CN110474406A - 一种电动汽车充电桩前级整流器的控制方法 - Google Patents

一种电动汽车充电桩前级整流器的控制方法 Download PDF

Info

Publication number
CN110474406A
CN110474406A CN201910725653.9A CN201910725653A CN110474406A CN 110474406 A CN110474406 A CN 110474406A CN 201910725653 A CN201910725653 A CN 201910725653A CN 110474406 A CN110474406 A CN 110474406A
Authority
CN
China
Prior art keywords
voltage
shaft
rectifier
current
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910725653.9A
Other languages
English (en)
Other versions
CN110474406B (zh
Inventor
王君瑞
贾思宁
王闯
向上
单祥
虎恩典
李学生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongneng Kunyu Energy Holdings Zhejiang Co ltd
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN201910725653.9A priority Critical patent/CN110474406B/zh
Publication of CN110474406A publication Critical patent/CN110474406A/zh
Application granted granted Critical
Publication of CN110474406B publication Critical patent/CN110474406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种电动汽车充电桩前级整流器的PI‑反推复合控制方法,包括步骤:步骤3,设定直流侧电压期望值Udc *,并根据Udc *、Udc生成d轴电流虚拟控制量id *,步骤4,根据d轴电流虚拟控制量id *以及id、iq、Ud,计算得到d轴电压实际控制量Vd;步骤5,设定q轴虚拟控制量iq *,并根据iq *、id、iq、Ud,计算得到q轴电压实际控制量Vq;步骤6,由Vd、Vq、θ生成SVPWM调制信号,对VIENNA整流器进行控制。本发明方法通过设置直流侧电压期望值,以PI‑反推复合控制的方式计算出实际控制量,再以实际控制量进行控制,增强了系统的稳定性。

Description

一种电动汽车充电桩前级整流器的控制方法
技术领域
本发明涉及电动汽车充电桩前级整流器技术领域,特别涉及一种电动汽车充电桩前级整流器的PI-反推复合控制方法。
背景技术
电动汽车充电桩主要由前级整流电路与后级DCDC降压电路组成,如图1所示,前级整流电路在矢量控制的作用下输出直流电压,供给后级DCDC电路,实现对电动汽车电池的充放电。前级整流电路主要由可控功率开关器件(IGBT) 和功率二极管组成,在a、b、c三相输入端和直流母线电容中点各连接一个双向开关,形成三电平结构,双向开关形式由两个带反并联二极管的IGBT共发射极反向串联构成。该电路是一种电流驱动型功率因数校正整流器,功率开关管两端的电压是由开关管自身状态和输入电流方向共同决定的。后级DCDC降压电路通过对G1,G2,G3,G4开关管的通断来实现对电池的充放电,Cdc为滤波电容,Rl为负载电阻。在直流侧两电容电压相等,即Uc1=Uc2=Udc/2,令C1=C2=C的情况下,三相电压型VIENNA整流器在dq坐标系下的方程可以进一步表示为
关于整流器的控制策略,传统的PI控制对基波扰动抑制效果比较好,但容易超调,对谐波抑制效果比较差,跟踪精度差。
发明内容
本发明的目的在于改善现有技术中所存在的上述不足,提供一种电动汽车充电桩前级整流器的PI-反推复合控制方法,增强负载侧的稳定性。
为了实现上述发明目的,本发明实施例提供了以下技术方案:
一种电动汽车充电桩前级整流器的PI-反推复合控制方法,包括以下步骤:
步骤1,采集整流器直流侧的实际电压Udc,三相电流ia、ib、ic和三相电压 Ua、Ub、Uc
步骤2,由三相电流ia、ib、ic经过dq变换后得到d轴电流值id和q轴电流值iq;由三相电压Ua、Ub、Uc,经过dq变换后得到d轴电压值Ud,q轴电压值Uq
步骤3,设定直流侧电压期望值Udc *,并根据Udc *、Udc生成d轴电流虚拟控制量id *
步骤4,根据d轴电流虚拟控制量id *以及id、iq、Ud,计算得到d轴电压实际控制量Vd
步骤5,设定q轴虚拟控制量iq *,并根据iq *、id、iq、Ud,计算得到q轴电压实际控制量Vq
步骤6,由Vd、Vq、锁相环输出角度θ生成SVPWM调制信号,对整流器进行控制。
在一个实施方案中,所述步骤3中,首先定义直流侧电压误差为: e1=Udc-Udc*,然后再通过以下方式生成d轴电流虚拟控制量id *其中,k1p是整流侧电压比例调节系数,k1i是整流器电压积分调节系数,ΔUdc是实际值电压Udc与期望值电压Udc *的差值,s是微分算子。
在一个实施方案中,所述步骤4中,通过以下方式计算得到d轴电压实际控制量Vde2=id-id *
其中,Rs为电网侧电阻,Ls为电网侧电感,k2为d轴电流调节系数,ω为旋转角速度,k1p是整流侧电压比例调节系数,k2i是整流器电压积分调节系数,s是微分算子,E为输入相电压,Rl为负载侧电阻,C为负载侧上下电容值,id为d轴实际电流,id *为d轴期望电流,Ud为d轴电压。
在一个实施方案中,所述步骤5中,通过以下方式计算得到q轴电压实际控制量Vq:Vq=-Rs·iq-Ls·ω·id+Ls·k3·e3+Uq,e3=iq-iq *,k3为q轴电流调节系数, iq *=0。
与现有技术相比,本发明的有益效果:本方法是一种PI-反推复合控制方法,在加入扰动后,负载侧电压有较好的稳定效果,增强了系统的稳定性,减小了系统受到扰动时对于VIENNA整流器的影响,无明显波动,DQ轴电流有较快的动态响应速度。传统的PI控制电压外环响应较快,但是易受外部扰动影响,反推控制稳定性较好,但要求对虚拟控制器重复微分,随着系统阶数增加,控制的复杂性也迅速增加。本发明所述方法结合了PI控制与反推控制的优点,外环电压使用PI控制,内环电流使用反推控制,既提高了直流侧电压的响应速度,又增强了系统的抗扰性能,减小了系统的复杂性,简化了计算,控制精度更高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为VIENNA整流器的一种拓扑结构图。
图2为本发明电动汽车充电桩前级整流器的PI-反推复合控制方法的流程图。
图3为VIENNA整流器整体的控制结构框图。
图4a、图4b分别为VIENNA整流器PI控制与本发明PI-反推复合控制下的直流侧电压对比图。
图5a、图5b分别为VIENNA整流器PI控制与本发明PI-反推复合控制下的 d轴q轴电流对比图。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图2,本实施例中提供的电动汽车充电桩前级整流器的PI-反推复合控制方法,适用于图1所述图谱结构的VIENNA整流器。本实施例中是VIENNA 整流器为例,但是本发明方法同样适用于其他结构的整流器。该方法包括以下步骤:
步骤1,采集VIENNA整流器直流侧的实际电压Udc,三相电流ia、ib、ic和三相电压Ua、Ub、Uc
步骤2,由三相电流ia、ib、ic经过dq变换后得到d轴电流值id和q轴电流值iq;由三相电压Ua、Ub、Uc,经过dq变换后得到d轴电压值Ud,q轴电压值Uq
步骤3,设定直流侧电压期望值Udc*,并根据Udc*、Udc生成d轴电流虚拟控制量id *
例如,可以通过以下方式生成d轴电流虚拟控制量id *:首先定义直流侧电压误差为:e1=Udc-Udc*,然后再通过以下方式生成d轴电流虚拟控制量id *其中,k1p是整流侧电压比例调节系数,k1i是整流器电压积分调节系数,ΔUdc是实际值电压Udc与期望值电压Udc *的差值,s是微分算子。
步骤4,根据d轴电流虚拟控制量id *,id,iq,Ud,计算得到d轴电压实际控制量Vd
例如,可以通过以下方式计算得到d轴电压实际控制量Vde2=id-id *;其中,Rs为电网侧电阻,Ls为电网侧电感,k2为d轴电流调节系数,ω为旋转角速度, k1p是整流侧电压比例调节系数,k2i是整流器电压积分调节系数,s是微分算子, E为输入相电压,Rl为负载侧电阻,C为负载侧上下电容值,id为d轴实际电流, id *为d轴期望电流,Ud为d轴电压。
步骤5,设定q轴虚拟控制量iq *,并根据iq *,id,iq,Uq,计算得到q轴电压实际控制量Vq
此处,作为简单的实施方式,设定q轴虚拟控制量iq *为零,即iq *=0。此时可以通过以下方式计算得到q轴电压实际控制量Vq: Vq=-Rs·iq-Ls·ω·id+Ls·k3·e3+Uq,e3=iq-iq *,k3为q轴电流调节系数。
上述步骤中的各项调节系数k1p,k1i,k2,k3也根据经验设定,或者可以通过试凑法得到。
步骤6,由Vd、Vq、锁相环输出角度θ生成SVPWM调制信号,对VIENNA 整流器进行控制。
将本发明方法应用于电动汽车充电桩前级整流电路的整个控制系统中,如图3所示,由PI-反推复合控制取代传统的PI控制器,再引入d轴假定虚拟函数,基于PI控制的原理,首先根据整流器直流侧的实际电压值和设定的期望电压值,由虚拟控制量生成器生成虚拟控制量,虚拟控制量再结合经dq转换得到的q轴电流电压值和d轴电流电压值,经反推控制器运算处理,分别输出q轴和d轴的实际电压控制量,基于输出的实际电压控制量生成SVPWM调制信号,对整流器进行控制,负载侧电压有较好的稳定效果,无明显波动,使得dq轴电流有较快的动态响应速度。
仅基于本实施例中上述实施方式下的PI-反推复合控制方法,其原理说明如下:
首先,定义VIENNA整流器直流侧电压误差为:e1=Udc-Udc *,其中,Udc *为直流侧期望输出电压,Udc为直流侧实际电压。对于电压环,采用PI控制,得到 id *,使其作为电流环的输入。为了实现三相电压型VIENNA整流器的完全解耦和输出电压稳定,选择如下的假定电流函数
下一步要实现d轴电流跟踪,取d轴电流的误差量e2=id-id *,选择e1为新的状态变量,构成子系统,对上式求导可得
对于新的系统可以设置新的Lyapunov函数对该函数求导有
为了使上式满足dV2/dt≤0,令de2/dt=-k1·e2,其中,k2>0。即可得实际控制量
同理,选择q轴电流的误差量e3=iq-iq *,设计出Lyapunov函数并得到实际控制量Vq=-Rs·iq-Ls·ω·id+Ls·k3·e3+Uq
分别按照传统PI控制方法和本实施例上述方法控制整流器,得到的直流侧电压对比结果如图4a、图4b所示,得到的dq轴电流对比结果如图5a、图5b所示。从图中可以看出,在本发明方法控制下的整流器的稳定性明显更好。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种电动汽车充电桩前级整流器的PI-反推复合控制方法,其特征在于,包括以下步骤:
步骤1,采集整流器直流侧的实际电压Udc,三相电流ia、ib、ic和三相电压Ua、Ub、Uc
步骤2,由三相电流ia、ib、ic经过dq变换后得到d轴电流值id和q轴电流值iq;由三相电压Ua、Ub、Uc,经过dq变换后得到d轴电压值Ud,q轴电压值Uq
步骤3,设定直流侧电压期望值Udc *,并根据Udc *、Udc生成d轴电流虚拟控制量id *
步骤4,根据d轴电流虚拟控制量id *以及id、iq、Ud,计算得到d轴电压实际控制量Vd
步骤5,设定q轴虚拟控制量iq *,并根据iq *、id、iq、Ud,计算得到q轴电压实际控制量Vq
步骤6,由Vd、Vq、锁相环输出角度θ生成SVPWM调制信号,对整流器进行控制。
2.根据权利要求1所述的电动汽车充电桩前级整流器的PI-反推复合控制方法,其特征在于,所述步骤3中,首先定义直流侧电压误差为:e1=Udc-Udc *,然后再通过以下方式生成d轴电流虚拟控制量id *k1p是整流侧电压比例调节系数,k1i是整流器电压积分调节系数,ΔUdc是实际值电压Udc与期望值电压Udc *的差值,s是微分算子。
3.根据权利要求1所述的电动汽车充电桩前级整流器的PI-反推复合控制方法,其特征在于,所述步骤4中,通过以下方式计算得到d轴电压实际控制量Vde2=id-id *;其中,Rs为电网侧电阻,Ls为电网侧电感,k2为d轴电流调节系数,ω为旋转角速度,k1p是整流侧电压比例调节系数,k2i是整流器电压积分调节系数,s是微分算子,E为输入相电压,Rl为负载侧电阻,C为负载侧上下电容值,id为d轴实际电流,id*为d轴期望电流,Ud为d轴电压。
4.根据权利要求1所述的电动汽车充电桩前级整流器的PI-反推复合控制方法,其特征在于,所述步骤5中,通过以下方式计算得到q轴电压实际控制量Vq:Vq=-Rs·iq-Ls·ω·id+Ls·k3·e3+Uq,e3=iq-iq *,k3为q轴电流调节系数,iq *=0。
CN201910725653.9A 2019-08-07 2019-08-07 一种电动汽车充电桩前级整流器的控制方法 Active CN110474406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910725653.9A CN110474406B (zh) 2019-08-07 2019-08-07 一种电动汽车充电桩前级整流器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910725653.9A CN110474406B (zh) 2019-08-07 2019-08-07 一种电动汽车充电桩前级整流器的控制方法

Publications (2)

Publication Number Publication Date
CN110474406A true CN110474406A (zh) 2019-11-19
CN110474406B CN110474406B (zh) 2021-05-18

Family

ID=68510358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910725653.9A Active CN110474406B (zh) 2019-08-07 2019-08-07 一种电动汽车充电桩前级整流器的控制方法

Country Status (1)

Country Link
CN (1) CN110474406B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679582A (zh) * 2020-06-18 2020-09-18 山东大学 双向充电机前端整流器的有限时间反步控制系统及方法
CN112532088A (zh) * 2020-12-11 2021-03-19 山东大学 三电平npc变流器的高抗扰快响应控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199718A (zh) * 2013-04-12 2013-07-10 湖南大学 一种大功率高频开关整流电源综合控制方法
CN104167941A (zh) * 2014-08-10 2014-11-26 合肥工业大学 一种三相pwm整流器的控制方法
CN107785899A (zh) * 2016-08-24 2018-03-09 申茂军 一种新型有源电力滤波器直流侧电压控制方法
CN107785910A (zh) * 2016-08-24 2018-03-09 申茂军 一种新型高压动态无功补偿装置
CN108988395A (zh) * 2018-10-13 2018-12-11 曲阜师范大学 一种垂直轴永磁直驱风电变流器的拓扑结构和控制方法
CN109828586A (zh) * 2019-03-06 2019-05-31 福州大学 基于非线性不确定性的无人船舶鲁棒h∞航向控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199718A (zh) * 2013-04-12 2013-07-10 湖南大学 一种大功率高频开关整流电源综合控制方法
CN104167941A (zh) * 2014-08-10 2014-11-26 合肥工业大学 一种三相pwm整流器的控制方法
CN107785899A (zh) * 2016-08-24 2018-03-09 申茂军 一种新型有源电力滤波器直流侧电压控制方法
CN107785910A (zh) * 2016-08-24 2018-03-09 申茂军 一种新型高压动态无功补偿装置
CN108988395A (zh) * 2018-10-13 2018-12-11 曲阜师范大学 一种垂直轴永磁直驱风电变流器的拓扑结构和控制方法
CN109828586A (zh) * 2019-03-06 2019-05-31 福州大学 基于非线性不确定性的无人船舶鲁棒h∞航向控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
成静红: "三相电压型PWM整流器非线性控制的研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679582A (zh) * 2020-06-18 2020-09-18 山东大学 双向充电机前端整流器的有限时间反步控制系统及方法
CN112532088A (zh) * 2020-12-11 2021-03-19 山东大学 三电平npc变流器的高抗扰快响应控制系统及方法

Also Published As

Publication number Publication date
CN110474406B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN103475029B (zh) 基于极点配置的三相lcl型并网逆变器控制系统及方法
WO2020147193A1 (zh) 海岛柴储混合供电系统的直流侧惯性增强控制方法
CN112234808B (zh) 单相逆变器的二倍频纹波抑制电路及抑制方法
CN115940680A (zh) 一种三相变流器及其控制方法
CN112165267B (zh) 高变比双向ac/dc变换器及其控制方法、预充电方法
CN112701720B (zh) 一种交流微网带恒功率负载的混合控制方法
WO2020082762A1 (zh) 三电平整流器共模电压抑制pwm方法、调制器及系统
CN108429277A (zh) 一种基于模糊自抗扰控制的两端电压源型换流器高压直流输电系统控制方法
CN113690889A (zh) 一种以新型多电平变流器改进有源电力滤波器的电力谐波治理方法
CN110474406A (zh) 一种电动汽车充电桩前级整流器的控制方法
CN113839388A (zh) 一种基于混合负载的有源电力滤波器电流双环控制方法
CN110429835B (zh) 一种基于lcl滤波的rbfnn分段在线优化无源控制系统及方法
CN112701894A (zh) 考虑桥臂电流的环流注入mmc模块电压波动抑制方法
CN107769216B (zh) 一种用于弱交流电网接入的电压调制方法
CN113098033B (zh) 基于柔性直流输电系统的自适应虚拟惯量控制系统及方法
CN110429617B (zh) 基于频率性能指标的直流侧电容惯量补偿器设计方法
CN107612027A (zh) 一种光伏逆变器直流电压暂态跌落抑制方法
Maghamizadeh et al. Virtual flux based direct power control of a three-phase rectifier connected to an LCL filter with sensorless active damping
CN115065092B (zh) 单相并网变换器频率耦合调节控制方法
CN111756261B (zh) 一种pwm整流器控制方法和装置
Yong et al. A virtual RC active damping method in weak grid for three-level three-phase grid-connected inverters
KR102168161B1 (ko) 매트릭스 정류기 및 그에 따른 입력 역률 제어 방법
Kipke et al. Actively damped PI-based control design of grid-connected three-level VSC with LCL filter
CN108964491B (zh) 一种并网mmc的直流电压控制特性分析方法
CN217282687U (zh) 一种以新型多电平变流器改进有源电力滤波器的电路结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240710

Address after: No.117 Shuiyin Road, Yuexiu District, Guangzhou City, Guangdong Province 510000, China. The self assigned number is K001-062, located on the 3rd floor of Xingguang Yingjing

Patentee after: Guangzhou chuangyixin Technology Co.,Ltd.

Country or region after: China

Address before: 750021 No. 204 Wenchang North Road, Xixia District, the Ningxia Hui Autonomous Region, Yinchuan

Patentee before: BEIFANG MINZU University

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240730

Address after: Room E702, 7th Floor, Unit 2, Building 10, Alibaba Digital Ecological Innovation Park, No. 1 Aicheng Street, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province 310000

Patentee after: Zhongneng Kunyu Energy Holdings (Zhejiang) Co.,Ltd.

Country or region after: China

Address before: No.117 Shuiyin Road, Yuexiu District, Guangzhou City, Guangdong Province 510000, China. The self assigned number is K001-062, located on the 3rd floor of Xingguang Yingjing

Patentee before: Guangzhou chuangyixin Technology Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right