CN110470714A - 一种基于dna步行器诱导构象转化和信号放大的电化学发光传感器及其应用 - Google Patents

一种基于dna步行器诱导构象转化和信号放大的电化学发光传感器及其应用 Download PDF

Info

Publication number
CN110470714A
CN110470714A CN201910768745.5A CN201910768745A CN110470714A CN 110470714 A CN110470714 A CN 110470714A CN 201910768745 A CN201910768745 A CN 201910768745A CN 110470714 A CN110470714 A CN 110470714A
Authority
CN
China
Prior art keywords
dna
gsh
reaction
detection
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910768745.5A
Other languages
English (en)
Other versions
CN110470714B (zh
Inventor
接贵芬
葛君君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201910768745.5A priority Critical patent/CN110470714B/zh
Publication of CN110470714A publication Critical patent/CN110470714A/zh
Application granted granted Critical
Publication of CN110470714B publication Critical patent/CN110470714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于DNA步行器诱导构象转化和信号放大的电化学发光传感器及其检测谷胱甘肽(GSH)的分析应用。本发明的技术方案是通过目标GSH将MnO2还原成替代目标Mn2+,Mn2+驱动DNA酶放大反应产生DNA产物。DNA产物驱动电极上内切酶辅助的DNA步行器放大反应,进一步诱导构象转换形成亲和素适体,该适体特异性结合CdS:Mn‑亲和素信号探针,构建了ECL传感器检测GSH。该研究思路为实现GSH的灵敏检测提供了新的策略。

Description

一种基于DNA步行器诱导构象转化和信号放大的电化学发光 传感器及其应用
技术领域:
本发明涉及一种基于DNA步行器诱导构象转化和信号放大的电化学发光传感器;本发明还涉及所述传感器的制备方法及其检测谷胱甘肽(GSH)的分析应用。
背景技术:
电化学发光技术具有较低的背景信号、线性范围宽、灵敏度高、选择性好、制备简单以及成本低等优点[Hesari,M.;Swanick,K.N.;Lu,J.-S.;Whyte,R.;Wang,S.;Ding,Z.J.Am.Chem.Soc.2015,137,11266-11269.],在生物医药、肿瘤标志物的检测、食品安全以及环境监测中都引起了广泛的关注。
将DNA步行器引入生物传感器为提高检测灵敏度带来新的亮点,诸多报道已经证明DNA步行器可以在传感系统中实现信号的扩增和转导,从而进行信号放大[Golub E,Pelossof G,Freeman R,et al.Analytical Chemistry,2009,81(22):9291–9298.]。采用互补碱基配对的原理来创建静态结构,进一步通过DNA步机器进行程序化装配操作,具有“类似机器”功能的步行器因其持续性,方向性,可重复性操作,渐进式操作和自主操作等特点而备受关注。酶促反应的刺激会为DNA 步行器沿着特定路径运行提供动力[Zhang Y,HuJ,Zhang C Y.Analytical Chemistry,2012,84:9544–9549.]。
本发明设计了一种基于DNA步行器引导构象转换形成亲和素适体和利用DNA酶循环放大技术的电化学发光生物传感器,实现对谷胱甘肽GSH的灵敏检测。
发明内容:
本发明的目的是提供一种基于DNA步行器构象转换和信号放大的电化学发光生物传感器,以及利用该生物传感器检测谷胱甘肽GSH的分析应用。它由以下步骤组成:
生物传感器的制备:
步骤1.CdS:Mn-亲和素信号探针的合成:
取100微升CdS:Mn QDs,加入10μL 0.1M EDC和10μL 0.025M NHS活化1小时,加入20μL 1mg/mL亲和素SA于37℃反应6h。
步骤2.GSH将MnO2还原成Mn2+
20μL不同浓度的GSH与20μL MnO2纳米片混合涡旋3min,离心5min,取上清液得到不同浓度Mn2+的溶液。
步骤3.Mn2+催化的DNA酶循环放大反应:
20mg EDC和10mg NHS加入到50μL的COOH-MB溶液中,37℃下活化1h,加入50μL S1(1μM)37℃反应6h,再加入25μL S2(1μM)反应2h形成DNA酶。磁分离去除多余的DNA,分散到170μL PBS。最后,取5μL上述Mn2+的溶液与20μL MB-S1-S2溶液混合后于37℃反应80min。磁分离后,收集上清液备用。
步骤4.传感器的构建和检测。
ITO电极清洗晾干。Arm和Blocker(A/B)于37℃下反应2h保护Arm,然后6μL退火的H1和A/B按比例混合滴到纳米金修饰的ITO电极,37℃反应过夜,用1mM MCH封板2h。电极冲洗后,6μL步骤3收集的上清液和2U Nt.BbvCI加入电极反应体系中于37℃反应2h。最后与CdS:Mn-SA探针于37℃反应1h。
于100mM PBS(pH 7.4,含有50mM K2S2O8)进行电化学发光检测,PMT是-800V,电位:0~-1.5V,扫速:100mV s-1
本发明与现有技术相比,主要优点在于:本发明利用CdS:Mn量子点作为信号探针,具有较强的电化学发光信号,提高了检测灵敏度;本发明利用DNA步行器和DNA酶循环放大技术相结合,极大地提高了选择性,放大了电化学发光信号,实现了对GSH的高灵敏、高选择性检测。
本发明的电致化学发光传感器表现出了优良的准确性、高灵敏性、高选择性、稳定性与重现性,分析检测迅速、方便,该生物传感器在生物医学分析检测和早期临床诊断中具有巨大的应用潜力,可用于实际样品的检测。
附图说明:
图1.电化学发光传感器原理示意图:(A)目标GSH将MnO2还原成替代目标Mn2+,(B)替代目标Mn2+驱动DNA酶放大反应产生DNA产物,(C)DNA步行器诱导构象转换的ECL传感器检测GSH。
图2.(A)CdS:Mn QDs的透射电子显微镜(TEM)图,(B)CdS:Mn QDs的高分辨透射电子显微镜图,(C)CdS:Mn QDs的粒径分布图,(D)CdS:Mn QDs的荧光和ECL光谱图。
图3.DNA步行器电泳表征:(a)Arm,(b)Blocker,(c)H1,(d)A/B+H1,(e)步行器诱导的H1剪切产物。
图4.ECL传感器的AFM表征。
图5.(A)不同浓度的GSH对应的ECL信号响应,(B)检测GSH的标准矫正曲线。
具体实施方式:
实施例1.电化学发光传感器的制备及对GSH的检测
Mn2+催化的DNA酶循环放大反应。20mg EDC和10mg NHS加入到50μL的COOH-MB溶液中,37℃下活化1h,加入50μL S1(1μM)37℃反应6h,再加入25μL S2(1μM)反应2h形成DNA酶。磁分离去除多余的DNA,分散到170μL PBS。最后,取5μL上述Mn2+的溶液与20μL MB-S1-S2溶液混合后于37℃反应80min。磁分离后,收集上清液备用。
传感器的构建和检测。ITO电极清洗晾干。Arm和Blocker(A/B)于37℃下反应2h保护Arm,然后6μL退火的H1和A/B按比例混合滴到纳米金修饰的ITO电极,37℃反应过夜,用1mM MCH封板2h。电极冲洗后,6μL步骤3收集的上清液和2U Nt.BbvCI加入电极反应体系中于37℃反应2h。最后与CdS:Mn-SA探针于37℃反应1h。
传感器检测。于100mM PBS(pH 7.4,含有50mM K2S2O8)进行电化学发光检测,PMT是-800V,电位:0~-1.5V,扫速:100mV s-1
实施例2.电化学发光传感器的制备及对GSH的检测
将“20mg EDC和10mg NHS加入到50μL的COOH-MB溶液中,37℃下活化1h”改为“20mgEDC和10mg NHS加入到50μL的COOH-MB溶液中,37℃下活化1.5h。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对GSH检测的结果同实施例1。
实施例3.电化学发光传感器的制备及对GSH的检测
将“20mg EDC和10mg NHS加入到50μL的COOH-MB溶液中,37℃下活化1h,加入50μLS1(1μM)37℃反应6h。”改为“20mg EDC和10mg NHS加入到50μL的COOH-MB溶液中,37℃下活化1h,加入50μL S1(1μM)37℃反应8h。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对GSH检测的结果同实施例1。
实施例4.电化学发光传感器的制备及对GSH的检测
将“Arm和Blocker(A/B)于37℃下反应2h保护Arm,然后6μL退火的H1和A/B按比例混合滴到纳米金修饰的ITO电极,37℃反应过夜,用1mM MCH封板2h。”改为“Arm和Blocker(A/B)于37℃下反应2h保护Arm,然后6μL退火的H1和A/B按比例混合滴到纳米金修饰的ITO电极,37℃反应10h,用1mM MCH封板2h”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对GSH检测的结果同
实施例1。
实施例5.电化学发光传感器的制备及对GSH的检测
将“电极冲洗后,6μL步骤3收集的上清液和2U Nt.BbvCI加入电极反应体系中于37℃反应2h”改为“电极冲洗后,6μL步骤3收集的上清液和3U Nt.BbvCI加入电极反应体系中于37℃反应2h。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对GSH检测的结果同实施例1。

Claims (3)

