CN110456681B - 基于事件触发的中立稳定饱和系统的输出反馈控制器 - Google Patents

基于事件触发的中立稳定饱和系统的输出反馈控制器 Download PDF

Info

Publication number
CN110456681B
CN110456681B CN201910586233.7A CN201910586233A CN110456681B CN 110456681 B CN110456681 B CN 110456681B CN 201910586233 A CN201910586233 A CN 201910586233A CN 110456681 B CN110456681 B CN 110456681B
Authority
CN
China
Prior art keywords
observer
output
state
time
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910586233.7A
Other languages
English (en)
Other versions
CN110456681A (zh
Inventor
左志强
谢鹏飞
王一晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910586233.7A priority Critical patent/CN110456681B/zh
Publication of CN110456681A publication Critical patent/CN110456681A/zh
Application granted granted Critical
Publication of CN110456681B publication Critical patent/CN110456681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种基于事件触发的中立稳定饱和系统的输出反馈控制器,其设计方法,包括以下步骤:对带有输出饱和特性的中立稳定线性系统建立模型;设计基于状态观测器的输出反馈控制器;确定采样时刻;给出在事件触发作用下的观测器系统和观测误差系统的模型;给出系统的稳定性条件;为排除在控制过程中Zeno现象的发生,给出事件触发的最小时间间隔。

Description

基于事件触发的中立稳定饱和系统的输出反馈控制器
技术领域
本发明属于控制器设计领域,具体讲,涉及一种静态事件触发策略设计方法,利用该触发策略决定控制作用的传输,在保证闭环系统全局渐近稳定的同时,可以有效地缓解网络传输负担。
背景技术
在实际的控制系统中,饱和现象是普遍存在的。例如,在反馈控制中,由于操作范围和测量范围的限制,控制输入和测量输出可能会发生饱和。在控制器设计过程中,如果不考虑这些饱和现象,轻则会影响系统的整体控制性能,甚至会使闭环系统不稳定以及发生不可预知的严重后果。输出饱和与输入饱和相比具有如下的特点:1)饱和现象的发生是不可避免的。因为系统的输出方程是固定不可设计的,所以当系统的状态量足够大时,饱和总会发生。2)具有更少的可利用信息。当饱和发生时,除了知道测量值的正负,得不到任何实际的幅值信息。3)具有更少的控制器设计的自由度。只有输出反馈可以被选取,因为状态反馈的研究对输出饱和系统是无意义的。基于以上特点,输出饱和的研究难度较大且已有结果较少。因而输出饱和系统的研究具有广阔的研究空间和较强的实际应用意义。
随着网络化通讯技术的快速发展,反馈控制系统的连接结构也发生了巨大转变。由于网络通讯具有安装费用低、结构灵活的特点,所以控制系统的各部分更倾向于通过共享的网络进行连接而非点到点的连接。由于带宽和负载的限制,网络通讯的引入也带来了一些相应的弊端,例如,网络拥堵和数据丢包。如何在保证系统性能的前提下有效地分配网络通讯资源变得至关重要。传统的时间触发策略是对信号进行周期采样,其在一定程度上可以缓解网络拥堵,但是仍具有较大的保守性,产生不必要的信号采样与传输。在这种情况下,事件触发控制策略应运而生。其只有在采样误差足够大,影响到闭环系统稳定时才进行信号采样与传输。因此,事件触发策略既能够保证系统的稳定,又能够节约网络通讯资源。
虽然目前已经有大量关于事件触发控制策略的研究工作,但目前尚未出现基于事件触发的中立稳定饱和系统的输出反馈控制器设计方法。因此,本发明提出的基于事件触发的中立稳定饱和系统的输出反馈控制器设计方法研究具有很强的理论价值与现实意义。
发明内容
为了减少信号的采样与传输次数,有效地节约网络资源和缓解网络传输负担,本发明基于事件触发机制来设计中立稳定饱和系统的输出反馈控制器,保证闭环系统的全局渐近稳定性能。本发明采用的技术方案如下:
一种基于事件触发的中立稳定饱和系统的输出反馈控制器,其设计方法,包括以下步骤:
步骤1:对带有输出饱和特性的中立稳定线性系统建立如下模型:
Figure BDA0002114671690000011
其中,t为时间,x(t)∈Rn为n维被控对象状态向量,y(t)∈Rp为p维被控对象输出向量,
Figure BDA0002114671690000012
为状态的一阶导数,A,B和C为适当维数的常矩阵,sat(·)为标准饱和函数,其具体形式为sat(yi)=sign(yi)·min{|yi|,1},yi为输出向量y的第i个分量,sign(·)为符号函数,min{}为取最小值函数,u(t)∈Rm为m维控制输入向量;
步骤2:设计基于状态观测器的输出反馈控制器,有如下形式:
Figure BDA0002114671690000021
其中,
Figure BDA0002114671690000022
为n维观测器的状态向量,上标“T”表示矩阵的转置,K为控制器增益矩阵,tk为第k次触发时刻,
Figure BDA0002114671690000023
为tk时刻的观测器状态的采样值,[tk,tk+1)为第k次到第k+1次触发的采样间隔;
步骤3:确定采样时刻tk,定义采样误差为:
Figure BDA0002114671690000024
设第一次触发在t0=0时刻发生,之后的触发时刻由下面的静态事件触发条件决定
Figure BDA0002114671690000025
其中,inf{}表示下确界,||·||表示向量的欧几里德范数,e是自然底数,N为非负整数集,α是正的标量,μ是待设计的参数,满足
μ<min{μ12} (5)
其中,
Figure BDA0002114671690000026
μ1≠μ2,|·|表示取绝对值,Re(λi(A+BK))表示取矩阵A+BK的特征值的实部,Re(λi(A-CTC))表示取矩阵A-CTC的特征值的实部;只有在触发条件满足时,才进行观测器状态量的传输;
步骤4:给出在事件触发作用下的观测器系统和观测误差系统的模型:
Figure BDA0002114671690000027
Figure BDA0002114671690000028
其中,
Figure BDA0002114671690000029
为系统状态的观测误差;
步骤5:给出系统(1)的稳定性条件,如果存在对称正定矩阵P>0,使
Figure BDA00021146716900000210
