳量子点的制备工艺
Zhang et al. Photocatalytic degradation of rhodamine B by Bi2O3@ LDHs S–scheme heterojunction: Performance, kinetics and mechanism
CN108579779A (zh) 一种三维复合材料、其制备方法及在水污染物可见光催化降解去除中的应用
CN101972645B (zh) 可见光响应型半导体光催化剂钒酸铋的制备方法
CN106540734A (zh) 一种过渡金属氧化物复合的cnb光催化剂及其制备方法
CN102161526B (zh) 氧化镁负载钴铁金属磁性纳米材料在降解废水中橙黄ⅱ的应用
CN106694021B (zh) 一种氧掺杂石墨相氮化碳臭氧催化剂的制备方法与应用
CN108283939A (zh) 一种催化苯酚羟基化固体催化剂及其制备方法与应用
CN110479270A (zh) 一种壳聚糖石墨烯-Cu-CuFe2O4复合光催化剂及其制备方法与应用
Jiang et al. Nitrogen vacancies induce sustainable redox of iron-cobalt bimetals for efficient peroxymonosulfate activation: Dual-path electron transfer
CN106348281A (zh) 一种水热制备双荧光石墨烯量子点的方法
CN108671937A (zh) 一种锰铜复合氧化物催化剂的制备方法及其应用
CN106902803B (zh) 复合型光催化体系CQDS-KNbO3及其制备方法和应用
Chang et al. Ag/AgCl nanoparticles decorated 2D-Bi12O17Cl2 plasmonic composites prepared without exotic chlorine ions with enhanced photocatalytic performance
CN110270356A (zh) 一种低温液相沉淀法碘氧化铋/氧化石墨烯可见光光催化剂的制备方法
Chen et al. Constructing Z‐Scheme Bi2O3/In2O3 Heterojunction for Efficient Photocatalytic Degradation of Rhodamine B
Gu et al. Synthesis of Z-Scheme heterojunction ZnNb2O6/g-C3N4 nanocomposite as a high efficient photo-catalyst for the degradation of 2, 4-DCP under simulated sunlight
Gao et al. Complete mineralization of a humic acid by SO4·− generated on CoMoO4/gC3N4 under visible-light irradiation
CN109317151A (zh) 一种用于紫外催化湿式氧化的催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20191122

WW01 Invention patent application withdrawn after publication