1.一种基于DNA步行器诱导构象转化和信号放大的电化学发光传感器,其特征是:利用亲和素标记CdS:Mn量子点构建ECL信号探针,通过目标GSH将MnO2还原生成的Mn2+催化DNA酶循环放大反应,产生DNA产物。DNA产物驱动电极上内切酶辅助的DNA步行器诱导构象转换,结合CdS:Mn-亲和素信号探针,构建了ECL传感器。
2.一种制备权利要求1所述的基于DNA步行器诱导构象转化和信号放大的电化学发光传感器的方法和应用,其特征方法由下列步骤组成:
步骤1.CdS:Mn-亲和素信号探针的合成:
取100微升CdS:Mn QDs,加入10μL 0.1M EDC和10μL 0.025M NHS活化1小时,加入20μL1mg/mL亲和素SA于37℃反应6h。
步骤2.GSH将MnO2还原成Mn2+
20μL 不同浓度的GSH与20μL MnO2纳米片混合涡旋3min,离心5min,取上清液得到不同浓度Mn2+的溶液。
步骤3.Mn2+催化的DNA酶循环放大反应:
20mg EDC和10mg NHS加入到50μL的COOH-MB溶液中,37℃下活化1h,加入50μL S1(1μM)37℃反应6h,再加入25μL S2(1μM)反应2h形成DNA酶。磁分离去除多余的DNA,分散到170μLPBS。最后,取5μL上述Mn2+的溶液与20μL MB-S1-S2溶液混合后于37℃反应80min。磁分离后,收集上清液备用。
步骤4.传感器的构建和检测。
ITO电极清洗晾干。Arm和Blocker(A/B)于37℃下反应2h保护Arm,然后6μL退火的H1和A/B按比例混合滴到纳米金修饰的ITO电极,37℃反应过夜,用1mM MCH封板2h。电极冲洗后,6μL步骤3收集的上清液和2U Nt.BbvCI加入电极反应体系中于37℃反应2h。最后与CdS:Mn-SA探针于37℃反应1h。
3.根据权利要求2所述的谷胱甘肽GSH的检测方法,其特征是:所述的电化学发光测试是将表面进行反应完成的电极作为工作电极,三电极体系中检测ECL信号。于100mM PBS(pH7.4,含有50mM K2S2O8)进行ECL检测,PMT是-800V,电位:0~-1.5V,扫速:100mV s-1
CN201910768745.5A 2019-08-20 2019-08-20 一种基于dna步行器诱导构象转化和信号放大的电化学发光传感器及其应用 Active CN110470714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910768745.5A CN110470714B (zh) 2019-08-20 2019-08-20 一种基于dna步行器诱导构象转化和信号放大的电化学发光传感器及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910768745.5A CN110470714B (zh) 2019-08-20 2019-08-20 一种基于dna步行器诱导构象转化和信号放大的电化学发光传感器及其应用

Publications (2)

Publication Number Publication Date
CN110470714A true CN110470714A (zh) 2019-11-19
CN110470714B CN110470714B (zh) 2022-07-01

Family

ID=68512013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910768745.5A Active CN110470714B (zh) 2019-08-20 2019-08-20 一种基于dna步行器诱导构象转化和信号放大的电化学发光传感器及其应用

Country Status (1)

Country Link
CN (1) CN110470714B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345610A (zh) * 2020-10-30 2021-02-09 广州钰芯智能科技研究院有限公司 一种纳米金修饰的多通道ito阵列电极芯片及其在电化学免疫传感器中的应用
CN112432980A (zh) * 2020-12-09 2021-03-02 江南大学 基于dna步行器和纳米花结构的致病菌电化学检测方法
CN112626242A (zh) * 2020-12-11 2021-04-09 宁波大学 基于核酸构象引发链取代驱动DNA Walker的双信号检测食源性致病菌的方法
CN113943777A (zh) * 2021-10-29 2022-01-18 福州大学 一种自保护DNA酶步行器的构建方法及其在活细胞miRNA检测中的应用
CN114214461A (zh) * 2021-12-26 2022-03-22 南京大学 一种等温hiv核酸检测试剂盒及检测方法
CN116023932A (zh) * 2022-12-09 2023-04-28 山西大学 一种用于谷胱甘肽检测的荧光探针及其制备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918509A (zh) * 2018-07-16 2018-11-30 青岛科技大学 一种基于CdSe量子点电致化学发光传感器的研制及其应用
CN108982483A (zh) * 2018-08-21 2018-12-11 青岛科技大学 一种基于Walker DNA和放大技术的电化学发光生物传感器及其制法和应用
CN110542714A (zh) * 2019-06-17 2019-12-06 济南大学 一种dna步行器的制备及其在传感分析中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918509A (zh) * 2018-07-16 2018-11-30 青岛科技大学 一种基于CdSe量子点电致化学发光传感器的研制及其应用
CN108982483A (zh) * 2018-08-21 2018-12-11 青岛科技大学 一种基于Walker DNA和放大技术的电化学发光生物传感器及其制法和应用
CN110542714A (zh) * 2019-06-17 2019-12-06 济南大学 一种dna步行器的制备及其在传感分析中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEAN D. MASON ET AL.: "Emerging bioanalytical applications of DNA walkers", 《TRENDS IN ANALYTICAL CHEMISTRY》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345610A (zh) * 2020-10-30 2021-02-09 广州钰芯智能科技研究院有限公司 一种纳米金修饰的多通道ito阵列电极芯片及其在电化学免疫传感器中的应用
CN112432980A (zh) * 2020-12-09 2021-03-02 江南大学 基于dna步行器和纳米花结构的致病菌电化学检测方法
CN112432980B (zh) * 2020-12-09 2021-11-02 江南大学 基于dna步行器和纳米花结构的致病菌电化学检测方法
CN112626242A (zh) * 2020-12-11 2021-04-09 宁波大学 基于核酸构象引发链取代驱动DNA Walker的双信号检测食源性致病菌的方法
CN112626242B (zh) * 2020-12-11 2022-05-24 宁波大学 基于核酸构象引发链取代驱动DNA Walker的双信号检测食源性致病菌的方法
CN113943777A (zh) * 2021-10-29 2022-01-18 福州大学 一种自保护DNA酶步行器的构建方法及其在活细胞miRNA检测中的应用
CN114214461A (zh) * 2021-12-26 2022-03-22 南京大学 一种等温hiv核酸检测试剂盒及检测方法
CN114214461B (zh) * 2021-12-26 2024-03-26 南京大学 一种等温hiv核酸检测试剂盒及检测方法
CN116023932A (zh) * 2022-12-09 2023-04-28 山西大学 一种用于谷胱甘肽检测的荧光探针及其制备
CN116023932B (zh) * 2022-12-09 2024-03-12 山西大学 一种用于谷胱甘肽检测的荧光探针及其制备

Also Published As

Publication number Publication date
CN110470714B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN110470714A (zh) 一种基于dna步行器诱导构象转化和信号放大的电化学发光传感器及其应用
Kong et al. Micro-and nanorobots based sensing and biosensing
Xie et al. Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification
Bi et al. Ultrasensitive and selective DNA detection based on nicking endonuclease assisted signal amplification and its application in cancer cell detection
Wang et al. Amplified electrochemical detection of mecA gene in methicillin-resistant Staphylococcus aureus based on target recycling amplification and isothermal strand-displacement polymerization reaction
CN106568820B (zh) 基于dna信号放大技术合成银纳米簇的电化学生物传感器的制备方法及其应用
CN102375021B (zh) 一种采用dna为探针的电化学检测环境污染物方法
Wen et al. Electrochemical detection of PCR amplicons of Escherichia coli genome based on DNA nanostructural probes and polyHRP enzyme
Liu et al. A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection
Feng et al. Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction
Hu et al. A novel electrochemical biosensor for HIV-related DNA detection based on toehold strand displacement reaction and cruciform DNA crystal
Cui et al. A sensitive ratiometric electrochemical biosensor based on DNA four-way junction formation and enzyme-assisted recycling amplification
Wang et al. A convenient electrogenerated chemiluminescence biosensing method for selective detection of 5-hydroxymethylcytosine in genomic DNA
Manibalan et al. A switchable electrochemical redox ratiometric substrate based on ferrocene for highly selective and sensitive fluoride detection
Shen et al. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity
Zhang et al. Electrochemical lead (II) biosensor by using an ion-dependent split DNAzyme and a template-free DNA extension reaction for signal amplification
Wang et al. Dual-mode sensor based on the synergy of magnetic separation and functionalized probes for the ultrasensitive detection of Clostridium perfringens
Niu et al. Hybridization biosensor using di (1, 10-phenanthroline)(imidazo [f] 1, 10-phenanthroline) cobalt (II) as electrochemical indicator for detection of human immunodeficiency virus DNA
Jiao et al. Homogeneous electrochemical aptasensor based on a dual amplification strategy for sensitive detection of profenofos residues
Zhao et al. Construction of a target-triggered DNAzyme motor for electrochemical detection of multiple DNA glycosylases
CN109521073B (zh) 一种利用电化学发光适配体传感器检测双酚a含量的方法
Kashefi-Kheyrabadi et al. Ultrasensitive and amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor powered by CRISPR/Cas13a
Xie et al. Target-induced conformational switch of DNAzyme for homogeneous electrochemical detection of nereistoxin-related insecticide on an ultramicroelectrode
Yang et al. Cross-triggered and cascaded recycling amplification for ultrasensitive electrochemical sensing of the mutant human p53 gene
Guo et al. A portable electrochemiluminescence bipolar electrode array for the visualized sensing of Cas9 activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240109

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 266000 Songling Road, Laoshan District, Qingdao, Shandong Province, No. 99

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right