CN110467201B - Sapo-34多级孔分子筛及其制备方法与应用 - Google Patents

Sapo-34多级孔分子筛及其制备方法与应用 Download PDF

Info

Publication number
CN110467201B
CN110467201B CN201810437236.XA CN201810437236A CN110467201B CN 110467201 B CN110467201 B CN 110467201B CN 201810437236 A CN201810437236 A CN 201810437236A CN 110467201 B CN110467201 B CN 110467201B
Authority
CN
China
Prior art keywords
molecular sieve
sapo
source
pore
hierarchical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810437236.XA
Other languages
English (en)
Other versions
CN110467201A (zh
Inventor
姜继东
田大勇
孙琦
张新峰
杨虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Energy Investment Corp Ltd
National Institute of Clean and Low Carbon Energy
Original Assignee
China Energy Investment Corp Ltd
National Institute of Clean and Low Carbon Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Energy Investment Corp Ltd, National Institute of Clean and Low Carbon Energy filed Critical China Energy Investment Corp Ltd
Priority to CN201810437236.XA priority Critical patent/CN110467201B/zh
Publication of CN110467201A publication Critical patent/CN110467201A/zh
Application granted granted Critical
Publication of CN110467201B publication Critical patent/CN110467201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0075Shaping the mixture by extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及多级孔分子筛领域,公开了一种SAPO‑34多级孔分子筛及其制备方法与应用,所述SAPO‑34多级孔分子筛的结构为蜂窝状结构,微孔径为0.38~0.45nm,微孔容为0.17~0.24cm3·g–1,微孔比表面积为475~567m2·g–1,外比表面积为97~123m2·g–1,总孔容为0.32~0.41cm3·g–1。本发明还包括SAPO‑34多级孔分子筛的制备方法与应用。本发明SAPO‑34多级孔分子筛是典型四方块,表面含有丰富蜂窝状孔道,具有良好的催化性能,在MTO反应中能显著提高烯烃的选择性并且延长催化剂使用寿命。本发明省去了硅源的水热或高温预处理,缩短了合成晶化时间,制备简单,既没有增加工艺步骤,也没有增加设备,且制备成本在可接受范围。

Description

SAPO-34多级孔分子筛及其制备方法与应用
技术领域
本发明涉及多级孔分子筛领域,具体涉及一种SAPO-34多级孔分子筛及其制备方法与应用。
背景技术
SAPO-34是具有类菱沸石型结构[1]的分子筛,属于三方晶系,其骨架主要由硅铝磷酸盐及[SiO2]、[PO2]、[AlO2]四面体构成的八元环笼状晶体网架结构组成,笼子环形口直径大约为0.40~0.45nm,具有双六元环、八元环与四元环构成的椭球形CHA笼以及三维交叉孔道结构。SAPO-34具有高选择性,高水热稳定性,适宜的酸性,在MTO反应中表现出优异的催化性能。然而SAPO-34有限的孔径尺寸(0.43nm),有限的分子传递速率、较大的扩散阻力、较长的扩散路径及较低的活性中心使其在工业上的应用受限,严重的限制了大分子的吸附与扩散,最终使催化剂失去活性,特别是在合成SAPO-34分子筛中,硅源需要水热或高温预处理步骤,且合成晶化时间较长,导致合成时间长和合成成本高等问题。
例如,现有技术CN 103145145A公开了一种以A型沸石为硅源合成SAPO-34分子筛的方法,该发明中A型沸石在凝胶形成过程中仍然以A型沸石晶体的形式存在,从而保证了在SAPO-34分子筛成核、晶体的生长过程中,硅源是以单个硅酸根状态进入SAPO-34分子筛骨架,从而能很好地控制硅原子进入骨架的数量及形态,而且缩短了硅源在高温下溶解分散的时间,从而缩短了合成SAPO-34的晶化时间。但是A型沸石需要在100℃水热预处理,增加了合成步骤和成本,其次合成晶化时间较长,可达3~6天,且制得的SAPO-34分子筛不是多级孔结构,催化寿命可能受到抑制。CN 101176851A公开了一种用高岭土合成硅磷酸铝分子筛的方法,利用高岭土中[SiO4]四面体层和Al[O(OH)]6八面体层构成的复合单元结构层的层状结构,以高岭土作为原料和基板,在模板剂和其他分子筛原料存在的情况下,制备出颗粒较小或为片层结构硅磷酸铝分子筛。但是由于高岭土在700~1100℃高温活化过程能耗高,高岭土微球含有石英、云母等杂质,且合成过程只能发生在微球表面,导致高岭土原料利用率低,造成该方法存在较大的局限性,无法广泛应用。
发明内容
本发明的目的是为了克服现有技术存在的SAPO-34分子筛易于形成积碳,堵塞孔道,导致分子筛迅速失活以及双烯收率低,特别是在合成SAPO-34分子筛中,硅源需要水热或高温预处理步骤,且合成晶化时间较长,导致合成时间长和合成成本高等问题,提供一种蜂窝状结构的SAPO-34多级孔分子筛及其制备方法与应用。
为了实现上述目的,本发明一方面提供一种SAPO-34多级孔分子筛,其结构为蜂窝状结构,微孔径为0.34~0.45nm,微孔容为0.17~0.24cm3·g–1,微孔比表面积为475~567m2·g–1,外比表面积为97~123m2·g–1,总孔容为0.32~0.41cm3·g–1
本发明第二方面提供一种SAPO-34多级孔分子筛的制备方法,包括以下步骤:
(1)将去离子水与磷源混合搅拌均匀,得到均匀混合液;接着在混合液中加入硅源搅拌均匀,然后加入铝源搅拌均匀,最后加入有机胺模板剂搅拌均匀,得到混合均匀的反应液;其中,硅源为SBA-15、MCM-41、MCM-48或高岭土中的至少一种;
(2)将混合均匀的反应液先陈化,接着分段恒温晶化,晶化结束后冷却,洗涤,干燥,制得表面为蜂窝状SAPO-34分子筛;
(3)将蜂窝状SAPO-34分子筛焙烧,制得纳米片蜂窝状自组装的SAPO-34多级孔分子筛。
本发明第三方面提供一种由上述方法制得的SAPO-34多级孔分子筛。
本发明第四方面提供一种SAPO-34多级孔分子筛在制备烯烃中的应用。
本发明SAPO-34多级孔分子筛是典型四方块,表面含有丰富蜂窝状孔道,具有良好的催化性能,在MTO反应中能显著提高烯烃的选择性并且延长催化剂使用寿命。
本发明在制备SAPO-34多级孔分子筛的工艺过程中省去了硅源的水热或高温预处理,缩短了合成晶化时间,制备简单,既没有增加工艺步骤,也没有增加设备,且制备成本在可接受范围。
附图说明
图1是实施例1制备的SAPO-34多级孔分子筛的SEM照片;
图2是实施例1制备的SAPO-34多级孔分子筛的SEM放大照片。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供了一种SAPO-34多级孔分子筛,其结构为蜂窝状结构,微孔径为0.38~0.45nm,微孔容为0.17~0.24cm3·g–1,微孔比表面积为475~567m2·g–1,外比表面积为97~123m2·g–1,总孔容为0.32~0.41cm3·g–1
本发明SAPO-34多级孔分子筛是典型四方块,且表面含有丰富蜂窝状孔道,具有良好的催化性能,在MTO反应中可提高烯烃的选择性并且延长催化剂使用寿命。
本发明还提供了一种SAPO-34多级孔分子筛的制备方法,包括以下步骤:
(1)将去离子水与磷源混合搅拌均匀,得到均匀混合液;接着在混合液中加入硅源搅拌均匀,然后加入铝源搅拌均匀,最后加入有机胺模板剂搅拌均匀,得到混合均匀的反应液;其中,硅源为SBA-15、MCM-41、MCM-48或高岭土中的至少一种;
(2)将混合均匀的反应液先陈化,接着分段恒温晶化,晶化结束后冷却,洗涤,干燥,制得表面为蜂窝状SAPO-34分子筛;
(3)将蜂窝状SAPO-34分子筛焙烧,制得纳米片蜂窝状自组装的SAPO-34多级孔分子筛。
本发明是利用硅源形貌和孔结构状况对合成SAPO-34分子筛的形貌和孔结构的影响的理论,采用SBA-15、MCM-41、MCM-48以及高岭土作为硅源,先与磷酸溶液进行混合,利用酸性进行预处理,无需水热或高温预处理,利用介孔无定型的孔壁易分解的特点,以及设计分段晶化工艺,合成出蜂窝状结构的SAPO-34多级孔分子筛,既减少了作为硅源的原料的预处理步骤,又没有额外添加产生中孔结构的造孔剂,尤其是可提高高岭土的利用率。
根据本发明,步骤(1)中,硅源、铝源、磷源、有机胺模板剂R、去离子水分别以SiO2、Al2O3、P2O5、R、H2O计,其摩尔配比可以为0.09~1∶0.8~1.2∶0.8~1.2∶1.5~4∶15~100,优选为0.1~0.6∶0.9~1.1∶0.9~1.1∶2~3∶25~70。
根据本发明,所选硅源可以为本领域中各种常规的介孔孔径分布、比表面积和孔容参数。例如,步骤(1)中,所述SBA-15的介孔孔径分布可以为6~11nm(例如,可以为6nm、7nm、8nm、9nm、10nm、11nm以及这些点值中的任意两个所构成的范围中的任意值),比表面积可以为600~800m2·g–1(例如,可以为600m2·g–1、650m2·g–1、700m2·g–1、750m2·g–1、800m2·g–1以及这些点值中的任意两个所构成的范围中的任意值),孔容可以为0.84~0.98cm3·g–1(例如,可以为0.84cm3·g–1、0.85cm3·g–1、0.86cm3·g–1、0.87cm3·g–1、0.88cm3·g–1、0.89cm3·g–1、0.90cm3·g–1、0.91cm3·g–1、0.92cm3·g–1、0.93cm3·g–1、0.94cm3·g–1、0.95cm3·g–1、0.96cm3·g–1、0.97cm3·g–1、0.98cm3·g–1以及这些点值中的任意两个所构成的范围