成立,那么带有输出饱和特性的中立稳定线性系统(1),在基于状态观测器的输出反馈控制器(2)和静态事件触发条件(4)的作用下是全局渐近稳定的;其中,
Figure BDA00021146716900000211
步骤6:为排除在控制过程中Zeno现象的发生,给出事件触发的最小时间间隔τ的具体表达式:
τ=min{τ12}
Figure BDA00021146716900000212
Figure BDA00021146716900000213
其中,a=||A+BK||+||BK||>0,
Figure BDA00021146716900000214
是有界的常数,
Figure BDA00021146716900000215
为系统输出向量逃离饱和并之后一直停留在线性区的时刻,k1,k2和k3为正的有界标量,ln(·)为自然对数函数。
与已有技术相比,本发明的技术特点与效果:
本发明所提出的事件触发方法只需要将观测器的当前状态与上一次观测器状态的采样值进行比较,计算相应的采样误差,只有当采样误差值超出所设计的事件触发条件的阈值时,观测器才需要把最新的观测状态值发送给控制器。控制器则利用该采样值计算并更新执行器的输出,在没有满足触发条件时,控制器不会接受到观测器的状态,执行器的输出保持不变。
传统的时间触发策略是对信号进行周期采样,其在一定程度上可以缓解网络拥堵,但是仍具有较大的保守性,产生不必要的信号采样与传输。事件触发控制策略只有在采样误差足够大,影响到闭环系统稳定时才进行信号采样与传输。因此,事件触发策略既能够保证系统的稳定,又能够节约通讯资源。除了节约网络通讯资源,由于控制器端只需要在接收到采样值时进行计算并更新执行器输出,因此也减少了对控制器端CPU资源的占用,提高了系统处理其他任务的实时性,同时降低了执行器的更新频率,有助于减少执行器磨损,提高执行器寿命。
本发明采用基于绝对采样误差的触发条件避免了控制作用的实时传输,进而可以有效地节约通讯资源,缓解网络传输负担,并且保证了输出饱和系统的全局渐近稳定性能。此外,还通过求取最小触发时间间隔,排除了Zeno现象(在有限的时间内,触发无穷多次)。
附图说明
图1是基于观测器的输出反馈控制器作用下的饱和系统的事件触发控制示意图
图2是控制器输入的变化图
图3是被控对象状态x1和观测器状态
Figure BDA0002114671690000031
轨迹变化图
图4是被控对象状态x2和观测器状态
Figure BDA0002114671690000032
轨迹变化图
图5是被控对象状态x3和观测器状态
Figure BDA0002114671690000033
轨迹变化图
图6是被控对象输出的变化图
图7是系统采用事件触发机制的触发时刻及触发间隔示意图
具体实施方式
本发明所设计的控制器为基于观测器的动态输出反馈控制器,采用的触发策略是基于绝对采样误差的静态事件触发控制。在满足事件触发条件时进行的观测器状态采样和控制作用的更新,进而保证闭环输出饱和系统的全局渐近稳定性能。由于控制信号不是实时交互传输的,这样会避免网络通信的拥堵,从而缓解了控制器的计算负担和降低执行器的更新频率。
为了减少信号的采样与传输次数,有效地节约网络资源和缓解网络传输负担,本发明基于事件触发机制来设计中立稳定饱和系统的输出反馈控制器,保证闭环系统的全局渐近稳定性能。系统的具体框架如图1所示。本发明采用的技术方案是,基于事件触发的中立稳定饱和系统的输出反馈控制器设计方法,具体包括以下步骤:
步骤1:对一类带有输出饱和特性的中立稳定线性系统建立如下模型:
Figure BDA0002114671690000034
其中,t为时间,x(t)∈Rn为n维被控对象状态向量,y(t)∈Rp为p维被控对象输出向量,
Figure BDA0002114671690000035
为状态的一阶导数,A,B和C为适当维数的常矩阵,sat(·)为标准饱和函数,其具体形式为sat(yi)=sign(yi)·min{|yi|,1},yi为输出向量y的第i个分量,sign(·)为符号函数,min{}为取最小值函数,u(t)∈Rm为m维控制输入向量。
步骤2:设计基于状态观测器的输出反馈控制器,具有如下形式:
Figure BDA0002114671690000041
其中,
Figure BDA0002114671690000042
为n维观测器的状态向量,上标“T”表示矩阵的转置,K为控制器增益矩阵,tk为第k次触发时刻,
Figure BDA0002114671690000043
为tk时刻的观测器状态的采样值,[tk,tk+1)为第k次到第k+1次触发的采样间隔。
步骤3:确定采样时刻tk,定义采样误差为:
Figure BDA0002114671690000044
假设第一次触发在t0=0时刻发生,之后的触发时刻由下面的静态事件触发条件决定
Figure BDA0002114671690000045
其中,inf{}表示下确界,||·||表示向量的欧几里德范数,e是自然底数,N为非负整数集,α是正的标量,μ是待设计的参数,满足
μ<min{μ12} (5)
其中,
Figure BDA0002114671690000046
μ1≠μ2,|·|表示取绝对值,Re(λi(A+BK))表示取矩阵A+BK的特征值的实部,Re(λi(A-CTC))表示取矩阵A-CTC的特征值的实部。只有在触发条件满足时,才进行观测器状态量的传输。因此,触发条件(4)避免了控制作用的实时传输,因而事件触发策略可以有效地节约通讯资源,缓解网络传输负担。
步骤4:给出在事件触发作用下的观测器系统和观测误差系统的模型:
Figure BDA0002114671690000047
Figure BDA0002114671690000048
其中,
Figure BDA0002114671690000049
为系统状态的观测误差。
步骤5:给出系统(1)的稳定性条件,如果存在对称正定矩阵P>0,使
Figure BDA00021146716900000410
成立,那么带有输出饱和特性的中立稳定线性系统(1),在基于状态观测器的输出反馈控制器(2)和静态事件触发条件(4)的作用下是全局渐近稳定的。其中,
Figure BDA00021146716900000411
步骤6:为排除在控制过程中Zeno现象(在有限的时间内,触发无穷多次)的发生,给出事件触发的最小时间间隔τ的具体表达式:
τ=min{τ12}
Figure BDA00021146716900000412
Figure BDA00021146716900000413
其中,a=||A+BK||+||BK||>0,
Figure BDA00021146716900000414
是有界的常数,
Figure BDA00021146716900000415
为系统输出向量逃离饱和并之后一直停留在线性区的时刻,k1,k2和k3为正的有界标量,ln(·)为自然对数函数。
具体实现方式为:首先建立带有输出饱和特性的中立稳定线性系统模型,然后设计相应的基于观测器的输出反馈控制器,在此基础上设计基于绝对采样误差的静态事件触发条件,只有当触发条件满足时才对观测器的状态进行采样并传输观测器的状态信息,控制器用该采样值计算并更新执行器输出,从而保证闭环系统的全局渐近稳定性能。系统的具体框架如图1所示。
为了更清楚地说明本发明的目的、技术方案及优点,以下从模型建立,设计原理,设计方法等几个方面来对本发明作进一步解释说明。应当理解,此处所描述的具体设计方法仅仅用以解释本发明,并不用于限定本发明。
基于事件触发的中立稳定饱和系统的输出反馈控制器设计方法,具体包括以下步骤:
步骤1:对一类带有输出饱和特性的中立稳定线性系统建立如下模型:
Figure BDA0002114671690000051
其中,t为时间,x(t)∈Rn为n维被控对象状态向量,y(t)∈Rp为p维被控对象输出向量,
Figure BDA0002114671690000052
为状态的一阶导数,A,B和C为适当维数的常矩阵,sat(·)为标准饱和函数,其具体形式为sat(yi)=sign(yi)·min{|yi|,1},yi为输出向量y的第i个分量,sign(·)为符号函数,min{}为取最小值函数,u(t)∈Rm为m维控制输入向量。
本发明研究的是中立稳定系统,其特点为系统矩阵A的特征值的实部都为0并且特征值都是半简单的,即,系统矩阵A通过线性变换可以转化为斜对称矩阵。所以不失一般性,假设A+AT=0。此外为获得系统的渐近稳定性能,还需要满足以下两个假设:
A1.(A,B)是可控的;
A1.(A,C)是可观的。
步骤2:设计基于状态观测器的输出反馈控制器,具有如下形式:
Figure BDA0002114671690000053
其中,
Figure BDA0002114671690000054
为n维观测器的状态向量,上标“T”表示矩阵的转置,K为控制器器增益矩阵,tk为第k次触发时刻,
Figure BDA0002114671690000055
为tk时刻的观测器状态的采样值,[tk,tk+1)为第k次到第k+1次触发的采样间隔。
步骤3:确定采样时刻tk,定义采样误差为:
Figure BDA0002114671690000056
假设第一次触发在t0=0时刻发生,之后的触发时刻由下面的静态事件触发条件决定
Figure BDA0002114671690000057
其中,inf{}表示下确界,||·||表示向量的欧几里德范数,e是自然底数,N为非负整数集,α是正的标量,μ是待设计的参数,满足
μ<min{μ12} (5)
其中,
Figure BDA0002114671690000058
μ1≠μ2,|·|表示取绝对值,Re(λi(A+BK))表示取矩阵A+BK的特征值的实部,Re(λi(A-CTC))表示取矩阵A-CTC的特征值的实部。只有在触发条件满足时,才进行观测器状态量的传输。因此,触发条件(4)避免了控制作用的实时传输,因而事件触发策略可以有效地节约通讯资源,缓解网络传输负担。
步骤4:给出在事件触发作用下的观测器系统和观测误差系统的模型:
Figure BDA0002114671690000059
Figure BDA0002114671690000061
其中,
Figure BDA0002114671690000062
为系统状态的观测误差。
步骤5:给出系统(1)的稳定性条件,如果存在对称正定矩阵P>0,使
Figure BDA0002114671690000063
成立,那么带有输出饱和特性的中立稳定线性系统(1),在基于状态观测器的输出反馈控制器(2)和静态事件触发条件(4)的作用下是全局渐近稳定的。其中,
Figure BDA0002114671690000064
具体的证明过程,首先假设
Figure BDA0002114671690000065
选取李雅普诺夫函数
Figure BDA0002114671690000066
对李雅普诺夫函数求导,可以得到:
Figure BDA0002114671690000067
由条件(8)可以得到,当
Figure BDA0002114671690000068
观测器系统(6)是渐近稳定的。之后选取李雅普诺夫函数
Figure BDA0002114671690000069
对李雅普诺夫函数求导,可以得到:
Figure BDA00021146716900000610
然后,通过拉萨尔不变原理证明观测误差
Figure BDA00021146716900000611
不可能一直停留在
Figure BDA00021146716900000612
的区域
Figure BDA00021146716900000613
进而得到观测误差方程(7)是渐近稳定的。对于观测器状态方程(6),由于假设(A,B)是可控的,所以可以选取控制器增益矩阵K,使A+BK是赫尔维茨的。当把
Figure BDA00021146716900000614
看作观测器状态方程(6)的输入时,观测器方程(6)是输入-状态稳定的。由观测误差
Figure BDA00021146716900000615
的渐近稳定性和阈值条件指数衰减形式,可以已得到输入
Figure BDA00021146716900000616
收敛到0,进而得到观测器状态方程(6)是渐近稳定的。由
Figure BDA00021146716900000617
Figure BDA00021146716900000618
可以间接得到被控对象的状态x是渐近稳定的。从而给出下面的定理。
定理1:考虑中立稳定系统(1)满足假设条件A1-A2,如果存在对称矩阵P>0使条件(8)成立。则在应用触发条件(4)和基于观测器的输出反馈控制器(2)的情况下,闭环系统可以达到全局渐近稳定。
步骤6:为排除在控制过程中Zeno现象(在有限的时间内,触发无穷多次)的发生,给出事件触发的最小时间间隔τ的具体表达式:
τ=min{τ12}
Figure BDA00021146716900000619
Figure BDA00021146716900000620
其中,a=||A+BK||+||BK||>0,
Figure BDA00021146716900000621
是有界的常数,
Figure BDA00021146716900000622
为系统输出向量逃离饱和并之后一直停留在线性区的时刻,k1,k2和k3为正的有界标量,ln(·)为自然对数函数。
为了避免Zeno现象,本发明给出事件触发的最小时间间隔τ的具体表达式,从而得到了下面的定理。
定理2:考虑的中立稳定饱和系统(1)在事件触发策略(4)和基于观测器的输出反馈控制器(2)的作用下,存在最小时间间隔τ,如式(9)所示。
具体的证明过程分为两部分,在输出逃离饱和前,即:
Figure BDA00021146716900000623
采样误差的动态为:
Figure BDA00021146716900000624
由触发条件(4),可得在时间
Figure BDA00021146716900000625
时,最小时间间隔
Figure BDA00021146716900000626
在输出逃离饱和后,即:
Figure BDA00021146716900000627
采样误差的动态满足:
Figure BDA0002114671690000071
由触发条件(4),可得
Figure BDA0002114671690000072
时,最小时间间隔
Figure BDA0002114671690000073
综上所述,事件触发的最小时间间隔如(9)所示。
仿真实验:
将本发明应用于下面数值模型中,通过MATLAB仿真,验证系统的稳定性。
系统模型形式如(1)所示
其中,
Figure BDA0002114671690000074
x(0)=[1 -2 3]T
采用本发明设计的基于观测器的输出反馈控制器和事件触发条件的参数为:
Figure BDA0002114671690000075
α=2,μ=0.4,
Figure BDA0002114671690000076
图2为控制器输入的变化图。图3、图4、图5为被控对象和观测器状态轨迹变化图。图6为被控对象输出的变化图,由此可以看到系统是趋于渐近稳定的。图7给出了采用事件触发机制的触发时刻及触发间隔示意图,在0到15秒的时间段内触发了25次。可以看出,采用事件触发机制的基于观测器的输出反馈控制既能够保证系统稳定,又能够有效地节约通讯资源。
以上所述的具体实施步骤,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的一般步骤而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种基于事件触发的中立稳定饱和系统的输出反馈控制器,其设计方法,包括以下步骤:
步骤1:对带有输出饱和特性的中立稳定线性系统建立如下模型:
Figure FDA0002665265380000011
其中,t为时间,x(t)∈Rn为n维被控对象状态向量,y(t)∈Rp为p维被控对象输出向量,
Figure FDA0002665265380000012
为状态的一阶导数,A,B和C分别为n×n维,n×m维和p×n维常矩阵,sat(·)为标准饱和函数,其具体形式为sat(yi)=sign(yi)·min{|yi|,1},yi为输出向量y的第i个分量,sign(·)为符号函数,min{}为取最小值函数,u(t)∈Rm为m维控制输入向量;
步骤2:设计基于状态观测器的输出反馈控制器,有如下形式:
Figure FDA0002665265380000013
其中,
Figure FDA0002665265380000014
为n维观测器的状态向量,上标“T”表示矩阵的转置,K为控制器增益矩阵,tk为第k次触发时刻,
Figure FDA0002665265380000015
为tk时刻的观测器状态的采样值,[tk,tk+1)为第k次到第k+1次触发的采样间隔;
步骤3:确定第k次触发时刻tk,定义采样误差为:
Figure FDA0002665265380000016
设第一次触发在t0=0时刻发生,之后的触发时刻由下面的静态事件触发条件决定
Figure FDA0002665265380000017
其中,inf{}表示下确界,‖·‖表示向量的欧几里德范数,e是自然底数,N为非负整数集,α是正的标量,μ是待设计的参数,满足
μ<min{μ12} (5)
其中,
Figure FDA0002665265380000018
μ1≠μ2,|·|表示取绝对值,Re(λi(A+BK))表示取矩阵A+BK的特征值的实部,Re(λi(A-CTC))表示取矩阵A-CTC的特征值的实部,λi(A+BK)表示矩阵A+BK的第i个特征值,λi(A-CTC)表示矩阵A-CTC的第i个特征值;只有在触发条件满足时,才进行观测器状态量的传输;
步骤4:给出在事件触发作用下的观测器系统和观测误差系统的模型:
Figure FDA0002665265380000019
Figure FDA00026652653800000110
其中,
Figure FDA00026652653800000111
为系统状态的观测误差;
步骤5:给出系统(1)的稳定性条件,如果存在对称正定矩阵P>0,使
Figure FDA00026652653800000112
成立,那么带有输出饱和特性的中立稳定线性系统(1),在基于状态观测器的输出反馈控制器(2)和静态事件触发条件(4)的作用下是全局渐近稳定的;其中,
Figure FDA00026652653800000113
步骤6:为排除在控制过程中Zeno现象的发生,给出事件触发的最小时间间隔τ的具体表达式:
Figure FDA0002665265380000021
其中,a=||A+BK||+||BK||>0,
Figure FDA0002665265380000022
是有界的常数,tk为系统输出向量逃离饱和并之后一直停留在线性区的时刻,k1,k2和k3为正的有界标量,ln(·)为自然对数函数。
CN201910586233.7A 2019-07-01 2019-07-01 基于事件触发的中立稳定饱和系统的输出反馈控制器 Active CN110456681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910586233.7A CN110456681B (zh) 2019-07-01 2019-07-01 基于事件触发的中立稳定饱和系统的输出反馈控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910586233.7A CN110456681B (zh) 2019-07-01 2019-07-01 基于事件触发的中立稳定饱和系统的输出反馈控制器

Publications (2)

Publication Number Publication Date
CN110456681A CN110456681A (zh) 2019-11-15
CN110456681B true CN110456681B (zh) 2020-11-06

Family

ID=68481904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910586233.7A Active CN110456681B (zh) 2019-07-01 2019-07-01 基于事件触发的中立稳定饱和系统的输出反馈控制器

Country Status (1)

Country Link
CN (1) CN110456681B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146778B (zh) * 2019-12-24 2021-10-15 浙江工业大学 基于自适应事件触发动态输出反馈控制的多区域电网系统设计方法
CN113219826B (zh) * 2021-04-09 2022-03-15 杭州电子科技大学 基于事件触发机制的非线性振荡器的自适应跟踪控制方法
CN113741309B (zh) * 2021-09-16 2023-03-28 云境商务智能研究院南京有限公司 一种基于观测器的双动态事件触发控制器模型设计方法
CN114296355B (zh) * 2022-01-04 2023-07-07 河北工业大学 含动态抗饱和补偿器系统的自适应事件触发控制方法
CN116009392B (zh) * 2022-11-07 2023-08-08 深圳大学 基于量化器的异步事件触发控制方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105758A (zh) * 2007-06-27 2008-01-16 杭州华三通信技术有限公司 状态机维护方法及装置
CN105159307A (zh) * 2015-08-27 2015-12-16 北京天航华创科技股份有限公司 一种带有执行器饱和问题的运动体姿态事件触发控制方法
CN107728475A (zh) * 2017-09-19 2018-02-23 天津大学 带有执行器饱和的切换系统事件触发控制设计方法
CN109062273A (zh) * 2018-08-15 2018-12-21 北京交通大学 基于事件触发pid控制的列车速度曲线跟踪控制方法和系统
WO2019032947A1 (en) * 2017-08-11 2019-02-14 Aeris Communications, Inc. AUTO-IMMOBILIZATION OF MACHINES CAPABLE OF MOVING
CN109814386A (zh) * 2019-01-24 2019-05-28 天津大学 基于无模型外环补偿的机器人轨迹跟踪自抗扰控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105758A (zh) * 2007-06-27 2008-01-16 杭州华三通信技术有限公司 状态机维护方法及装置
CN105159307A (zh) * 2015-08-27 2015-12-16 北京天航华创科技股份有限公司 一种带有执行器饱和问题的运动体姿态事件触发控制方法
WO2019032947A1 (en) * 2017-08-11 2019-02-14 Aeris Communications, Inc. AUTO-IMMOBILIZATION OF MACHINES CAPABLE OF MOVING
CN107728475A (zh) * 2017-09-19 2018-02-23 天津大学 带有执行器饱和的切换系统事件触发控制设计方法
CN109062273A (zh) * 2018-08-15 2018-12-21 北京交通大学 基于事件触发pid控制的列车速度曲线跟踪控制方法和系统
CN109814386A (zh) * 2019-01-24 2019-05-28 天津大学 基于无模型外环补偿的机器人轨迹跟踪自抗扰控制方法

Also Published As

Publication number Publication date
CN110456681A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN110456681B (zh) 基于事件触发的中立稳定饱和系统的输出反馈控制器
CN107728475B (zh) 带有执行器饱和的切换系统事件触发控制设计方法
Huang et al. Practical tracking via adaptive event-triggered feedback for uncertain nonlinear systems
Shen et al. Quantized output feedback control for stochastic semi-Markov jump systems with unreliable links
Tallapragada et al. Decentralized event-triggering for control of nonlinear systems
CN108490787B (zh) 基于事件触发的饱和系统复合非线性反馈控制器设计方法
US20220036230A1 (en) Quantum entangled state processing method, device, and storage medium
Wang et al. Event-triggered consensus of general linear multiagent systems with data sampling and random packet losses
Li et al. An improved event-triggered communication mechanism and L∞ control co-design for network control systems
CN112698573B (zh) 基于正切换系统建模的网络化系统非脆弱事件触发控制方法
CN110687784A (zh) 一种针对非线性不确定系统的自适应事件触发控制方法
Wang et al. A mixed switching event-triggered transmission scheme for networked control systems
Vadivel et al. Drive-response synchronization of uncertain Markov jump generalized neural networks with interval time varying delays via decentralized event-triggered communication scheme
CN110703667B (zh) 一种具有时延和数据包丢失的网络控制系统控制器设计方法
CN112884146B (zh) 一种训练基于数据量化与硬件加速的模型的方法及系统
Zhang et al. A novel distributed event-triggered control with time-varying thresholds
Feyzmahdavian et al. On the convergence rates of asynchronous iterations
CN111190350A (zh) 一种数据驱动的网络控制系统时延主动补偿控制方法
CN113625781A (zh) 基于事件的欧拉-拉格朗日系统跟踪控制方法
Fu et al. Periodic asynchronous event-triggered control
Lu et al. Distributed task offloading for large-scale vec systems: A multi-agent deep reinforcement learning method
CN115016932A (zh) 一种基于嵌入式的分布式深度学习模型资源弹性调度方法
CN115268275A (zh) 基于状态观测器的多智能体系统一致性跟踪方法及系统
Luo et al. Self-triggered Model predictive control for continue linear constrained system: Robustness and stability
CN114488786A (zh) 一种基于a3c和事件触发的网络化伺服系统控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant