CN110703667B - 一种具有时延和数据包丢失的网络控制系统控制器设计方法 - Google Patents

一种具有时延和数据包丢失的网络控制系统控制器设计方法 Download PDF

Info

Publication number
CN110703667B
CN110703667B CN201911106088.4A CN201911106088A CN110703667B CN 110703667 B CN110703667 B CN 110703667B CN 201911106088 A CN201911106088 A CN 201911106088A CN 110703667 B CN110703667 B CN 110703667B
Authority
CN
China
Prior art keywords
matrix
controller
observer
time delay
packet loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911106088.4A
Other languages
English (en)
Other versions
CN110703667A (zh
Inventor
王燕锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Haixie Technology Co ltd
Nanjing Yingbai Information Technology Co ltd
Original Assignee
Suqian College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suqian College filed Critical Suqian College
Priority to CN201911106088.4A priority Critical patent/CN110703667B/zh
Publication of CN110703667A publication Critical patent/CN110703667A/zh
Application granted granted Critical
Publication of CN110703667B publication Critical patent/CN110703667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提出了一种具有时延和数据包丢失的网络控制系统控制器设计方法。该发明方法采用两个独立的离散Markov链分别描述传感器至控制器及控制器至执行器的网络时延,利用两个服从伯努利分布的随机变量分别描述传感器至控制器及控制器至执行器之间的数据包丢失现象,然后构造了状态观测器,并建立了闭环系统模型,给出了控制器和观测器增益矩阵存在的充分条件和求解方法,所设计的控制器使得闭环系统不但稳定而且具有比传统方法更快的响应速度。

Description

一种具有时延和数据包丢失的网络控制系统控制器设计方法
技术领域
本发明涉及网络控制系统设计领域,尤其涉及一种具有时延和数据包丢失的网络控制系统控制器设计方法。
技术背景
网络控制系统(networked control system,NCS)具有易扩展、易诊断及成本低等优点,被广泛应用于工业控制、环境监测、军事等领域。然而,网络的引入不可避免地产生时延、丢包等现象,使得控制系统性能降低甚至可能导致系统不稳定。如何对存在时延和丢包的NCS设计控制器得到了众多学者的关注并出现了大量的研究成果。
NCS的网络不但存在于传感器和控制器之间(sensor to controller,S/C)也存在于控制器至执行器之间(controller to actuator,C/A),并且这两段网络都会出现时延和丢包的现象。然而,在NCS控制器设方面,有的技术只考虑了两段网络的时延,有的技术只考虑了两段网络的丢包,有的技术仅考虑一段网络的时延和丢包。
目前针对NCS控制器设计的技术还不完善,关于同时具有S/C时延和丢包及C/A时延和丢包的NCS的控制器设计问题还需要进一步研究。
发明内容
本发明要解决的技术问题是:同时考虑S/C时延和丢包及C/A时延和丢包,建立起网络控制系统的数学模型,给出闭环系统随机稳定条件和相应的控制器求解方法,从而得到一种具有时延和数据包丢失的网络控制系统控制器设计方法。
为了解决上述技术问题,本发明设计的一种具有时延和数据包丢失的网络控制系统控制器设计方法,具体步骤为:
步骤1:用两个独立的Markov链分别描述S/C时延σk和C/A时延φk,时延σk和φk分别在有限集合Ω={0,…,σM},Ξ={0,…,φM}中取值,σk和φk的转移概率矩阵分别为Π=[μab],Θ=[vmn];转移概率μab和vmn定义为:μab=Pr{μk+1=b|μk=a},vmn=Pr{vk+1=n|vk=m},
Figure GDA0002410377940000011
μab≥0,vmn≥0;
时延σk和φk的转移概率矩阵均存在部分未知元素:对于
Figure GDA0002410377940000012
Figure GDA0002410377940000013
其中
Figure GDA0002410377940000014
Figure GDA0002410377940000015
Figure GDA0002410377940000016
不是空集,则
Figure GDA0002410377940000017
Figure GDA0002410377940000018
可以表示为
Figure GDA0002410377940000019
1≤p≤σM,其中
Figure GDA00024103779400000110
代表矩阵Π中第a行第p个已知元素的列下标,
Figure GDA00024103779400000111
代表矩阵Π中第a行第σM-p个未知元素的列下标;
对于
Figure GDA00024103779400000112
Figure GDA00024103779400000113
其中
Figure GDA00024103779400000114
Figure GDA00024103779400000115
不是空集,则
Figure GDA00024103779400000116
Figure GDA00024103779400000117
可以分别表示为
Figure GDA00024103779400000118
1≤q≤φM,其中
Figure GDA00024103779400000119
表示矩阵Θ中第m行第q个已知元素的列下标,
Figure GDA00024103779400000120
表示第m行第φM-q个未知元素的列下标;
步骤2:采用服从伯努利分布的随机变量αk,βk分别描述S/C丢包和C/A丢包:当随机变量取值为1,表示数据包被成功传输;反之则表示数据包传输失败;随机变量αk,βk满足:
Figure GDA00024103779400000121
Figure GDA00024103779400000122
步骤3:对于网络控制系统:
Figure GDA0002410377940000021
式(1)中xk是系统状态向量;
Figure GDA0002410377940000022
是控制输入向量;yk是系统输出向量;A,B,C是定常矩阵;
在控制器侧构造观测器,观测器的状态方程为:
Figure GDA0002410377940000023
式(2)中
Figure GDA0002410377940000024
是观测器状态向量;
Figure GDA0002410377940000025
是观测器输出向量;L是待定的观测器增益矩阵;
Figure GDA0002410377940000026
是观测器接收到的系统输出向量;uk是观测器的控制输入向量;
考虑到时延和丢包,
Figure GDA0002410377940000027
Figure GDA0002410377940000028
可以表示为:
Figure GDA0002410377940000029
Figure GDA00024103779400000210
步骤4:采用基于观测器的反馈控制律:
Figure GDA00024103779400000211
式(5)中K为待定的控制器增益矩阵;
定义状态估计误差及增广向量:
Figure GDA00024103779400000212
得到闭环网络控制系统状态方程为:
Figure GDA00024103779400000213
式(7)中
Figure GDA00024103779400000214
E1=[I -I],
Figure GDA00024103779400000215
I为单位矩阵;
步骤5:给出闭环网络控制系统(7)随机稳定的充分条件及控制器增益矩阵K和观测器增益矩阵L的求解方法。
作为一种优选:步骤5构造Lyapnov-Krasovskii泛函:
Figure GDA00024103779400000216
其中,
Figure GDA00024103779400000217
Figure GDA00024103779400000218
Figure GDA00024103779400000219
Figure GDA00024103779400000220
ξk=ζk+1k,矩阵Sam,P1,P2,P3,P4,Y1,Y2均为正定矩阵;
得出闭环网络控制系统(7)随机稳定的充分条件:
若存在正定矩阵Sam,Sbn,Mbn,P1,P2,P3,P4,Y1,Y2,Z1,Z2及矩阵K,L使得式(17)~式(21):
Figure GDA0002410377940000031
Figure GDA0002410377940000032
Figure GDA0002410377940000033
Figure GDA0002410377940000034
SbnMbn=I,YρZρ=I,ρ∈{1,2} (21)
其中
Figure GDA0002410377940000035
Figure GDA0002410377940000036
Figure GDA0002410377940000037
Figure GDA0002410377940000038
Figure GDA0002410377940000039
Figure GDA00024103779400000310
Figure GDA0002410377940000041
Figure GDA0002410377940000042
Figure GDA0002410377940000043
Figure GDA0002410377940000044
Figure GDA0002410377940000045
Figure GDA0002410377940000046
对于所有的a,b∈Ω,m,n∈Ξ均成立,那么闭环网络控制系统(7)随机稳定。
作为一种优选:对控制器增益矩阵K和观测器增益矩阵L进行求解的方法为:
第1步:设置最大迭代次数N,求解式(17)~式(20)和式(24)及式(25):
Figure GDA0002410377940000047
Figure GDA0002410377940000048
得到一组可行解
Figure GDA0002410377940000049
令k=0;
第2步:针对变量(Sbn,Mbn,Y1,Y1,Z1,Z1,K,L)求解非线性最小化问题:
Figure GDA00024103779400000410
受约束于式(17)~式(20)和式(24)及式(25),令
Figure GDA00024103779400000411
第3步:检查式(17)~式(21)是否满足:如果满足结束迭代;若不满足且未达到最大迭代次数N,则令k=k+1,转到第2步;若不满足且达到了最大迭代次数N,则优化问题在最大迭代次数N内无解。
本发明有益效果:一种具有时延和数据包丢失的网络控制系统控制器设计方法,采用两个独立的离散Markov链分别描述S/C及C/A网络时延,利用两个服从伯努利分布的随机变量分别描述S/C及C/A数据包丢失现象,然后在此基础上建立了闭环系统模型,给出了控制器和观测器增益矩阵存在的充分条件和求解方法,使得闭环系统不但稳定而且具有比传统方法更快的响应速度。
附图说明
附图1:具有随机时延及数据包丢失的NCS结构。
附图2:角度位置跟踪系统。
附图3:S/C时延σk
附图4:C/A时延φk
附图5:本发明方法控制器作用下的系统状态x1及估计值
Figure GDA00024103779400000412
附图6:本发明方法控制器作用下的系统状态x2及估计值
Figure GDA00024103779400000413
附图7:传统控制器作用下的系统状态x1及估计值
Figure GDA00024103779400000414
附图8:传统控制器作用下的系统状态x2及估计值
Figure GDA00024103779400000415
具体实施方式
如图1所示:开关闭合表示数据包传输成功,打开表示发生了丢包。σk和φk分别表示S/C时延和C/A时延,分别在有限集合Ω={0,…,σM},Ξ={0,…,φM}中取值,其转移概率矩阵分别为Π=[μab],Θ=[vmn]。时延σk和φk的转移概率μab和vmn定义为:μab=Pr{μk+1=b|μk=a},vmn=Pr{vk+1=n|vk=m},
Figure GDA0002410377940000051
Figure GDA0002410377940000052
μab≥0,vmn≥0。
时延σk和φk的转移概率矩阵均存在部分未知元素:对于
Figure GDA0002410377940000053
Figure GDA0002410377940000054
其中
Figure GDA0002410377940000055
Figure GDA0002410377940000056
Figure GDA0002410377940000057
不是空集,则
Figure GDA0002410377940000058
Figure GDA0002410377940000059
可以表示为
Figure GDA00024103779400000510
1≤p≤σM,其中
Figure GDA00024103779400000511
代表矩阵Π中第a行第p个已知元素的列下标,
Figure GDA00024103779400000512
代表矩阵Π中第a行第σM-p个未知元素的列下标;
对于
Figure GDA00024103779400000513
Figure GDA00024103779400000514
其中
Figure GDA00024103779400000515
Figure GDA00024103779400000516
不是空集,则
Figure GDA00024103779400000517
Figure GDA00024103779400000518
可以分别表示为
Figure GDA00024103779400000519
1≤q≤φM,其中
Figure GDA00024103779400000520
表示矩阵Θ中第m行第q个已知元素的列下标,
Figure GDA00024103779400000521
表示第m行第φM-q个未知元素的列下标;
采用服从伯努利分布的随机变量αk,βk分别描述S/C丢包和C/A丢包:当随机变量取值为1,表示数据包被成功传输;反之则表示数据包传输失败。随机变量αk,βk满足:
Figure GDA00024103779400000522
Figure GDA00024103779400000523
对于NCS:
Figure GDA00024103779400000524
式(1)中xk是系统状态向量;
Figure GDA00024103779400000525
是控制输入向量;yk是系统输出向量;A,B,C是定常矩阵。
在控制器侧构造观测器,观测器的状态方程为式(2):
Figure GDA00024103779400000526
式(2)中
Figure GDA00024103779400000527
是观测器状态向量;
Figure GDA00024103779400000528
是观测器输出向量;L是待定的观测器增益矩阵;
Figure GDA00024103779400000529
是观测器接收到的系统输出向量;uk是观测器的控制输入向量。
考虑到时延和丢包,
Figure GDA00024103779400000530
Figure GDA00024103779400000531
表达式分别如式(3)、式(4)所示:
Figure GDA00024103779400000532
Figure GDA00024103779400000533
步骤4:采用如式(5)所示的基于观测器的反馈控制律:
Figure GDA00024103779400000534
式(5)中K为待定的控制器增益矩阵;
定义状态估计误差及增广向量:
Figure GDA00024103779400000535
由式(1)~(6)可得NCS闭环系统状态方程为:
Figure GDA0002410377940000061
式(7)中
Figure GDA0002410377940000062
E1=[I -I],
Figure GDA0002410377940000063
I为单位矩阵。
定义1对于任意初始状态ζ0及时延初始模态σ0∈Ω,φ0∈Ξ,若存在正定矩阵W使得式(8)成立,那么闭环系统(7)是随机稳定的。
Figure GDA0002410377940000064
引理1对于任意正定矩阵H及满足θ≥θ0≥1的标量θ和θ0,式(9)对任意向量v总是成立的
Figure GDA0002410377940000065
3主要结论
定理1若存在正定矩阵Sam,Sbn,P1,P2,P3,P4,Y1,Y2矩阵及K,L使得式(10)对于所有的a,b∈Ω,m,n∈Ξ均成立,
Figure GDA0002410377940000066
式(10)中:
Figure GDA0002410377940000067
Figure GDA0002410377940000068
Figure GDA0002410377940000069
Figure GDA00024103779400000610
Figure GDA00024103779400000611
Figure GDA00024103779400000612
Figure GDA00024103779400000613
那么系统(7)是随机稳定的。
证明:构造Lyapnov-Krasovskii泛函:
Figure GDA00024103779400000614
其中
Figure GDA00024103779400000615
Figure GDA00024103779400000616
Figure GDA00024103779400000617
Figure GDA00024103779400000618
ξk=ζk+1k,矩阵Sam,P1,P2,P3,P4,Y1,Y2均为正定矩阵,很显然,
Figure GDA0002410377940000071
Figure GDA0002410377940000072
Figure GDA0002410377940000073
Figure GDA0002410377940000074
Figure GDA0002410377940000075
Figure GDA0002410377940000081
由于:
Figure GDA0002410377940000082
由引理1可得:
Figure GDA0002410377940000083
由式(11)~式(15),可得:
Figure GDA0002410377940000084
其中
Figure GDA0002410377940000085
ε=inf{-λmin(-γ)}>0。
由式(16)可得,对于任意正整数N≥1:
Figure GDA0002410377940000086
由定义1可知闭环系统(7)随机稳定。
定理1给出了闭环系统(7)随机稳定的充分条件,为了求出控制器增益矩阵K和观测器增益矩阵L,需要对定理中的式(10)进行进一步处理,进而得到定理2:
定理2若存在矩阵K,L及正定矩阵Sam,Sbn,Mbn,P1,P2,P3,P4,Y1,P2,Z1,Z2使式(17)~式(21)对于所有的a,b∈Ω,m,n∈Ξ均成立,
Figure GDA0002410377940000087
Figure GDA0002410377940000088
Figure GDA0002410377940000091
Figure GDA0002410377940000092
SbnMbn=I,YρZρ=I,ρ∈{1,2} (21)
其中
Figure GDA0002410377940000093
Ψ22=dig{-Z1,-Z1,-Z1},
Figure GDA0002410377940000094
Ψ33=dig{-Z2,-Z2,-Z2},
Figure GDA0002410377940000095
Figure GDA0002410377940000096
Figure GDA0002410377940000097
Figure GDA0002410377940000098
Figure GDA0002410377940000099
Figure GDA00024103779400000910
Figure GDA00024103779400000911
Figure GDA00024103779400000912
Figure GDA00024103779400000913
Figure GDA00024103779400000914
那么闭环系统(7)随机稳定。
证明:由Schur补引理,并令
Figure GDA00024103779400000915
ρ∈{1,2},式(10)中的Υ可以写为:
Figure GDA0002410377940000101
Figure GDA0002410377940000102
由Schur补引理,式(22)等价于
Figure GDA0002410377940000103
式(23)中
Figure GDA0002410377940000104
Figure GDA0002410377940000105
可得式(17)。因此,若式(17)成立,那么式(22)成立。由于μab≥0,vmn≥0,因此若式(17)~式(21)成立,那么式(10)成立,即闭环系统(7)随机稳定。
定理2中的约束条件式(17)~式(21)不是线性的,无法直接使用Matlab线性矩阵不等式工具箱进行求解,但可以将其转化成具有线性矩阵不等式约束的非线性最小化问题,再进行求解:
Figure GDA0002410377940000106
受约束于式(17)~式(20),式(24)及式(25):
Figure GDA0002410377940000107
Figure GDA0002410377940000108
给出控制器和观测器增益矩阵的求解算法:
第1步设置最大迭代次数N,求解式(17)~式(20),式(24)及式(25),得到一组可行解
Figure GDA0002410377940000111
令k=0。
第2步针对变量(Sbn,Mbn,Y1,Y1,Z1,Z1,K,L)求解非线性最小化问题:
Figure GDA0002410377940000112
s.t.式(17)~式(20),式(24)及式(25),
Figure GDA0002410377940000113
第3步检查式式(17)~式(21)是否满足:如果满足结束迭代;如果式式(17)~式(21)不满足且未达到最大迭代次数N,则令k=k+1,转到第2步。如果式(17)~式(21)不满足且达到了最大迭代次数N,则优化问题在最大迭代次数N内无解。
数值仿真
为了说明所提方法是有效的,将本文的结果用于如图2所示的角度位置跟踪系统。图2中,
Figure GDA0002410377940000114
是移动物体的角度位置,
Figure GDA0002410377940000115
是天线的角度位置。此系统的功能是通过对电机施加电压,使得天线能够随着目标物体的移动而转动,并满足
Figure GDA0002410377940000116
此系统的状态空间表达式参数为:
Figure GDA0002410377940000117
显然此系统不稳定。假设S/C时延σk∈Ω={0,1},C/A时延φk∈Ξ={0,1},其转移概率矩阵分别为:
Figure GDA0002410377940000118
S/C丢包概率及C/A丢包概率分别为
Figure GDA0002410377940000119
根据定理2,得到控制器及观测器增益矩阵分别为:
K=[-0.3648 -0.5975],
Figure GDA00024103779400001110
假设系统的初始状态为x0=[2 -1]T
Figure GDA00024103779400001111
网络时延σk和φk分别如图3、图4所示。在本文所设计的控制器作用下的闭环系统状态响应曲线如图6和图7所示。如果不考虑网络时延和数据包丢失,利用传统的Lypunov方法得到控制器与观测器的增益矩阵为:
K=[-0.9697 -6.3923],
Figure GDA00024103779400001112
将传统方法得到的增益矩阵代入到闭环系统(7),闭环系统状态响应曲线如图7及图8所示。比较图6及图8,可以看到在本文所设计的控制器作用下系统状态x2大约在150步左右收敛到0,而在传统控制器作用下状态x2大约在350步才收敛到0。因此,在本方法所设计的控制器作用下,闭环系统不但稳定而且具有比传统方法更快的响应速度。
本方法对同时具有S/C时延和丢包及C/A时延和丢包的NCS,研究了基于观测器的镇定问题。在S/C及C/A时延转移概率均部分未知的条件下得到了闭环系统稳定的充分条件,给出了NCS控制器及观测器增益矩阵的求解方法。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (1)

1.一种具有时延和数据包丢失的网络控制系统控制器设计方法,具体的步骤为:
步骤1:用两个独立的Markov链分别描述S/C时延σk和C/A时延φk,时延σk和φk分别在有限集合Ω={0,…,σM},Ξ={0,…,φM}中取值,σk和φk的转移概率矩阵分别为Π=[μab],Θ=[vmn];转移概率μab和vmn定义为:μab=Pr{μk+1=b|μk=a},vmn=Pr{vk+1=n|vk=m},
Figure FDA0003543644000000011
μab≥0,vmn≥0;
时延σk和φk的转移概率矩阵均存在部分未知元素:对于
Figure FDA0003543644000000012
Figure FDA0003543644000000013
其中
Figure FDA0003543644000000014
Figure FDA0003543644000000015
不是空集,则
Figure FDA0003543644000000016
Figure FDA0003543644000000017
可以表示为
Figure FDA00035436440000000136
Figure FDA0003543644000000019
1≤p≤σM,其中
Figure FDA00035436440000000110
代表矩阵Π中第a行第p个已知元素的列下标,
Figure FDA00035436440000000111
代表矩阵Π中第a行第σM-p个未知元素的列下标;
对于
Figure FDA00035436440000000112
Figure FDA00035436440000000113
其中
Figure FDA00035436440000000114
Figure FDA00035436440000000115
不是空集,则
Figure FDA00035436440000000137
Figure FDA00035436440000000138
可以分别表示为
Figure FDA00035436440000000118
1≤q≤φM,其中
Figure FDA00035436440000000119
表示矩阵Θ中第m行第q个已知元素的列下标,
Figure FDA00035436440000000120
表示第m行第φM-q个未知元素的列下标;
步骤2:采用服从伯努利分布的随机变量αkk分别描述S/C丢包和C/A丢包:当随机变量取值为1,表示数据包被成功传输;反之则表示数据包传输失败;随机变量αkk满足:
Figure FDA00035436440000000121
Figure FDA00035436440000000122
步骤3:对于网络控制系统:
Figure FDA00035436440000000123
式(1)中xk是系统状态向量;
Figure FDA00035436440000000124
是控制输入向量;yk是系统输出向量;A,B,C是定常矩阵;
在控制器侧构造观测器,观测器的状态方程为:
Figure FDA00035436440000000125
式(2)中
Figure FDA00035436440000000126
是观测器状态向量;
Figure FDA00035436440000000127
是观测器输出向量;L是待定的观测器增益矩阵;
Figure FDA00035436440000000128
是观测器接收到的系统输出向量;uk是观测器的控制输入向量;
考虑到时延和丢包,
Figure FDA00035436440000000129
Figure FDA00035436440000000130
可以表示为:
Figure FDA00035436440000000131
Figure FDA00035436440000000132
步骤4:采用基于观测器的反馈控制律:
Figure FDA00035436440000000133
式(5)中K为待定的控制器增益矩阵;
定义状态估计误差及增广向量:
Figure FDA00035436440000000134
得到闭环网络控制系统状态方程为:
Figure FDA00035436440000000135
式(7)中
Figure FDA0003543644000000021
E1=I-I,
Figure FDA0003543644000000022
I为单位矩阵;
步骤5:给出闭环网络控制系统(7)随机稳定的充分条件及控制器增益矩阵K和观测器增益矩阵L的求解方法;
构造Lyapnov-Krasovskii泛函:
Figure FDA0003543644000000023
其中,
Figure FDA0003543644000000024
Figure FDA0003543644000000025
Figure FDA0003543644000000026
Figure FDA0003543644000000027
ξk=ζk+1k,矩阵Sam,P1,P2,P3,P4,Y1,Y2均为正定矩阵;
得出闭环网络控制系统(7)随机稳定的充分条件:
若存在正定矩阵Sam,Sbn,Mbn,P1,P2,P3,P4,Y1,Y2,Z1,Z2及矩阵K,L使得式(17)~式(21):
Figure FDA0003543644000000028
Figure FDA0003543644000000029
Figure FDA00035436440000000210
Figure FDA00035436440000000211
SbnMbn=I,YρZρ=I,ρ∈{1,2} (21)
其中
Figure FDA0003543644000000031
Ψ22=dig{-Z1,-Z1,-Z1},
Figure FDA0003543644000000032
Ψ33=dig{-Z2,-Z2,-Z2},
Figure FDA0003543644000000033
Figure FDA0003543644000000034
Figure FDA0003543644000000035
Figure FDA0003543644000000036
Figure FDA0003543644000000037
Figure FDA0003543644000000038
Figure FDA0003543644000000039
Figure FDA00035436440000000310
Figure FDA00035436440000000311
Figure FDA00035436440000000312
对于所有的a,b∈Ω,m,n∈Ξ均成立,那么闭环网络控制系统(7)随机稳定;
对控制器增益矩阵K和观测器增益矩阵L进行求解的方法为:
第1步:设置最大迭代次数N,求解式(17)~式(20)和式(24)及式(25):
Figure FDA00035436440000000313
Figure FDA00035436440000000314
得到一组可行解
Figure FDA00035436440000000315
令k=0;
第2步:针对变量(Sbn,Mbn,Y1,Y1,Z1,Z1,K,L)求解非线性最小化问题:
Figure FDA00035436440000000316
受约束于式(17)~式(20)和式(24)及式(25),令(
Figure FDA00035436440000000317
Y1 k+1=Y1,
Figure FDA00035436440000000318
Kk+1=K,Lk+1=L);
第3步:检查式(17)~式(21)是否满足:如果满足结束迭代;若不满足且未达到最大迭代次数N,则令k=k+1,转到第2步;若不满足且达到了最大迭代次数N,则优化问题在最大迭代次数N内无解。
CN201911106088.4A 2019-11-13 2019-11-13 一种具有时延和数据包丢失的网络控制系统控制器设计方法 Active CN110703667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106088.4A CN110703667B (zh) 2019-11-13 2019-11-13 一种具有时延和数据包丢失的网络控制系统控制器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106088.4A CN110703667B (zh) 2019-11-13 2019-11-13 一种具有时延和数据包丢失的网络控制系统控制器设计方法

Publications (2)

Publication Number Publication Date
CN110703667A CN110703667A (zh) 2020-01-17
CN110703667B true CN110703667B (zh) 2022-06-17

Family

ID=69205291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106088.4A Active CN110703667B (zh) 2019-11-13 2019-11-13 一种具有时延和数据包丢失的网络控制系统控制器设计方法

Country Status (1)

Country Link
CN (1) CN110703667B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290268B (zh) * 2020-02-11 2022-07-05 宿迁学院 一种模态依赖的网络化Markov跳变系统状态反馈控制器设计方法
CN111290274B (zh) * 2020-02-19 2022-12-06 宿迁学院 一种具有数据包丢失的网络控制系统h∞控制方法
CN112269318B (zh) * 2020-11-09 2022-06-10 南京工程学院 一种时延不确定系统的有限时间远程安全状态估计方法
CN113050447B (zh) * 2021-01-14 2022-05-20 湖州师范学院 一种具有数据包丢失的网络化Markov跳变系统H∞控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049533A (zh) * 2013-03-11 2014-09-17 王岩 基于隐半马尔可夫模型的网络控制系统控制器设计方法
CN109495348A (zh) * 2018-12-11 2019-03-19 湖州师范学院 一种具有时延和数据包丢失的网络控制系统h∞故障检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049533A (zh) * 2013-03-11 2014-09-17 王岩 基于隐半马尔可夫模型的网络控制系统控制器设计方法
CN109495348A (zh) * 2018-12-11 2019-03-19 湖州师范学院 一种具有时延和数据包丢失的网络控制系统h∞故障检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于广域测量系统的交直流系统Markov切换控制器设计;刘子文等;《电工技术学报》;20170525(第10期);全文 *
基于状态预估的大延时网络化控制系统H_∞控制;李清华等;《吉林大学学报(工学版)》;20080915(第05期);全文 *
输出反馈网络控制系统的随机时滞补偿;杨业等;《华中科技大学学报(自然科学版)》;20060528(第05期);全文 *

Also Published As

Publication number Publication date
CN110703667A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN110703667B (zh) 一种具有时延和数据包丢失的网络控制系统控制器设计方法
Shao et al. Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer
Wen et al. Optimized multi-agent formation control based on an identifier–actor–critic reinforcement learning algorithm
Li et al. Integral sliding mode control for Markovian jump T–S fuzzy descriptor systems based on the super‐twisting algorithm
Luo et al. Optimal output regulation for model-free quanser helicopter with multistep Q-learning
Peng et al. Distributed model reference adaptive control for cooperative tracking of uncertain dynamical multi‐agent systems
Hu et al. Analysis of optimal performance of MIMO networked control systems with encoding and packet dropout constraints
Shen et al. Adaptive fault‐tolerant backstepping control against actuator gain faults and its applications to an aircraft longitudinal motion dynamics
Shao et al. Event-triggered robust control for quadrotors with preassigned time performance constraints
Wang et al. Finite-time distributed event-triggered formation control for quadrotor UAVs with experimentation
Chen et al. Observer-based sensor fault-tolerant control for semi-Markovian jump systems
CN112987567B (zh) 非线性系统的固定时间自适应神经网络滑模控制方法
Dong et al. Adaptive output feedback tracking control for switched non‐strict‐feedback non‐linear systems with unknown control direction and asymmetric saturation actuators
Temel et al. Sliding‐mode speed controller for tracking of underactuated surface vessels with extended Kalman filter
Lin et al. Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller
Shi et al. Variable step‐size distributed incremental normalised LMS algorithm
Liu et al. Adaptive learning control for general nonlinear systems with nonuniform trial lengths, initial state deviation, and unknown control direction
Lu et al. Finite‐time distributed cooperative attitude control for multiple spacecraft with actuator saturation
Chen et al. Adaptive control of MIMO mechanical systems with unknown actuator nonlinearities based on the Nussbaum gain approach
Jin et al. Iterative learning control for nonlinear systems with data dropouts at both measurement and actuator sides
Zong et al. Input-to-state stability-modular command filtered back-stepping control of strict-feedback systems
Lei et al. Adaptive asymptotic tracking control of constrained multi‐input multi‐output nonlinear systems via event‐triggered strategy
Shi Observer‐based direct adaptive fuzzy control for single‐input single‐output non‐linear systems with unknown gain sign
Ma et al. Adaptive output feedback fault‐tolerant control for MIMO non‐affine non‐linear systems based on disturbance observer
Jin et al. Robust finite-Time control and reachable set estimation for uncertain switched neutral systems with time delays and input constraints

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220509

Address after: 223800 South Huanghe Road, Suqian City, Jiangsu Province, 399

Applicant after: SUQIAN College

Address before: No.759, East 2nd Ring Road, Huzhou City, Zhejiang Province, 313000

Applicant before: HUZHOU TEACHERS College

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230113

Address after: Room 520F, Software College, Nanjing University, No. 2, Xinke 2nd Road, Jiangbei New District, Nanjing, Jiangsu 210000

Patentee after: Nanjing Yingbai Information Technology Co.,Ltd.

Address before: No. 508-2A, North Block, Poly Tianji, Qiandenghu, Guicheng Street, Nanhai District, Foshan City, Guangdong Province, 528000

Patentee before: Foshan Haixie Technology Co.,Ltd.

Effective date of registration: 20230113

Address after: No. 508-2A, North Block, Poly Tianji, Qiandenghu, Guicheng Street, Nanhai District, Foshan City, Guangdong Province, 528000

Patentee after: Foshan Haixie Technology Co.,Ltd.

Address before: 223800 South Huanghe Road, Suqian City, Jiangsu Province, 399

Patentee before: SUQIAN College

TR01 Transfer of patent right