中的任意值);所述MCM-41的介孔孔径分布可以为3~5nm(例如,可以为3nm、4nm、5nm以及这些点值中的任意两个所构成的范围中的任意值),比表面积可以为800~900m2·g–1(例如,可以为800m2·g–1、810m2·g–1、820m2·g–1、830m2·g–1、840m2·g–1、850m2·g–1、860m2·g–1、870m2·g–1、880m2·g–1、890m2·g–1、900m2·g–1以及这些点值中的任意两个所构成的范围中的任意值),孔容可以为0.9~1.05cm3·g–1;(例如,可以为0.9cm3·g–1、0.91cm3·g–1、0.92cm3·g–1、0.93cm3·g–1、0.94cm3·g–1、0.95cm3·g–1、0.96cm3·g–1、0.97cm3·g–1、0.98cm3·g–1、0.99cm3·g–1、1.00cm3·g–1、1.01cm3·g–1、1.02cm3·g–1、1.03cm3·g–1、1.04cm3·g–1、1.05cm3·g–1以及这些点值中的任意两个所构成的范围中的任意值);所述MCM-48的介孔孔径分布可以为2~4nm(例如,可以为2nm、3nm、4nm以及这些点值中的任意两个所构成的范围中的任意值),比表面积可以为750~900m2·g–1(例如,可以为700m2·g–1、750m2·g–1、800m2·g–1以850m2·g–1、900m2·g–1以及及这些点值中的任意两个所构成的范围中的任意值),孔容可以为0.87~0.95cm3·g–1(例如,可以为0.87cm3·g–1、0.88cm3·g–1、0.89cm3·g–1、0.90cm3·g–1、0.91cm3·g–1、0.92cm3·g–1、0.93cm3·g–1、0.94cm3·g–1、0.95cm3·g–1以及这些点值中的任意两个所构成的范围中的任意值)
根据本发明,为了提高高岭土的利用率,促进蜂窝状结构的形成,步骤(1)中,所述高岭土中活性SiO2和Al2O3的含量在98%以上,其中,活性SiO2和Al2O3重量比为1∶1.12~1.18。例如,可以为1∶1.12,1∶1.13,1∶1.14,1∶1.15,1∶1.16,1∶1.17,1∶1.18以及这些点值中的任意两个所构成的范围中的任意值。
根据本发明,铝源可以为本领域中各种常规的铝源,例如,步骤(1)中,所述铝源可以选自拟薄水铝石、异丙醇铝、氢氧化铝和硫酸铝中的至少一种。
根据本发明,为了进一步保障硅源省去水热或高温预处理步骤,步骤(1)中,所述磷源为质量分数为80-90%的磷酸。例如,可以为80%、85%、90%以及这些点值中的任意两个所构成的范围中的任意值。
根据本发明,有机胺模板剂可以为本领域中各种常规的有机胺模板剂。例如,步骤(1)中,所述有机胺模板剂R可以为二乙胺、三乙胺、吗啉、异丙胺和四乙基氢氧化铵中的至少一种。
根据本发明,为了后续晶化的操作,步骤(2)中,所述动态陈化是以转速为15~25rpm,室温陈化1~3h。
根据本发明,为了有效增加晶化过程中料液的均匀性,促进表面蜂窝状SAPO-34多级孔分子筛生成,步骤(2)中,所述分段恒温晶化是在转速为15~25rpm,以0.1~3℃/min升温至130℃,恒温晶化5~10h,再以0.1~3℃/min升温至190~200℃恒温晶化20~36h。
根据本发明,促进纳米片蜂窝状自组装的SAPO-34多级孔分子筛生成,步骤(3)中,所述焙烧条件是在500~600℃下焙烧5~9h。
本发明还提供一种由上述方法制得的SAPO-34多级孔分子筛。
本发明还提供一种SAPO-34多级孔分子筛在制备烯烃中的应用。
实验证明,本发明SAPO-34多级孔分子筛催化寿命至少提高了30%,且双烯(乙烯和丙烯)的收率超过85%。
以下将通过实施例对本发明进行详细描述。以下实施例中,
SAPO-34多级孔分子筛寿命参数通过BET方法测得;
SAPO-34多级孔分子筛双烯选择性参数通过BET方法测得。
在没有特别说明的情况下,所用原料均采用市售产品,其中:
SBA-15购自南开催化剂厂;
MCM-41购自南开催化剂厂;
MCM-48购自南开催化剂厂;
高岭土购自中国高岭土有限公司。
实施例1
SAPO-34多级孔分子筛的制备:包括以下步骤:
(1)硅源、铝源、磷源、有机胺模板剂R、去离子水分别以SiO2、Al2O3、P2O5、R、H2O计,其摩尔配比==0.2∶1∶1∶2.7∶50,称取20g去离子水和16g磷酸混合,搅拌10min,得到均匀混合液,称取0.84g SBA-15(介孔孔径分布为10nm,比表面积为700m2·g–1,孔容为0.90cm3·g–1);加入上述混合液中,搅拌30min;称取10.2g拟薄水铝石加入上述混合液中,并补加43.1g去离子水,搅拌30min;称取19.1g有机胺模板剂R(三乙胺)加入上述混合液,搅拌30min。
(2)将上述混合均匀的反应液转移至150mL反应釜中,放置在均相反应器内,以转速为24rpm,陈化3h,然后以2℃/min升温至130℃,恒温晶化3h,再以2℃/min升温至200℃恒温晶化24h,等到晶化完成后,将得到的产物进行冷却、洗涤、干燥后,制得蜂窝状的SAPO-34分子筛。
(3)将制得的蜂窝状的SAPO-34分子筛在550℃焙烧6h,制备得到典型四方块形状,且表面含有蜂窝状孔道的SAPO-34多级孔分子筛,如图1所示SAPO-34多级孔分子筛的SEM照片和图2所示的SAPO-34多级孔分子筛的SEM放大照片。经测试,四方块大小在6μm,微孔径为0.38nm,微孔容为0.21cm3·g–1,微孔比表面积为567m2·g–1,外比表面积117m2·g–1,总孔容0.38cm3·g–1
实施例2
SAPO-34多级孔分子筛的制备:包括以下步骤:
(1)硅源、铝源、磷源、有机胺模板剂R、去离子水分别以SiO2、Al2O3、P2O5、R、H2O计,其摩尔配比==0.3∶1.1∶1.1∶2∶70,称取30g去离子水和17.6g磷酸混合,搅拌10min,得到均匀混合液,称取1.26g MCM-41(介孔孔径分布为5nm,比表面积为900m2·g–1,孔容为1.0cm3·g–1)加入上述混合液中,搅拌30min;称取11.2g拟薄水铝石加入上述混合液中,并补加58.3g去离子水,搅拌30min;称取14.2g有机胺模板剂R(三乙胺)加入上述混合液,搅拌30min。
(2)将上述混合均匀的反应液转移至150mL反应釜中,放置在均相反应器内,以转速为25rpm,陈化2h,然后以2℃/min升温至130℃,恒温晶化3h,再以2℃/min升温至200℃恒温晶化24h,等到晶化完成后,将得到的产物进行冷却、洗涤、干燥后,制得蜂窝状的SAPO-34分子筛。
(3)将制得的蜂窝状的SAPO-34分子筛在580℃焙烧6h,制备得到典型四方块形状,且表面含有蜂窝状孔道的SAPO-34多级孔分子筛,其四方块大小在5μm,微孔径为0.40nm,微孔容为0.19cm3·g–1,微孔比表面积为513m2·g–1,外比表面积123m2·g–1,总孔容0.40cm3·g–1
实施例3
SAPO-34多级孔分子筛的制备:包括以下步骤:
(1)硅源、铝源、磷源、有机胺模板剂R、去离子水分别以SiO2、Al2O3、P2O5、R、H2O计,其摩尔配比==0.6∶0.9∶0.9∶3∶70,称取30g去离子水和14.1g磷酸混合,搅拌10min,得到均匀混合液,称取4.67g高岭土(高岭土中活性SiO2和Al2O3的含量为98.6%,活性SiO2和Al2O3的重量比为1∶1.15)加入上述混合液中,搅拌30min;称取7.3g拟薄水铝石加入上述混合液中,并补加58.3g去离子水,搅拌30min;称取21.3g有机胺模板剂R(三乙胺)加入上述混合液,搅拌30min。
(2)将上述混合均匀的反应液转移至150mL反应釜中,放置在均相反应器内,以转速为20rpm,陈化2.5h,然后以2℃/min升温至130℃,恒温晶化3h,再以2℃/min升温至200℃恒温晶化24h,等到晶化完成后,将得到的产物进行冷却、洗涤、干燥后,制得蜂窝状的SAPO-34分子筛。
(3)将制得的蜂窝状的SAPO-34分子筛在500℃焙烧8.5h,制备得到典型四方块形状,且表面含有蜂窝状孔道的SAPO-34多级孔分子筛,其四方块大小在6μm,微孔径为0.39nm,微孔容为0.19cm3·g–1,微孔比表面积为484m2·g–1,外比表面积101m2·g–1,总孔容0.39cm3·g–1
实施例4
SAPO-34多级孔分子筛的制备:包括以下步骤:
(1)硅源、铝源、磷源、有机胺模板剂R、去离子水分别以SiO2、Al2O3、P2O5、R、H2O计,其摩尔配比==0.1∶0.8∶0.8∶1.5∶25,称取15g去离子水和12.8g磷酸混合,搅拌10min,得到均匀混合液,称取0.42gMCM-48(介孔孔径分布为3nm,比表面积为800m2·g–1,孔容为0.92cm3·g–1)加入上述混合液中,搅拌30min;称取8.2g拟薄水铝石加入上述混合液中,并补加17g去离子水,搅拌30min;称取10.7g有机胺模板剂R(三乙胺)加入上述混合液,搅拌30min。
(2)将上述混合均匀的反应液转移至150mL反应釜中,放置在均相反应器内,以转速为15rpm,陈化1h,然后以2℃/min升温至130℃,恒温晶化3h,再以2℃/min升温至200℃恒温晶化24h,等到晶化完成后,将得到的产物进行冷却、洗涤、干燥后,制得蜂窝状的SAPO-34分子筛。
(3)将制得的蜂窝状的SAPO-34分子筛在600℃焙烧5h,制备得到典型四方块形状,且表面含有蜂窝状孔道的SAPO-34多级孔分子筛,其四方块大小在7μm,微孔径为0.39nm,微孔容为0.24cm3·g–1,微孔比表面积为567m2·g–1,外比表面积97m2·g–1,总孔容0.42cm3·g–1
对比例1
将0.203gA型沸石在100℃下水热处理2h,接着在20℃,用10mL去离子水溶解1.74g拟薄水铝石粉末和处理过的A型沸石,然后依次滴加1.51mL磷酸,2.3mL二乙胺,搅拌均匀后移入不锈钢反应釜中于200℃晶化5~6天,最后按常规的分子筛后处理方法,冷却,洗涤,干燥,收集产品。
测试例
在测试温度450℃,空速3h-1条件下,测试实施例1-4和对比例1制备样品在MTO反应中的寿命和双烯(乙烯与丙烯)的选择性。其测试结果见表1。
表1
实施例编号 寿命(min) 双烯的选择性(%)
实施例1 252 85
实施例2 252 85
实施例3 237 84
实施例4 207 84
对比例1 189 73
通过表1的结果可以看出,采用本发明SAB-15、MCM-41/48和高岭土作为硅源,使得实施例1-4的SAPO-34多级孔分子筛获得了典型四方块的结构,表面含有丰富蜂窝状孔道,从而获得了良好的使用寿命和双烯选择性的技术效果。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (14)

1.一种SAPO-34多级孔分子筛,其特征在于,其结构为蜂窝状结构,微孔径为0.38~0.45nm,微孔容为0.17~0.24cm3·g–1,微孔比表面积为475~567m2·g–1,外比表面积为97~123m2·g–1,总孔容为0.32~0.41cm3·g–1;
所述的SAPO-34多级孔分子筛的制备方法,包括以下步骤:
(1)将去离子水与磷源混合搅拌均匀,得到均匀混合液;接着在混合液中加入硅源搅拌均匀,然后加入铝源搅拌均匀,最后加入有机胺模板剂搅拌均匀,得到混合均匀的反应液;其中,硅源为SBA-15、MCM-41、 MCM-48或高岭土中的至少一种;
(2)将混合均匀的反应液先陈化,接着分段恒温晶化,晶化结束后冷却,洗涤,干燥,制得表面为蜂窝状SAPO-34分子筛;
(3)将蜂窝状SAPO-34分子筛焙烧,制得纳米片蜂窝状自组装的SAPO-34多级孔分子筛。
2.根据权利要求1所述的SAPO-34多级孔分子筛的制备方法,其特征在于,包括以下步骤:
(1)将去离子水与磷源混合搅拌均匀,得到均匀混合液;接着在混合液中加入硅源搅拌均匀,然后加入铝源搅拌均匀,最后加入有机胺模板剂搅拌均匀,得到混合均匀的反应液;其中,硅源为SBA-15、MCM-41、 MCM-48或高岭土中的至少一种;
(2)将混合均匀的反应液先陈化,接着分段恒温晶化,晶化结束后冷却,洗涤,干燥,制得表面为蜂窝状SAPO-34分子筛;
(3)将蜂窝状SAPO-34分子筛焙烧,制得纳米片蜂窝状自组装的SAPO-34多级孔分子筛。
3.根据权利要求2所述的方法,其特征在于,步骤(1)中,硅源、铝源、磷源、有机胺模板剂R、去离子水分别以SiO2、Al2O3、P2O5、R、H2O计,其摩尔配比为0.09~1∶0.8~1.2∶0.8~1.2∶1.5~4∶15~100。
4.根据权利要求3所述的方法,其特征在于,步骤(1)中,硅源、铝源、磷源、有机胺模板剂R、去离子水分别以SiO2、Al2O3、P2O5、R、H2O计,其摩尔配比为0.1~0.6∶0.9~1.1∶0.9~1.1∶2~3∶25~70。
5.根据权利要求2或3所述的方法,其特征在于,步骤(1)中,所述SBA-15的介孔孔径分布为6~11nm,比表面积为600~800 m2· g–1,孔容为0.84~0.98 cm3· g–1;所述MCM-41的介孔孔径分布为3~5nm,比表面积为800~900m2· g–1,孔容为0.9~1.05 cm3· g–1;所述MCM-48的介孔孔径分布为2~4nm,比表面积为750~900 m2· g–1,孔容为0.87~0.95cm3· g–1。
6.根据权利要求2或3所述的方法,其特征在于,步骤(1)中,所述高岭土中活性SiO2和Al2O3的含量在98%以上,其中,活性SiO2和Al2O3重量比为1∶1.12~1.18。
7.根据权利要求6所述的方法,其特征在于,所述铝源选自拟薄水铝石、异丙醇铝、氢氧化铝和硫酸铝中的至少一种。
8.根据权利要求6所述的方法,其特征在于,所述磷源为质量分数为80-90%的磷酸。
9.根据权利要求6所述的方法,其特征在于,所述有机胺模板剂R为二乙胺、三乙胺、吗啉、异丙胺和四乙基氢氧化铵中的至少一种。
10.根据权利要求2或3所述的方法,其特征在于,步骤(2)中,所述陈化是以转速为15~25rpm,室温陈化1~3h。
11.根据权利要求2或3所述的方法,其特征在于,步骤(2)中,所述分段恒温晶化是在转速为15~25rpm,以0.1~3℃/min升温至130℃,恒温晶化5~10h,再以0.1~3℃/min升温至190~200℃恒温晶化20~36h。
12.根据权利要求2或3所述的方法,其特征在于,步骤(3)中,所述焙烧条件是在500~600℃下焙烧5~9h。
13.一种根据权利要求2-12中任意一项所述的方法制得的SAPO-34多级孔分子筛。
14.根据权利要求1或13所述的SAPO-34多级孔分子筛在制备烯烃中的应用。
CN201810437236.XA 2018-05-09 2018-05-09 Sapo-34多级孔分子筛及其制备方法与应用 Active CN110467201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810437236.XA CN110467201B (zh) 2018-05-09 2018-05-09 Sapo-34多级孔分子筛及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810437236.XA CN110467201B (zh) 2018-05-09 2018-05-09 Sapo-34多级孔分子筛及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110467201A CN110467201A (zh) 2019-11-19
CN110467201B true CN110467201B (zh) 2021-03-23

Family

ID=68503539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810437236.XA Active CN110467201B (zh) 2018-05-09 2018-05-09 Sapo-34多级孔分子筛及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110467201B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332196B (zh) * 2021-12-23 2024-08-16 中国石油天然气股份有限公司 一种多级孔sapo-34分子筛及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176851A (zh) * 2007-11-02 2008-05-14 中国化学工程集团公司 一种用高岭土合成硅磷酸铝分子筛的方法
CN105731484A (zh) * 2014-12-11 2016-07-06 中国科学院大连化学物理研究所 一种中微孔sapo-34分子筛的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176851A (zh) * 2007-11-02 2008-05-14 中国化学工程集团公司 一种用高岭土合成硅磷酸铝分子筛的方法
CN105731484A (zh) * 2014-12-11 2016-07-06 中国科学院大连化学物理研究所 一种中微孔sapo-34分子筛的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于MTO反应的多级孔分子筛的合成、表征与催化性能评价;李莎;《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅰ辑》;20160531;第39-57页 *

Also Published As

Publication number Publication date
CN110467201A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
JP5689890B2 (ja) ナノ結晶性zsm−5核を用いたzsm−5ゼオライトの製造方法
CN109201109B (zh) 一种甲醇制烯烃催化剂及其制备方法
CN109850906B (zh) 采用二氧化硅纳米胶晶固相转化法制备纳米颗粒密堆积结构多级孔分子筛的方法
CN110002461B (zh) 一种复蕊玫瑰花状sapo-5分子筛及其制备与应用
CN114229864B (zh) 一种薄片状丝光沸石分子筛的合成方法
JP2017525651A (ja) 高シリカアルミナ比のy型分子篩の製造方法
Sedighi et al. Effect of phosphorus and water contents on physico-chemical properties of SAPO-34 molecular sieve
CN114014334A (zh) 一种中硅铝比zsm-5杂合纳米片分子筛及其制备方法
Ma et al. Steam-assisted crystallization of highly dispersed nanosized hierarchical zeolites from solid raw materials and their catalytic performance in lactide production
KR101940409B1 (ko) 합성 모액의 조성을 조절하여 알루미늄 함량이 제어된 제올라이트의 제조방법
CN110467201B (zh) Sapo-34多级孔分子筛及其制备方法与应用
Ali et al. Evaluating pore characteristics and acid site locations in hierarchical SAPO-11 by catalytic model reactions
CN107952477B (zh) 多级孔sapo分子筛在甲醇制烯烃反应中的应用
KR101600575B1 (ko) 메조-마이크로 세공 판상형 모더나이트의 제조방법 및 이에 따라 제조되는 메조-마이크로 세공 판상형 모더나이트
KR101994765B1 (ko) 계층화된 제올라이트 및 이의 제조방법
Lei et al. Zeolite beta monoliths with hierarchical porosity by the transformation of bimodal pore silica gel
CN114735718B (zh) Sapo-34分子筛及其制备方法和应用
CN109179448B (zh) 一种快速制备介孔小粒径sapo-34分子筛的新方法
CN107954434B (zh) 纳米片sapo分子筛聚集体、制备方法及其用途
CN107954449B (zh) 多级孔sapo分子筛的制备及其用途
CN110092390B (zh) 一种疏松多孔球形sapo-34分子筛及其制备与应用
CN112619697B (zh) 复合型aei/cha分子筛的制备方法和制备的分子筛
CN113753915B (zh) 小晶粒sapo-34分子筛的制法、制备的分子筛和用途
CN114477228B (zh) Sapo-34分子筛及其制备方法和应用
CN107954433B (zh) 纳米片sapo分子筛聚集体在甲醇制烯烃反应中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100011 Beijing Dongcheng District, West Binhe Road, No. 22

Patentee after: CHINA ENERGY INVESTMENT Corp.,Ltd.

Patentee after: Beijing low carbon clean energy research institute

Address before: 100011 Beijing Dongcheng District, West Binhe Road, No. 22

Patentee before: CHINA ENERGY INVESTMENT Corp.,Ltd.

Patentee before: Beijing low carbon clean energy research institute

CP01 Change in the name or title of a patent holder