CN110466808B - 基于多等碰撞概率线法的凸多边形航天器安全控制方法 - Google Patents

基于多等碰撞概率线法的凸多边形航天器安全控制方法 Download PDF

Info

Publication number
CN110466808B
CN110466808B CN201910773644.7A CN201910773644A CN110466808B CN 110466808 B CN110466808 B CN 110466808B CN 201910773644 A CN201910773644 A CN 201910773644A CN 110466808 B CN110466808 B CN 110466808B
Authority
CN
China
Prior art keywords
spacecraft
tracking
repel
target
collision probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910773644.7A
Other languages
English (en)
Other versions
CN110466808A (zh
Inventor
朱效洲
曹璐
姚雯
陈小前
王祎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Defense Technology Innovation Institute PLA Academy of Military Science
Original Assignee
National Defense Technology Innovation Institute PLA Academy of Military Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Defense Technology Innovation Institute PLA Academy of Military Science filed Critical National Defense Technology Innovation Institute PLA Academy of Military Science
Priority to CN201910773644.7A priority Critical patent/CN110466808B/zh
Publication of CN110466808A publication Critical patent/CN110466808A/zh
Application granted granted Critical
Publication of CN110466808B publication Critical patent/CN110466808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于多等碰撞概率线法的凸多边形航天器安全控制方法。该方法用于实现目标航天器和跟踪航天器的安全接近控制,包括步骤:建立目标航天器的轨道坐标系;建立跟踪航天器与目标航天器的相对动力学方程;进行相对动力学方程的不确定性传播分析以推导不确定性的协方差矩阵;确定目标航天器中产生作用的作用模块;利用等碰撞概率线法建立多等碰撞概率线法以计算基于作用模块产生的施加于跟踪航天器的避障控制力;确定多等碰撞概率线法的参数的取值范围;确定最终作用于跟踪航天器上的总控制力。本发明的基于多等碰撞概率线法的凸多边形航天器安全控制方法,能够解决目标航天器为凸多边形情况下的跟踪航天器的安全接近控制问题。

Description

基于多等碰撞概率线法的凸多边形航天器安全控制方法
技术领域
本发明涉及航天器运动控制技术领域,具体涉及一种基于多等碰撞概率线法的凸多边形航天器安全控制方法。
背景技术
近年来,航天器在轨失效事件日渐增多,为了降低在轨失效事件发生的概率,延长航天器工作年限,提高工作性能,越来越多的在轨服务被应用于航天器,而航天器近距离操作作为一项支撑在轨服务的基本技术,航天器近距离操作需满足严格的安全性要求。
传统上,采用人工势函数(Artificial Potential Function,APF)法来保证航天器近距离操作的安全性,该方法具有计算简单和理论易于证明等特点;但由于人工势函数未考虑不确定性的影响,因而包括导航和控制等在内的各类不确定性会对航天器近距离操作的安全性产生影响。针对航天器安全接近过程中不确定性的影响,目前采用一种等碰撞概率线法来保证航天器近距离操作的安全性,该等碰撞概率线法由于没有包含超越函数,因此相比于传统的等碰撞概率函数,能在保证有效精度的同时大大降低计算量;且能够通过理论证明等碰撞概率线法的有效性。然而,现有的等碰撞概率线法中,两个航天器的几何外形被简化为球形或椭球形,但是在工程实践中,大多数航天器的几何外形并不是简单的球形或椭球形,在近距离操作中,航天器的不同几何外形对安全控制具有不同的影响,导致现有的等碰撞概率线法在工程实际应用中具有一定的局限性。
发明内容
为解决上述现有技术中存在的技术问题,本发明提供一种基于多等碰撞概率线法的凸多边形航天器安全控制方法。
为此,本发明公开了一种基于多等碰撞概率线法的凸多边形航天器安全控制方法。所述方法用于实现目标航天器和跟踪航天器的安全接近控制,所述方法包括如下步骤:
1)建立目标航天器的轨道坐标系;
2)在所述目标航天器的轨道坐标系下,建立跟踪航天器与所述目标航天器的相对动力学方程;
3)进行所述相对动力学方程的不确定性传播分析,采用线性协方差方法推导不确定性的协方差矩阵;
4)将所述目标航天器的几何外形分解为一个最大内包络圆和若干个任意形状部分,分别设定所述最大内包络圆和每个所述任意形状部分的外包络圆为一个作用模块,根据所述跟踪航天器与所述目标航天器的相对位置,确定多个所述作用模块中产生作用的作用模块;
5)利用等碰撞概率线法建立多等碰撞概率线法以计算基于所述作用模块产生的施加于所述跟踪航天器的避障控制力;
6)对所述避障控制力进行分析,确定所述多等碰撞概率线法的参数的取值范围,以使所述跟踪航天器与所述目标航天器不会发生碰撞;
7)确定最终作用于所述跟踪航天器上的总控制力。
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,建立目标航天器的轨道坐标系包括:
采用o-xyz表示所述目标航天器的轨道坐标系,以所述目标航天器的质心为坐标原点o,x轴由地球地心指向所述目标航天器的质心,z轴指向所述目标航天器的轨道面法线方向,y轴垂直于所述x轴和所述z轴所组成的平面,所述y轴与所述x轴、所述z轴构成右手直角坐标系。
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,所述相对动力学方程如式1所示;
Figure GDA0002424831360000021
其中,r1-t=[xt,yt]T和v1-t=[vx,vy]T表示在所述目标航天器的轨道坐标系下所述跟踪航天器在t时刻的相对位置和相对速度,
Figure GDA0002424831360000022
u1-t=[ux,uy]T表示所述跟踪航天器在t时刻的控制输入,μ表示地球引力常数,
Figure GDA0002424831360000023
a和n分别表示所述目标航天器的轨道半长轴和平均角速度;
假设状态矢量
Figure GDA0002424831360000024
式1改写为:
Figure GDA0002424831360000025
其中,A表示状态转移矩阵,B表示控制矩阵,
Figure GDA0002424831360000026
Figure GDA0002424831360000031
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,采用线性协方差方法推导不确定性的协方差矩阵,包括:
利用式5计算所述状态矢量X的解析解;
Figure GDA0002424831360000032
其中,t0表示初始时间,X0表示与t0对应的状态矢量初始值,Φ(t,t0)表示状态矩阵且满足式6;
Figure GDA0002424831360000033
Φrr(t,t0)、Φrv(t,t0)、Φvr(t,t0)和Φvv(t,t0)满足式7;
Figure GDA0002424831360000034
利用式8和式9计算所述状态矢量X的不确定性协方差矩阵;
δX=X(t)-Ε(X(t)) (8)
Figure GDA0002424831360000035
其中,N表示所述跟踪航天器所施加的控制脉冲的数量,
Figure GDA0002424831360000036
Figure GDA0002424831360000037
分别表示在所述目标航天器的轨道坐标系下的初始导航不确定性和控制不确定性的协方差矩阵,CδX表示所述状态矢量的不确定性协方差矩阵,Ε(X(t))表示所述状态矢量的平均值,δX为状态矢量偏差,E(δX)为所述状态矢量偏差的平均值。
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,基于所述目标航天器的轨道坐标系,根据所述跟踪航天器所处位置,将所述目标航天器划分为如式10所示的5个作用模块;
Figure GDA0002424831360000041
其中,[x,y]表示所述跟踪航天器在所述目标航天器的轨道坐标系下的相对位置坐标。
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,根据所述跟踪航天器的最终时刻的相对位置的不同,对施加于所述跟踪航天器的避障控制力进行分类分析。
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,设定所述跟踪航天器的最终时刻的相对位置为rep=[xep yep]T
当xep=0oryep=0时,施加于所述跟踪航天器的避障控制力如式48所示;
Figure GDA0002424831360000042
其中,F50-repel+Fh0-repel,h=1,2,3,4表示当所述跟踪航天器位于h=1,2,3或4所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel+Fh0-repel,F50-repel,h=5表示当所述跟踪航天器位于h=5所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,当xep≠0andyep≠0时,根据相对位置rep=[xep yep]T建立两个坐标系统O1-ix1-iy1-i(i=1,2),并根据相对位置rep=[xep yep]T的不同分为如式49所示的四个情况进行避障控制力分析;
Figure GDA0002424831360000051
施加于所述跟踪航天器的避障控制力如式59所示;
Figure GDA0002424831360000052
其中,F50-repel+Fh1-repel+Fh2-repel,h=h1表示当所述跟踪航天器位于h=h1所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel+Fh1-repel+Fh2-repel,F50-repel+Fh0-repel,h=1,2,3,4&h≠h1表示当所述跟踪航天器位于h=1,2,3,4&h≠h1所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel+Fh0-repel,F50-repel,h=5表示当所述跟踪航天器位于h=5所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,根据式70所示条件,确定所述多等碰撞概率线法的参数的取值范围,以使所述跟踪航天器与所述目标航天器不会发生碰撞;
Figure GDA0002424831360000053
其中,R50、Ri0(i=1,2,3,4)和Rij(i=1,2,3,4,j=0,1,2)表示相对应的作用模块的最小外包络圆的半径,ζ50、ζi0(i=1,2,3,4)和ζij(i=1,2,3,4,j=0,1,2)表示相对应的作用模块的最小外包络圆的圆心到跟踪航天器的最短距离。
进一步地,在所述基于多等碰撞概率线法的凸多边形航天器安全控制方法中,作用于所述跟踪航天器的总控制力利用式81计算;
Figure GDA0002424831360000054
其中,uTotal表示作用于所述跟踪航天器的总控制力,
Figure GDA0002424831360000055
表示最优控制,Frepel表示所述避障控制力,m表示所述跟踪航天器的质量。
本发明技术方案的主要优点如下:
本发明的基于多等碰撞概率线法的凸多边形航天器安全控制方法,能够解决目标航天器为凸多边形情况下的跟踪航天器的安全接近控制问题,并通过建立一套多等碰撞概率线法的参数选取原则,能便于多等碰撞概率线法的参数的选取;同时,通过改进LQR控制器,能得到更高的控制精度和更高的鲁棒性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例的基于多等碰撞概率线法的凸多边形航天器安全控制方法的流程图;
图2为本发明一个实施例的坐标系的示意图;
图3为本发明一个实施例的目标航天器的作用模块的分布示意图;
图4为本发明一个实施例的跟踪航天器在轨道坐标系Ⅰ部分运动时的受力分析示意图,其中xep=0 or yep=0;
图5为本发明一个实施例的跟踪航天器在轨道坐标系Ⅰ部分运动时的受力分析示意图,其中xep≠0 and yep≠0;
图6为本发明一个实施例的避障控制力作用时的跟踪航天器的受力分析示意图,其中xep=0 or yep=0;
图7为本发明一个实施例的避障控制力作用时的跟踪航天器的受力分析示意图,其中xep≠0 and yep≠0。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明实施例提供的技术方案。
如附图1所示,本发明实施例提供了一种基于多等碰撞概率线法的凸多边形航天器安全控制方法,该方法用于实现目标航天器和跟踪航天器的安全接近控制,该方法包括如下步骤:
1)建立目标航天器的轨道坐标系;
2)在目标航天器的轨道坐标系下,建立跟踪航天器与目标航天器的相对动力学方程;
3)进行相对动力学方程的不确定性传播分析,采用线性协方差方法推导不确定性的协方差矩阵;
4)将目标航天器的几何外形分解为一个最大内包络圆和若干个任意形状部分,分别设定最大内包络圆和每个任意形状部分的外包络圆为一个作用模块,根据跟踪航天器与目标航天器的相对位置,确定多个作用模块中产生作用的作用模块;
5)利用等碰撞概率线法建立多等碰撞概率线法以计算基于作用模块产生的施加于跟踪航天器的避障控制力;
6)对避障控制力进行分析,确定多等碰撞概率线法的参数的取值范围,以使跟踪航天器与目标航天器不会发生碰撞;
7)确定最终作用于跟踪航天器上的总控制力。
具体地,以下通过具体示例对本发明实施例提供的基于多等碰撞概率线法的凸多边形航天器安全控制方法的各个步骤进行具体说明。
(1)建立目标航天器的轨道坐标系;
具体地,在本发明实施例提供的基于多等碰撞概率线法的凸多边形航天器安全控制方法中,如附图2所示,采用O-XIYIZI表示历元J2000地球惯性坐标系,地球1地心为坐标原点,XI轴指向历元J2000春分点,地球1赤道平面为基本面,ZI轴指向地球1北极,YI轴与XI轴、ZI轴构成右手直角坐标系;
相应地,采用o-xyz表示目标航天器的轨道坐标系(Local Vertical LocalHorizontal,LVLH),以目标航天器的质心为坐标原点o,x轴由地球地心指向目标航天器的质心,z轴指向目标航天器的轨道面法线方向,y轴垂直于x轴和z轴所组成的平面,y轴与x轴、z轴构成右手直角坐标系。
(2)在目标航天器的轨道坐标系下,建立跟踪航天器与目标航天器的相对动力学方程;
具体地,设定采用的目标航天器参考轨道为圆轨道,由于轨道面内的运动能与垂直轨道面的运动分离,因此采用对同轨道面内的相对运动进行研究的方式对相对运动模型进行分析计算;由此,在本发明实施例提供的基于多等碰撞概率线法的凸多边形航天器安全控制方法中,跟踪航天器与目标航天器的相对动力学方程如式1所示;
Figure GDA0002424831360000081
其中,r1-t=[xt,yt]T和v1-t=[vx,vy]T表示在目标航天器的轨道坐标系下跟踪航天器在t时刻的相对位置和相对速度,
Figure GDA0002424831360000082
u1-t=[ux,uy]T表示跟踪航天器在t时刻的控制输入,μ表示地球引力常数,
Figure GDA0002424831360000083
a和n分别表示目标航天器的轨道半长轴和平均角速度;
进一步地,假设状态矢量
Figure GDA0002424831360000084
式1可改写为:
Figure GDA0002424831360000085
其中,A表示状态转移矩阵,B表示控制矩阵,
Figure GDA0002424831360000086
Figure GDA0002424831360000087
控制矩阵B表示两个相互独立的控制量。
(3)进行相对动力学方程的不确定性传播分析,采用线性协方差方法推导不确定性的协方差矩阵;
具体地,在上述步骤(2)中,由于设定目标航天器参考轨道为圆轨道,因此,根据上述的状态矢量X的表达式,利用式5可计算状态矢量X的解析解;
Figure GDA0002424831360000088
其中,t0表示初始时间,X0表示与t0对应的状态矢量初始值,Φ(t,t0)表示状态矩阵且满足式6;
Figure GDA0002424831360000089
Φrr(t,t0)、Φrv(t,t0)、Φvr(t,t0)和Φvv(t,t0)满足式7;
Figure GDA0002424831360000091
进一步地,当考虑导航不确定性和控制输出不确定性时,可以采用线性协方差方法推导不确定性的协方差矩阵,例如可以利用式8和式9计算状态矢量X的不确定性协方差矩阵;
δX=X(t)-Ε(X(t)) (8)
Figure GDA0002424831360000092
其中,N表示跟踪航天器所施加的控制脉冲的数量,
Figure GDA0002424831360000093
Figure GDA0002424831360000094
分别表示在目标航天器的轨道坐标系下的初始导航不确定性和控制不确定性的协方差矩阵,CδX表示状态矢量的不确定性协方差矩阵,Ε(X(t))表示状态矢量的平均值,δX为状态矢量偏差,E(δX)为状态矢量偏差的平均值。
(4)将目标航天器的几何外形分解为一个最大内包络圆和若干个任意形状部分,分别设定最大内包络圆和每个任意形状部分的外包络圆为一个作用模块,根据跟踪航天器与目标航天器的相对位置,确定多个作用模块中产生作用的作用模块;
具体地,将目标航天器的几何外形分解为一个最大内包络圆和若干个任意形状的部分,且每个任意形状部分都具有相对应的最小外包络圆,当跟踪航天器围绕目标航天器飞行时,设定最大内包络圆和每个任意形状部分的外包络圆为作用模块,根据跟踪航天器与目标航天器的相对位置,确定多个作用模块中产生作用的作用模块,从而通过作用模块分别采用传统等碰撞概率线法产生避障控制力,并且共同施加在跟踪航天器上。
为了便于对本发明实施例提供的基于多碰撞概率线法的凸多边形航天器安全控制方法进行具体说明,以下假设目标航天器的外形为凸多边形且凸多边形为正方形;当然,针对目标航天器的外形为非正方形的其他凸多边形时,本发明实施例提供的基于多碰撞概率线法的凸多边形航天器安全控制方法仍然适用。
如附图3所示,将目标航天器的轨道坐标系分为I、Ⅱ、Ⅲ和Ⅳ四部分,将目标航天器分为5个作用模块,当跟踪航天器围绕目标航天器运动时,产生作用的作用模块如式10所示;
Figure GDA0002424831360000101
其中,[x,y]表示跟踪航天器在目标航天器的轨道坐标系下的相对位置坐标,Part5表示所述目标航天器中最大内包络圆对应部分,Part1表示在目标航天器的轨道坐标系下目标航天器I部分中除去最大内包络圆部分后的对应部分,Part2表示在目标航天器的轨道坐标系下目标航天器Ⅱ部分中除去最大内包络圆部分后的对应部分,Part3表示在目标航天器的轨道坐标系下目标航天器Ⅲ部分中除去最大内包络圆部分后的对应部分,Part4表示在目标航天器的轨道坐标系下目标航天器Ⅳ部分中除去最大内包络圆部分后的对应部分。
(5)利用等碰撞概率线法建立多等碰撞概率线法以计算基于作用模块产生的施加于跟踪航天器的避障控制力;
具体地,首先根据跟踪航天器的最终时刻的相对位置的不同,对施加于跟踪航天器的避障控制力进行分类分析。
假设跟踪航天器在最终时刻的相对位置位于目标航天器的表面,且设定跟踪航天器的最终时刻的相对位置为rep=[xep yep]T;为了实现目标航天器与跟踪航天器的安全接近控制,以下根据相对位置的不同,分两类情况对施加于跟踪航天器的避障控制力进行分析。
第一类情况:当xep=0 or yep=0时
如附图4所示,当跟踪航天器在轨道坐标系I部分运动时,仅考虑位于轨道坐标系I部分的目标航天器的作用模块Part1和作用模块Part5与跟踪航天器的影响,此时设定基于作用模块Part5和作用模块Part1产生的作用力分别为F10-repel和F50-repel。同时,建立坐标系O1x1y1,其中,该坐标系的x1轴由LVLH坐标系的原点指向作用模块Part1的最小外包络圆的圆心,y1轴由x1轴绕着LVLH坐标系的oz轴逆时针旋转90度得到;则可利用式11,将跟踪航天器在LVLH坐标系下的相对位置转化为在O1x1y1坐标系下的相对位置。
r10-t=W1{r1-t-[x10 y10]T} (11)
其中:
Figure GDA0002424831360000111
Figure GDA0002424831360000112
Figure GDA0002424831360000113
其中,r10=[x10,y10]T表示作用模块Part1的最小外包络圆的圆心在O1x1y1坐标系下的相对位置。
假设目标航天器的姿态为固定不动,此时可利用式15,将跟踪航天器在LVLH坐标系中的相对速度转化为在O1x1y1坐标系下的相对速度。
v10-t=W1v1-t (15)
同时,由于协方差矩阵
Figure GDA0002424831360000114
是在LVLH坐标系下定义的,可利用式16将其转化到O1x1y1坐标系。
Figure GDA0002424831360000115
而后,可利用对角化处理矩阵G1-tW1 -1,通过式17将在O1x1y1坐标系下的相对位置不确定性的协方差矩阵转化为在O1x1dy1d坐标系下的对角化矩阵;
Figure GDA0002424831360000116
其中,G1-t表示正交化转移矩阵,O1x1dy1d坐标系由O1x1y1坐标系基于矩阵G1-tW1 -1变换得到。
相应地,可利用式18和式19得到跟踪航天器在O1x1dy1d坐标系下的相对位置和相对速度;
r10-td=G1-t{r1-t-[x10 y10]T} (18)
v10-td=G1-tv1-t (19)
其中,r10-td=[x10-td,y10-td]T和v10-td=[vx10-td,vy10-td]T分别表示跟踪航天器在O1x1dy1d坐标系下的相对位置和相对速度。
在上述设定中,当跟踪航天器在轨道坐标系I部分运动时,基于作用模块Part1在O1x1dy1d坐标系下产生的避障控制力为F10-repel,F10-repel可表示为:
F10-repel=F10-paral+F10-perpen (20)
其中,F10-paral和F10-perpen可利用下述公式计算获取;
Figure GDA0002424831360000121
Figure GDA0002424831360000122
Figure GDA0002424831360000123
Figure GDA0002424831360000124
同时,根据式11-式14,可得:
Figure GDA0002424831360000125
其中:
Figure GDA0002424831360000126
Figure GDA0002424831360000127
则利用式25-式27,可得:
Figure GDA0002424831360000128
Figure GDA0002424831360000131
式中,r1-td表示跟踪航天器在Oxdyd坐标系下的相对位置,
Figure GDA0002424831360000132
Figure GDA0002424831360000133
表示与相对位置矢量r1-td方向相反和垂直的单位向量。
其中,
Figure GDA0002424831360000134
矩阵在Oxdyd坐标系下是对角矩阵。
基于上述式28和式29,经计算可得:
Figure GDA0002424831360000135
Figure GDA0002424831360000136
其中,在上述式20至式31中,F10-repel表示作用模块Part1在O1x1dy1d坐标系下产生的避障控制力,F10-paral和F10-perpen分别表示F10-repel在相对位置r10-td平行反方向上和垂直方向上的分量,D010表示在O1x1dy1d坐标系下的作用模块Part1周围的影响区域的直径;r10-td表示在O1x1dy1d坐标系下的相对位置r10-td的模的大小;
Figure GDA0002424831360000137
Figure GDA0002424831360000138
表示在O1x1dy1d坐标系下的相对速度在相对位置矢量r10-td上的平行反方向分量与垂直分量;
Figure GDA0002424831360000139
Figure GDA00024248313600001310
表示与相对位置矢量r10-td方向相反与垂直的单位向量,λ0和d0为确定避障控制力的量级的正常数,amax为跟踪航天器的最大加速度,
Figure GDA00024248313600001311
Figure GDA00024248313600001312
表示与相对位置矢量r1-t方向相反与垂直的单位向量。
根据上述的跟踪航天器在轨道坐标系I部分运动时的避障控制力的分析,同理可得,当跟踪航天器在轨道坐标系Ⅱ、Ⅲ和Ⅳ部分运动时,基于作用模块Part2、作用模块Part3和作用模块Part4在O1x1dy1d坐标系下产生的避障控制力如式32所示;
Fi0-repel=Fi0-paral+Fi0-perpen,(i=2,3,4) (32)
设定:Fi0-repel(i=2,3,4)表示作用模块Part2、作用模块Part3和作用模块Part4在O1x1dy1d坐标系下产生的避障控制力,ri0=[xi0 yi0]T,(i=2,3,4)为与不同作用模块相对应的最小外包络圆圆心在LVLH坐标系下的相对位置,ri0-td=[xi0-td,yi0-td]T和vi0-td=[vxi0-td,vyi0-td]T(i=2,3,4)分别表示跟踪航天器在O1x1dy1d坐标系下的相对位置和相对速度,D0i0,(i=2,3,4)表示在O1x1dy1d坐标系下相对应的作用模块周围的影响区域的直径,ri0-td,(i=2,3,4)为与不同作用模块相对应的最小外包络圆圆心的相对位置ri0-td=[xi0-td,yi0-td]T的模的大小,
Figure GDA0002424831360000141
Figure GDA0002424831360000142
表示在O1x1dy1d坐标系下的相对速度在相对位置矢量ri0-td=[xi0-td,yi0-td]T上的平行反方向分量与垂直分量,Fi0-paral和Fi0-perpen分别表示Fi0-repel在相对位置ri0-td平行反方向上和垂直方向上的分量。
ri0-td和vi0-td可通过下述式33和式34计算;
ri0-td=G1-t{r1-t-[xi0yi0]T},(i=2,3,4) (33)
vi0-td=G1-tv1-t,(i=2,3,4) (34)
同理,参照F10-repel的计算过程,可得:
Figure GDA0002424831360000143
Figure GDA0002424831360000144
Figure GDA0002424831360000145
Figure GDA0002424831360000146
Figure GDA0002424831360000151
Figure GDA0002424831360000152
进一步地,根据上述的避障控制力的分析计算,同理可得,基于作用模块Part5在O1x1dy1d坐标系下产生的避障控制力如式41所示;
F50-repel=F50-paral+F50-perpen (41)
设定:F50-repel表示作用模块Part5在O1x1dy1d坐标系下产生的避障控制力,r50-td=[x50-td,y50-td]T和v50-td=[vx50-td,vy50-td]T分别表示跟踪航天器在O1x1dy1d坐标系下的相对位置和相对速度,D050表示在O1x1dy1d坐标系下作用模块Part5周围的影响区域的直径,r50-td为相对位置r50-td的模的大小,
Figure GDA0002424831360000153
Figure GDA0002424831360000154
表示在O1x1dy1d坐标系下的相对速度在相对位置矢量r50-td上的平行反方向分量与垂直分量,F50-paral和F50-perpen分别表示F50-repel在相对位置r50-td平行反方向上和垂直方向上的分量。
r50-td和v50-td可通过下述式42和式43计算;
r50-td=G1-tr1-t (42)
v50-td=G1-tv1-t (43)
同理,参照F10-repel的计算过程,可得:
Figure GDA0002424831360000155
Figure GDA0002424831360000156
Figure GDA0002424831360000161
Figure GDA0002424831360000162
由此,基于上述的避障控制力的计算分析,当xep=0 or yep=0时,施加于跟踪航天器的避障控制力如式48所示;
Figure GDA0002424831360000163
其中,F50-repel+Fh0-repel,h=1,2,3,4表示当跟踪航天器位于h=1,2,3或4所对应的区域时,施加于跟踪航天器的避障控制力为F50-repel+Fh0-repel,F50-repel,h=5表示当跟踪航天器位于h=5所对应的区域时,施加于跟踪航天器的避障控制力为F50-repel
第二类情况:当xep≠0 and yep≠0时
如附图5所示,当跟踪航天器在轨道坐标系I部分运动时,仅考虑位于轨道坐标系I部分的目标航天器的作用模块Part1和作用模块Part5与跟踪航天器的影响,此时设定基于作用模块Part5产生的作用力分别为F50-repel;同时根据相对位置rep=[xep yep]T,建立两个坐标系统O1-ix1-iy1-i(i=1,2),并根据相对位置rep=[xep yep]T的不同分为如式49所示的四个情况进行避障控制力分析;
Figure GDA0002424831360000164
具体地,如附图5所示,例如当满足条件h1=1时,此时跟踪航天器在LVLH坐标系I部分运动时,此时根据相对位置rep=[xep yep]T将作用模块Part1划分为作用模块1-1和作用模块1-2,并分别建立O1-1x1-1y1-1坐标系和O1-2x1-2y1-2坐标系。
同理,当满足h1其他条件,可参照上述的方式进行作用模块Part2、Part3和Part4的模块划分。
参照当xep=0 or yep=0时,跟踪航天器在轨道坐标系I部分运动时的避障控制力的分析,同理可得,当跟踪航天器在轨道坐标系I、Ⅱ、Ⅲ和Ⅳ部分运动时,基于相对应的作用模块产生的避障控制力如式50所示;
Fij-repel=Fij-paral+Fij-perpen(i=1,2,3,4,j=1,2) (50)
设定:Fij-repel(i=1,2,3,4,j=1,2)表示相对应的作用模块在O1-ix1-iy1-i(i=1,2)坐标系下产生的避障控制力,rij=[xij yij]T(i=1,2,3,4,j=1,2)为与不同作用模块相对应的最小外包络圆圆心在LVLH坐标系下的相对位置,rij-td=[xij-td,yij-td]T和vij-td=[vxij-td,vyij-td]T(i=1,2,3,4,j=1,2)分别表示跟踪航天器在O1x1dy1d坐标系下的相对位置和相对速度,D0ij(i=1,2,3,4,j=1,2)表示在O1x1dy1d坐标系下相对应的作用模块周围的影响区域的直径,rij-td(i=1,2,3,4,j=1,2)为与不同作用模块相对应的最小外包络圆圆心的相对位置rij-td的模的大小,
Figure GDA0002424831360000171
Figure GDA0002424831360000172
表示在O1x1dy1d坐标系下的相对速度在相对位置矢量rij-td上的平行反方向分量与垂直分量,Fij-paral和Fij-perpen分别表示Fij-repel在相对位置rij-td平行反方向上和垂直方向上的分量。
rij-td和vij-td可通过下述式51和式52计算;
rij-td=G1-t{r1-t-[xijyij]T},(i=1,2,3,4,j=1,2) (51)
vij-td=G1-tv1-t,(i=1,2,3,4,j=1,2) (52)
同理,参照F10-repel的计算过程,可得:
Figure GDA0002424831360000173
Figure GDA0002424831360000174
Figure GDA0002424831360000175
Figure GDA0002424831360000181
Figure GDA0002424831360000182
Figure GDA0002424831360000183
由此,基于上述的避障控制力的计算分析,当xep≠0 and yep≠0时,施加于跟踪航天器的避障控制力如式59所示;
Figure GDA0002424831360000184
其中,F50-repel+Fh1-repel+Fh2-repel,h=h1表示当跟踪航天器位于h=h1所对应的区域时,施加于跟踪航天器的避障控制力为F50-repel+Fh1-repel+Fh2-repel,F50-repel+Fh0-repel,h=1,2,3,4&h≠h1表示当跟踪航天器位于h=1,2,3,4&h≠h1所对应的区域时,施加于跟踪航天器的避障控制力为F50-repel+Fh0-repel,F50-repel,h=5表示当跟踪航天器位于h=5所对应的区域时,施加于跟踪航天器的避障控制力为F50-repel
(6)对避障控制力进行分析,确定多等碰撞概率线法的参数的取值范围,以使跟踪航天器与目标航天器不会发生碰撞;
基于上述的避障控制力的计算分析,在t时刻,当
Figure GDA0002424831360000185
Figure GDA0002424831360000186
Figure GDA0002424831360000187
满足时,需要在跟踪航天器上施加避障控制力。
基于上述的式11至式59进行计算分析,可以获取下述条件:
M1ijd>M2ijd>0,M150d>M250d>0,λ0>0,D0ij>R0>0,D050>R0>0,d0>0,amax>0,rij-td>0,r50-td>0,
Figure GDA0002424831360000191
其中,(i=1,2,3,4,j=0,1,2)。
由于避障控制力在相对位置矢量的平行方向上的分量远远大于其在相对位置矢量的垂直方向上的分量,即:
Figure GDA0002424831360000192
Figure GDA0002424831360000193
进一步地,根据式48和式59,总避障控制力可改写为如式62所示形式;
FTotal-repel=FTotal-paral+FTotal-perpen (62)
其中:
Figure GDA0002424831360000194
Figure GDA0002424831360000195
在上述公式中,避障控制力FTotal-repel在相对位置矢量的平行方向上的分量FTotal-paral与单位矢量
Figure GDA0002424831360000196
的方向相反,该分量的作用是阻止跟踪航天器指向目标航天器的运动;避障控制力FTotal-repel在相对位置矢量的垂直方向上的分量FTotal-perpen与单位矢量
Figure GDA0002424831360000197
的方向相反,该分量的作用是控制跟踪航天器绕开障碍物。
进一步地,由于避障控制力在相对位置矢量的平行方向上的分量远远大于其在相对位置矢量的垂直方向上的分量,在本发明实施例提供的基于多等碰撞概率线法的凸多边形航天器安全控制方法中,仅对相对位置矢量的平行方向上的分量进行受力分析。
具体地,由于任意的总避障控制力FTotal-repel都包含了避障力分量F50-paral,因此,以下通过分析F50-paral为例,来说明本发明实施例提供的多等碰撞概率线法的有效性。
首先,作用模块Part5在相对位置矢量的平行方向上的分量F50-paral对相对位置r50-td求偏导,可得:
Figure GDA0002424831360000201
而后,定义以相对位置r50-td为自变量的辅助函数h(r50-td),辅助函数h(r50-td)为:
Figure GDA0002424831360000202
由式66可知,辅助函数是变量为r50-td的二阶函数,且其二阶参数为负;由此,可以得到辅助函数h(r50-td)的极大值为:
Figure GDA0002424831360000203
同时,由式66可知,该二次方程对称轴为0,且该二次方程含有两个零点;由于相对位置r50-td>0,因此,假设x3-2>0为该二次方程的零点,则相应可得:
Figure GDA0002424831360000204
基于上述假设,可得:当r50-td>x3-2时,h(r50-td)<0;当0<r50-td<x3-2时,h(r50-td)>0。
进一步地,假设x3-3为相对位置r50-td的一个极大值,即:
Figure GDA0002424831360000205
则可得:当x3-2<r50-td<x3-3时,
Figure GDA0002424831360000206
Fparal是个递减函数;当0<r50-td<x3-2时,
Figure GDA0002424831360000207
Fparal是个递增函数。
如图6和图7所示,图6和图7分别给出了两种不同的最终时刻的相对位置时避障控制力作用下的跟踪航天器的受力分析。当跟踪航天器运动到目标航天器的影响区域的边界时,设定跟踪航天器的相对平行速度为
Figure GDA0002424831360000211
当跟踪航天器在影响区域内运动且
Figure GDA0002424831360000212
时,避障控制力FTotal-repel的分量FTotal-paral施加于跟踪航天器,以阻止跟踪航天器飞向目标航天器。
定义临界值ζ50为跟踪航天器与目标航天器的最短相对距离,即作用模块Part5的圆心到跟踪航天器的最短距离,如此,当跟踪航天器到达临界点ζ50时,跟踪航天器的平行相对速度
Figure GDA0002424831360000213
需降低至0,跟踪航天器才不会与目标航天器发生碰撞。
因此,基于上述的分析,通过选取合适的多等碰撞概率线法的参数值,使式70所示条件满足时,跟踪航天器将不会与目标航天器发生碰撞;
Figure GDA0002424831360000214
其中,R50、Ri0(i=1,2,3,4)和Rij(i=1,2,3,4,j=0,1,2)表示相对应的作用模块的最小外包络圆的半径,ζ50、ζi0(i=1,2,3,4)和ζij(i=1,2,3,4,j=0,1,2)表示相对应的作用模块的最小外包络圆的圆心到跟踪航天器的最短距离。
(7)确定最终作用于跟踪航天器上的总控制力;
本发明实施例中,基于上述的多等碰撞概率线法,通过改进LQR控制器对跟踪航天器进行跟踪预定轨迹,具体地,改进LQR控制器的过程如下所示:
根据式30-31、式39-40、式46-47、式57-58以及式62-64,定义F3-repel为:
Figure GDA0002424831360000215
其中,b3-1和b3-2表示辅助参数。
进一步地,将式71转变为:
F3-repel=K3-1X (72)
其中,
Figure GDA0002424831360000216
X表示上述的状态矢量。
根据式73推导,可得:
Figure GDA0002424831360000221
其中,
Figure GDA0002424831360000222
I2×2表示2×2阶单位矩阵。
进一步地,定义矩阵K3-3为矩阵
Figure GDA0002424831360000223
的上界值,且K3-3为:
Figure GDA0002424831360000224
其中,
Figure GDA0002424831360000225
进一步地,本发明实施例中,基于上述计算分析,针对本发明实施例提供的如式2所示的相对动力学方程,提出了一种与多等碰撞概率线法相对应的增强LQR控制器,该增强LQR控制器的能量函数J3-1如式78所示;
Figure GDA0002424831360000226
其中,X表示上述状态矢量,m表示跟踪航天器的质量,u表示跟踪航天器的控制输入,Q和R分别表示LQR控制器权矩阵。
基于式78,根据最小值原则,可得到相应的最优控制
Figure GDA0002424831360000227
Figure GDA0002424831360000228
其中,K3-4=-R-1BTS3-2表示反馈矩阵,B表示上述控制矩阵,S3-2表示矩阵,且S3-2满足黎卡提方程,可得:
Figure GDA0002424831360000229
其中,A表示上述状态转移矩阵。
显而易见,K3-4/m2+Q>Q,因此,增强LQR控制器能得到更高的控制精度和更高的鲁棒性。
进一步地,根据式2和式78,通过解黎卡提方程,可以得到最优控制
Figure GDA00024248313600002210
由此,基于得到的最优控制
Figure GDA0002424831360000231
可以得到作用于跟踪航天器的总控制力,总控制力可以利用式81计算;
Figure GDA0002424831360000232
其中,uTotal表示作用于跟踪航天器的总控制力,
Figure GDA0002424831360000233
表示最优控制,Frepel表示避障控制力,m表示跟踪航天器的质量。
可见,本发明实施例提供的基于多等碰撞概率线法的凸多边形航天器安全控制方法,能够解决目标航天器为凸多边形情况下的跟踪航天器的安全接近控制问题,并通过建立一套多等碰撞概率线法的参数选取原则,能便于多等碰撞概率线法的参数的选取;同时,通过改进LQR控制器,能得到更高的控制精度和更高的鲁棒性。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,本文中“前”、“后”、“左”、“右”、“上”、“下”均以附图中表示的放置状态为参照。
最后应说明的是:以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,所述方法用于实现目标航天器和跟踪航天器的安全接近控制,所述方法包括如下步骤:
1)建立目标航天器的轨道坐标系;
2)在所述目标航天器的轨道坐标系下,建立跟踪航天器与所述目标航天器的相对动力学方程;
3)进行所述相对动力学方程的不确定性传播分析,采用线性协方差方法推导不确定性的协方差矩阵;
4)将所述目标航天器的几何外形分解为一个最大内包络圆和若干个任意形状部分,分别设定所述最大内包络圆和每个所述任意形状部分的外包络圆为一个作用模块,根据所述跟踪航天器与所述目标航天器的相对位置,确定多个所述作用模块中产生作用的作用模块;
5)利用等碰撞概率线法建立多等碰撞概率线法以计算基于所述作用模块产生的施加于所述跟踪航天器的避障控制力;
6)对所述避障控制力进行分析,确定所述多等碰撞概率线法的参数的取值范围,以使所述跟踪航天器与所述目标航天器不会发生碰撞;
7)确定最终作用于所述跟踪航天器上的总控制力。
2.根据权利要求1所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,建立目标航天器的轨道坐标系包括:
采用o-xyz表示所述目标航天器的轨道坐标系,以所述目标航天器的质心为坐标原点o,x轴由地球地心指向所述目标航天器的质心,z轴指向所述目标航天器的轨道面法线方向,y轴垂直于所述x轴和所述z轴所组成的平面,所述y轴与所述x轴、所述z轴构成右手直角坐标系。
3.根据权利要求2所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,所述相对动力学方程如式1所示;
Figure FDA0002424831350000011
其中,r1-t=[xt,yt]T和v1-t=[vx,vy]T表示在所述目标航天器的轨道坐标系下所述跟踪航天器在t时刻的相对位置和相对速度,
Figure FDA0002424831350000012
u1-t=[ux,uy]T表示所述跟踪航天器在t时刻的控制输入,μ表示地球引力常数,
Figure FDA0002424831350000013
a和n分别表示所述目标航天器的轨道半长轴和平均角速度;
假设状态矢量
Figure FDA0002424831350000021
式1改写为:
Figure FDA0002424831350000022
其中,A表示状态转移矩阵,B表示控制矩阵,
Figure FDA0002424831350000023
Figure FDA0002424831350000024
4.根据权利要求3所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,采用线性协方差方法推导不确定性的协方差矩阵,包括:
利用式5计算所述状态矢量X的解析解;
Figure FDA0002424831350000025
其中,t0表示初始时间,X0表示与t0对应的状态矢量初始值,Φ(t,t0)表示状态矩阵且满足式6;
Figure FDA0002424831350000026
Φrr(t,t0)、Φrv(t,t0)、Φvr(t,t0)和Φvv(t,t0)满足式7;
Figure FDA0002424831350000027
利用式8和式9计算所述状态矢量X的不确定性协方差矩阵;
δX=X(t)-Ε(X(t)) (8)
Figure FDA0002424831350000031
其中,N表示所述跟踪航天器所施加的控制脉冲的数量,
Figure FDA0002424831350000032
Figure FDA0002424831350000033
分别表示在所述目标航天器的轨道坐标系下的初始导航不确定性和控制不确定性的协方差矩阵,CδX表示所述状态矢量的不确定性协方差矩阵,Ε(X(t))表示所述状态矢量的平均值,δX为状态矢量偏差,E(δX)为所述状态矢量偏差的平均值。
5.根据权利要求4所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,基于所述目标航天器的轨道坐标系,根据所述跟踪航天器所处位置,将所述目标航天器划分为如式10所示的5个作用模块;
Figure FDA0002424831350000034
其中,[x,y]表示所述跟踪航天器在所述目标航天器的轨道坐标系下的相对位置坐标,Part5表示所述目标航天器中最大内包络圆对应部分,Part1表示位于所述目标航天器的轨道坐标系的xoy第一象限内的目标航天器部分扣除最大内包络圆所属部分后的对应部分,Part2表示位于所述目标航天器的轨道坐标系的xoy第二象限内的目标航天器部分扣除最大内包络圆所属部分后的对应部分,Part3表示位于所述目标航天器的轨道坐标系的xoy第三象限内的目标航天器部分扣除最大内包络圆所属部分后的对应部分,Part4表示位于所述目标航天器的轨道坐标系的xoy第四象限内的目标航天器部分扣除最大内包络圆所属部分后的对应部分。
6.根据权利要求5所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,根据所述跟踪航天器的最终时刻的相对位置的不同,对施加于所述跟踪航天器的避障控制力进行分类分析。
7.根据权利要求6所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,设定所述跟踪航天器的最终时刻的相对位置为rep=[xep yep]T
当xep=0 or yep=0时,施加于所述跟踪航天器的避障控制力如式48所示;
Figure FDA0002424831350000041
其中,F50-repel+Fh0-repel,h=1,2,3,4表示当所述跟踪航天器位于h=1,2,3或4所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel+Fh0-repel,F50-repel,h=5表示当所述跟踪航天器位于h=5所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel
8.根据权利要求7所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,当xep≠0 and yep≠0时,根据相对位置rep=[xep yep]T建立两个坐标系统O1-ix1- iy1-i(i=1,2),并根据相对位置rep=[xep yep]T的不同分为如式49所示的四个情况进行避障控制力分析;
Figure FDA0002424831350000042
施加于所述跟踪航天器的避障控制力如式59所示;
Figure FDA0002424831350000043
其中,F50-repel+Fh1-repel+Fh2-repel,h=h1表示当所述跟踪航天器位于h=h1所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel+Fh1-repel+Fh2-repel,F50-repel+Fh0-repel,h=1,2,3,4&h≠h1表示当所述跟踪航天器位于h=1,2,3,4&h≠h1所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel+Fh0-repel,F50-repel,h=5表示当所述跟踪航天器位于h=5所对应的区域时,施加于所述跟踪航天器的避障控制力为F50-repel
9.根据权利要求8所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,根据式70所示条件,确定所述多等碰撞概率线法的参数的取值范围,以使所述跟踪航天器与所述目标航天器不会发生碰撞;
Figure FDA0002424831350000051
其中,R50、Ri0(i=1,2,3,4)和Rij(i=1,2,3,4,j=0,1,2)表示相对应的作用模块的最小外包络圆的半径,ζ50、ζi0(i=1,2,3,4)和ζij(i=1,2,3,4,j=0,1,2)表示相对应的作用模块的最小外包络圆的圆心到跟踪航天器的最短距离。
10.根据权利要求9所述的基于多等碰撞概率线法的凸多边形航天器安全控制方法,其特征在于,作用于所述跟踪航天器的总控制力利用式81计算;
Figure FDA0002424831350000052
其中,uTotal表示作用于所述跟踪航天器的总控制力,
Figure FDA0002424831350000053
表示最优控制,Frepel表示所述避障控制力,m表示所述跟踪航天器的质量。
CN201910773644.7A 2019-08-21 2019-08-21 基于多等碰撞概率线法的凸多边形航天器安全控制方法 Active CN110466808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910773644.7A CN110466808B (zh) 2019-08-21 2019-08-21 基于多等碰撞概率线法的凸多边形航天器安全控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910773644.7A CN110466808B (zh) 2019-08-21 2019-08-21 基于多等碰撞概率线法的凸多边形航天器安全控制方法

Publications (2)

Publication Number Publication Date
CN110466808A CN110466808A (zh) 2019-11-19
CN110466808B true CN110466808B (zh) 2020-05-12

Family

ID=68513556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910773644.7A Active CN110466808B (zh) 2019-08-21 2019-08-21 基于多等碰撞概率线法的凸多边形航天器安全控制方法

Country Status (1)

Country Link
CN (1) CN110466808B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707274B (zh) * 2020-05-29 2022-01-18 南京航空航天大学 能量最优的航天器连续动态避障轨迹规划方法
CN112623283A (zh) * 2020-12-30 2021-04-09 苏州三六零智能安全科技有限公司 太空物体异常检测方法、装置、设备及存储介质
CN112987777B (zh) * 2021-02-02 2023-07-25 中国人民解放军军事科学院国防科技创新研究院 基于飞行安全区法的航天器集群飞行控制方法
CN114326774B (zh) * 2022-03-14 2022-05-24 北京航天驭星科技有限公司 航天器碰撞规避策略生成的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106508038B (zh) * 2011-11-16 2014-07-02 中国人民解放军国防科学技术大学 基于误判率的航天器轨迹安全准则研究方法
CN104536449A (zh) * 2014-12-03 2015-04-22 中国空间技术研究院 一种用于高轨卫星通用抓捕机构的相对位姿实时测量方法
CN105303052A (zh) * 2015-11-11 2016-02-03 中国人民解放军国防科学技术大学 一种低速接近航天器轨迹安全评价方法
CN105549606A (zh) * 2015-12-21 2016-05-04 北京理工大学 针对失效卫星的超近距离最优防撞接近方法
CN109669481A (zh) * 2019-01-24 2019-04-23 中国人民解放军国防科技大学 基于等碰撞概率面法的航天器安全接近控制方法
CN109765919A (zh) * 2019-02-27 2019-05-17 中国人民解放军军事科学院国防科技创新研究院 基于等碰撞概率线法的航天器近距离安全操作控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106508038B (zh) * 2011-11-16 2014-07-02 中国人民解放军国防科学技术大学 基于误判率的航天器轨迹安全准则研究方法
CN104536449A (zh) * 2014-12-03 2015-04-22 中国空间技术研究院 一种用于高轨卫星通用抓捕机构的相对位姿实时测量方法
CN105303052A (zh) * 2015-11-11 2016-02-03 中国人民解放军国防科学技术大学 一种低速接近航天器轨迹安全评价方法
CN105549606A (zh) * 2015-12-21 2016-05-04 北京理工大学 针对失效卫星的超近距离最优防撞接近方法
CN109669481A (zh) * 2019-01-24 2019-04-23 中国人民解放军国防科技大学 基于等碰撞概率面法的航天器安全接近控制方法
CN109765919A (zh) * 2019-02-27 2019-05-17 中国人民解放军军事科学院国防科技创新研究院 基于等碰撞概率线法的航天器近距离安全操作控制方法

Also Published As

Publication number Publication date
CN110466808A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN110466808B (zh) 基于多等碰撞概率线法的凸多边形航天器安全控制方法
CN106707751B (zh) 航天器终端接近的有限时间饱和避碰控制方法
CN109765919B (zh) 基于等碰撞概率线法的航天器近距离安全操作控制方法
CN112241125B (zh) 一种基于微分平坦特性的无人机轨迹跟踪方法
CN111367314B (zh) 一种基于多航天器编队的空间非合作目标协同抓捕方法
CN106970530B (zh) 空间非合作目标自主视线交会的无模型预设性能控制方法
Thanh et al. Completion of collision avoidance control algorithm for multicopters based on geometrical constraints
Wang et al. Spacecraft formation reconfiguration with multi-obstacle avoidance under navigation and control uncertainties using adaptive artificial potential function method
CN111766783B (zh) 一种面向集群系统的有限时间内收敛的编队合围跟踪方法
CN112000132A (zh) 基于椭球体描述的航天器避障控制方法
Sheng et al. Image-based visual servoing of a quadrotor with improved visibility using model predictive control
Zappulla et al. Experiments on autonomous spacecraft rendezvous and docking using an adaptive artificial potential field approach
Ma et al. Hand-eye servo and impedance control for manipulator arm to capture target satellite safely
Huang et al. PSO-based time-optimal trajectory planning for space robot with dynamic constraints
CN114936471A (zh) 一种基于并行计算的航天器碰撞预警分层快速筛选方法
Lori et al. Transportation of an unknown cable-suspended payload by a quadrotor in windy environment under aerodynamics effects
Menon et al. Finite-horizon robust integrated guidance-control of a moving-mass actuated kinetic warhead
Guo et al. Rapid SGCMGs singularity-escape steering law in gimbal angle space
Sendi et al. Robust Fuzzy Logic-Based Tracking Control of a Flexible Spacecraft with H_∞ Performance Criteria
CN117401187A (zh) 一种基于代数条件的复杂外形航天器碰撞规避控制方法
Yi et al. Multi-equal-collision-probability-cure method for convex polygon-shape spacecraft safe proximity manoeuvres
Tan et al. Proportional navigation (PN) based tracking of ground targets by quadrotor UAVs
CN111695239B (zh) 基于动态多面体混合模型的小行星着陆段引力计算方法
CN113885563A (zh) 一种航天器编队轨道协同与连通性保持控制方法
CN112904875A (zh) 一种刚柔可变机构对空间目标的抵近接触方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant