CN110438461B - 一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法 - Google Patents

一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法 Download PDF

Info

Publication number
CN110438461B
CN110438461B CN201910587427.9A CN201910587427A CN110438461B CN 110438461 B CN110438461 B CN 110438461B CN 201910587427 A CN201910587427 A CN 201910587427A CN 110438461 B CN110438461 B CN 110438461B
Authority
CN
China
Prior art keywords
tib
layer
multilayer coating
deposition
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910587427.9A
Other languages
English (en)
Other versions
CN110438461A (zh
Inventor
荣铭聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN201910587427.9A priority Critical patent/CN110438461B/zh
Publication of CN110438461A publication Critical patent/CN110438461A/zh
Application granted granted Critical
Publication of CN110438461B publication Critical patent/CN110438461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法。本发明TiBx/Cr抗氧化多层涂层的制备方法通过先在硬质合金基体表面沉积Cr过渡层,再交替沉积TiBx插入层与Cr插入层以得到TiBx/Cr抗氧化多层涂层,其中Cr过渡层和Cr插入层通过直流磁控溅射或高功率脉冲磁控溅射沉积而成,x=1.9~3.5,制得的TiBx/Cr抗氧化多层涂层因引入Cr充当扩散阻挡层,抑制B了的快速外扩散行为;又因引入纯金属Cr插入层提升了涂层的韧性及抵抗裂纹扩展的能力,使得TiBx/Cr多层涂层及其氧化层在高温环境下可以减少裂纹数量甚至避免开裂,这些因素共同提升了TiBx/Cr多层涂层的高温抗氧化能力。

Description

一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法
技术领域
本发明属于金属涂层领域,涉及一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法,具体涉及一种采用物理气相沉积方法在硬质合金表面制备膜-基结合力强、硬度高、抗氧化能力强的TiBx/Cr(x=1.9~3.5)多层涂层的方法。
背景技术
TiB2涂层具有高硬度、强耐腐蚀性的特点,可广泛运用于加工刀具表面涂层,如加工PCB(印制电路板)用的微钻、钛合金加工刀具涂层等。然而在工业生产中TiB2涂层往往具有B富余的特点,即为过化学计量比。在高温服役有氧环境下,富余的B会发生快速外扩散并与氧反应生成B2O3,该起始氧化温度一般为400~450℃,B2O3在450℃可转变液相,这导致极大破坏了TiB2涂层的抗氧化能力。
解决涂层抗氧化能力差的常用方法有:引入稳定的纳米复合结构、引入氮化物保护层以及引入氧化物保护层等。结合实际应用特点,本发明采用一种简便的,即采用引入金属Cr插入层的方法,大幅提升了TiB2涂层的抗氧化能力。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种TiBx/Cr (x=1.9~3.5)抗氧化多层涂层的制备方法,通过引入金属Cr插入层来提升TiBx涂层的抗氧化能力。
本发明提供了一种TiBx/Cr抗氧化多层涂层的制备方法,其包括以下步骤:
(i)先在硬质合金基体表面沉积Cr过渡层;
(ii)再使用或交替沉积TiBx插入层与Cr插入层,得到所述TiBx/Cr抗氧化多层涂层;
其中,Cr过渡层和Cr插入层通过直流磁控溅射(DCMS)或高功率脉冲磁控溅射(HiPIMS)沉积而成,x=1.9~3.5。
作为本发明制备方法的优选实施方式,沉积所述Cr过渡层和Cr插入层时, Cr靶材的电流密度为0.8~1.2A/cm2
作为本发明制备方法的优选实施方式,沉积所述Cr过渡层和Cr插入层时,沉积偏压为0~-200V。
作为本发明制备方法的优选实施方式,所述Cr插入层单层厚度为0~20nm。
作为本发明制备方法的优选实施方式,将所述硬质合金基体加热至300~500℃,并抽取沉积腔室内气体至真空度低于0.5mPa后,通入Ar气,设定Ar气流量为350~450sccm,调节沉积腔室内环境压力至0.1~0.8Pa,之后开始沉积所述TiBx/Cr抗氧化多层涂层,沉积过程中维持基体温度为300~500℃,沉积腔室内环境压力为0.1~0.8Pa。
作为本发明制备方法的优选实施方式,使用高功率脉冲磁控溅射沉积Cr过渡层和Cr插入层时,设定Cr靶材峰值电流密度0.8~1.2A/cm2,脉冲长度50~150 μs;脉冲偏压0~-200V,频率与高功率脉冲磁控溅射电源同步,脉冲长度60~200 μs。
作为本发明制备方法的优选实施方式,使用直流磁控溅射沉积所述TiBx插入层。
作为本发明制备方法的优选实施方式,在基体表面制备所述涂层前,先对基体进行预处理,预处理的步骤包括机械研磨、抛光、溶剂清洗和离子源轰击清洗。
作为本发明制备方法的优选实施方式,所述溶剂清洗为将基体用甲醇超声清洗,再使用二丙醇液超声清洗,取出后用N2气吹干;所述离子源轰击清洗为采用气体辉光放电对基体进行清洗,并设定Ar气流量为200~250sccm,基体偏压为-600~-1000V。
与现有技术相比,本发明具有以下优点和有益效果:本发明TiBx/Cr抗氧化多层涂层的制备方法一方面通过以Cr充当扩散阻挡层,抑制B的快速外扩散行为;另一方面,通过引入纯金属Cr插入层提升涂层的韧性及抵抗裂纹扩展的能力,使得TiBx/Cr多层涂层及其氧化层在高温环境下可以减少裂纹数量甚至避免开裂,这些因素共同提升了TiBx/Cr多层涂层的高温抗氧化能力。
附图说明
图1为本发明制备方法制得的TiBx/Cr多层涂层的结构示意图;
图2为TiBx单层涂层以及实施例1-6中的TiBx/Cr多层涂层的XRD图谱;
图3为实施例5-6中的TiBx/Cr多层涂层的TEM形貌图;
图4为TiBx单层涂层以及实施例1-6中的TiBx/Cr多层涂层经高温氧化后的截面SEM图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本发明TiBx/Cr抗氧化多层涂层的制备方法,该制备方法包括如下步骤:
1、基体预处理
1)机械研磨与抛光处理:将基体进行机械研磨、抛光处理;
2)溶剂清洗处理:将经过步骤(1)处理过的基体先使用甲醇超声清洗10 min,再使用二丙醇液超声清洗10min,取出后用N2吹干;
3)离子源轰击清洗处理:将经过步骤(2)处理过的基体采用气体辉光放电清洗5min,设定Ar气流量为200~250sccm,基体偏压为-600~-1000V,频率为120~240kHz;
2、TiBx/Cr(x=1.9~3.5)多层涂层的沉积
(i)沉积Cr过渡层:将经过上述基体预处理的硬质合金基体加热至 300~500℃,并抽取沉积腔室内气体,长时间加热烘烤腔体,以除去腔体内壁吸附的水汽及氧等污染物,当沉积腔室本底真空度低于0.5mPa后,通入Ar气, Ar气流量设定为350~450sccm,调节沉积腔室内压力至0.1~0.8Pa,然后使用 DCMS或HiPIMS沉积金属Cr过渡层以缓解基体与涂层热膨胀系数失配问题并增强膜-基结合强度,使用DCMS时设定Cr靶材峰值电流密度为0.8~1.2A/cm2,沉积偏压为0~-200V;使用HiPIMS时设定Cr靶材峰值电流密度为0.8~1.2 A/cm2,频率300~1000Hz,脉冲长度50~150μs;脉冲偏压0~-200V,频率与 HiPIMS电源同步,脉冲长度60~200μs;
(ii)沉积TiBx(x=1.9~3.5)插入层与Cr插入层:在Cr过渡层沉积完成之后,维持基体温度为300~500℃、沉积腔室压力为0.1~0.8Pa,使用DCMS沉积TiBx插入层,再使用DCMS或HiPIMS沉积单层厚度为5nm的Cr插入层,随后交替沉积TiBx插入层与Cr插入层,得到TiBx/Cr抗氧化多层涂层,其中使用DCMS沉积Cr插入层时设定Cr靶材峰值电流密度0.8~1.2A/cm2,沉积偏压 0V;使用HiPIMS时设定Cr靶材峰值电流密度0.8~1.2A/cm2,频率300~1000Hz,脉冲长度50~150μs;脉冲偏压0V,频率与HiPIMS电源同步,脉冲长度60~200 μs。
实施例2
本发明TiBx/Cr抗氧化多层涂层的制备方法,该制备方法包括如下步骤:
1、基体预处理
同实施例1;
2、TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的沉积
(i)沉积Cr过渡层:同实施例1;
(ii)沉积TiBx(x=1.9~3.5)插入层与Cr插入层:在Cr过渡层沉积完成之后,维持基体温度为300~500℃、沉积腔室压力为0.1~0.8Pa,使用DCMS沉积TiBx插入层,再使用DCMS或HiPIMS沉积单层厚度为20nm的Cr插入层,随后交替沉积TiBx插入层与Cr插入层,得到TiBx/Cr抗氧化多层涂层,其中使用DCMS沉积Cr插入层时设定Cr靶材峰值电流密度0.8~1.2A/cm2,沉积偏压 0V;使用HiPIMS时设定Cr靶材峰值电流密度0.8~1.2A/cm2,频率300~1000Hz,脉冲长度50~150μs;脉冲偏压0V,频率与HiPIMS电源同步,脉冲长度60~200 μs。
实施例3
本发明TiBx/Cr抗氧化多层涂层的制备方法,该制备方法包括如下步骤:
1、基体预处理
同实施例1;
2、TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的沉积
(i)沉积Cr过渡层:同实施例1;
(ii)沉积TiBx(x=1.9~3.5)插入层与Cr插入层:在Cr过渡层沉积完成之后,维持基体温度为300~500℃、沉积腔室压力为0.1~0.8Pa,使用DCMS沉积TiBx插入层,再使用DCMS或HiPIMS沉积单层厚度为5nm的Cr插入层,随后交替沉积TiBx插入层与Cr插入层,得到TiBx/Cr抗氧化多层涂层,其中使用DCMS沉积Cr插入层时设定Cr靶材峰值电流密度0.8~1.2A/cm2,沉积偏压 -60V;使用HiPIMS时设定Cr靶材峰值电流密度0.8~1.2A/cm2,频率300~1000 Hz,脉冲长度50~150μs;脉冲偏压-60V,频率与HiPIMS电源同步,脉冲长度 60~200μs。
实施例4
本发明TiBx/Cr抗氧化多层涂层的制备方法,该制备方法包括如下步骤:
1、基体预处理
同实施例1;
2、TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的沉积
(i)沉积Cr过渡层:同实施例1;
(ii)沉积TiBx(x=1.9~3.5)插入层与Cr插入层:在Cr过渡层沉积完成之后,维持基体温度为300~500℃、沉积腔室压力为0.1~0.8Pa,使用DCMS沉积TiBx插入层,再使用DCMS或HiPIMS沉积单层厚度为20nm的Cr插入层,随后交替沉积TiBx插入层与Cr插入层,得到TiBx/Cr抗氧化多层涂层,其中使用DCMS沉积Cr插入层时设定Cr靶材峰值电流密度0.8~1.2A/cm2,沉积偏压 -60V;使用HiPIMS时设定Cr靶材峰值电流密度0.8~1.2A/cm2,频率300~1000 Hz,脉冲长度50~150μs;脉冲偏压-60V,频率与HiPIMS电源同步,脉冲长度 60~200μs。
实施例5
本发明TiBx/Cr抗氧化多层涂层的制备方法,该制备方法包括如下步骤:
1、基体预处理
同实施例1;
2、TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的沉积
(i)沉积Cr过渡层:同实施例1;
(ii)沉积TiBx(x=1.9~3.5)插入层与Cr插入层:在Cr过渡层沉积完成之后,维持基体温度为300~500℃、沉积腔室压力为0.1~0.8Pa,使用DCMS沉积TiBx插入层,再使用DCMS或HiPIMS沉积单层厚度为5nm的Cr插入层,随后交替沉积TiBx插入层与Cr插入层,得到TiBx/Cr抗氧化多层涂层,其中使用DCMS沉积Cr插入层时设定Cr靶材峰值电流密度0.8~1.2A/cm2,沉积偏压-200V;使用HiPIMS时设定Cr靶材峰值电流密度0.8~1.2A/cm2,频率300~1000 Hz,脉冲长度50~150μs;脉冲偏压-200V,频率与HiPIMS电源同步,脉冲长度60~200μs。
实施例6
本发明TiBx/Cr抗氧化多层涂层的制备方法,该制备方法包括如下步骤:
1、基体预处理
同实施例1;
2、TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的沉积
(i)沉积Cr过渡层:同实施例1;
(ii)沉积TiBx(x=1.9~3.5)插入层与Cr插入层:在Cr过渡层沉积完成之后,维持基体温度为300~500℃、沉积腔室压力为0.1~0.8Pa,使用DCMS沉积TiBx插入层,再使用DCMS或HiPIMS沉积单层厚度为20nm的Cr插入层,随后交替沉积TiBx插入层与Cr插入层,得到TiBx/Cr抗氧化多层涂层,其中使用DCMS沉积Cr插入层时设定Cr靶材峰值电流密度0.8~1.2A/cm2,沉积偏压 -200V;使用HiPIMS时设定Cr靶材峰值电流密度0.8~1.2A/cm2,频率300~1000 Hz,脉冲长度50~150μs;脉冲偏压-200V,频率与HiPIMS电源同步,脉冲长度60~200μs。
申请人采用XRD研究了实施例1-6中涂层的相结构,采用SEM、TEM观察了这些涂层的形貌结构,结果分别如图2及图3所示;同时,申请人还将实施例1-6中表面沉积TiBx/Cr抗氧化多层涂层的硬质合金置于空气环境下,在 500~600℃下氧化2h后采用SEM观察涂层截面,测量涂层氧化层厚度,结果如图4所示。从图4可以看出,相比于TiBx单层涂层,TiBx/Cr多层涂层在500℃环境下几乎未发生氧化;在600℃环境下,TiBx单层涂层完全氧化并剥落,而TiBx/Cr多层涂层的氧化层厚度仅为~100nm。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (5)

1.一种TiBx/Cr抗氧化多层涂层的制备方法,其特征在于:所述制备方法包括以下步骤:
(i)先在硬质合金基体表面沉积Cr过渡层;
(ii)再交替沉积TiBx插入层与Cr插入层,得到所述TiBx/Cr抗氧化多层涂层;
其中,Cr过渡层和Cr插入层通过直流磁控溅射或高功率脉冲磁控溅射沉积而成,x=1.9~3.5;所述Cr插入层单层厚度为0~20 nm。
2.根据权利要求1所述的制备方法,其特征在于:沉积所述Cr过渡层和Cr插入层时,沉积偏压为0~-200 V。
3.根据权利要求1所述的制备方法,其特征在于:在步骤(i)中,将所述硬质合金基体加热至300~500 ℃,并抽取沉积腔室内气体至真空度低于0.5 mPa后,通入Ar气,设定Ar气流量为350~450 sccm,调节沉积腔室内环境压力至0.1~0.8 Pa,之后开始沉积Cr过渡层,在步骤(ii)中,在Cr过渡层沉积完成之后,维持基体温度为300~500 ℃,沉积腔室内环境压力为0.1~0.8 Pa。
4.根据权利要求1所述的制备方法,其特征在于:使用高功率脉冲磁控溅射沉积Cr过渡层和Cr插入层时,设定Cr靶材峰值电流密度0.8~1.2 A/cm2,脉冲长度50~150 μs;脉冲偏压0~-200 V,频率与高功率脉冲磁控溅射电源同步,脉冲长度60~200 μs。
5.根据权利要求1所述的制备方法,其特征在于:使用直流磁控溅射沉积所述TiBx插入层。
CN201910587427.9A 2019-06-28 2019-06-28 一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法 Active CN110438461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910587427.9A CN110438461B (zh) 2019-06-28 2019-06-28 一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910587427.9A CN110438461B (zh) 2019-06-28 2019-06-28 一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法

Publications (2)

Publication Number Publication Date
CN110438461A CN110438461A (zh) 2019-11-12
CN110438461B true CN110438461B (zh) 2021-06-29

Family

ID=68428979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910587427.9A Active CN110438461B (zh) 2019-06-28 2019-06-28 一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110438461B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565056B (zh) * 2019-09-19 2021-03-30 广东工业大学 一种5g金属/陶瓷复合电路板及其制备方法
CN114908324A (zh) * 2022-03-23 2022-08-16 广州益华数字科技有限公司 一种Pt热阻薄膜的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580154A (zh) * 2012-02-28 2012-07-18 淮阴工学院 减摩增韧金属/陶瓷仿生多层膜人工关节

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580154A (zh) * 2012-02-28 2012-07-18 淮阴工学院 减摩增韧金属/陶瓷仿生多层膜人工关节

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Preliminary Assessment of Multi-Layer TiB2-Cr Applied to Ti-Based Alloys to Improve Cavitation-Erosion Resistance in Mercury;S.J.Pawel et al;《http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=43AF58FBF26162FC5AF3BCEDEB8EC031?doi=10.1.1.214.424&rep=rep1&type=pdf》;20091231;第1-23页 *

Also Published As

Publication number Publication date
CN110438461A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN104630708B (zh) 一种类金刚石厚膜及其制备方法及一种工件
CN109161841B (zh) 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用
CN109504940B (zh) 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用
KR102361232B1 (ko) 플라스틱에 pvd항균필름을 제조하는 방법
CN110438461B (zh) 一种TiBx/Cr(x=1.9~3.5)抗氧化多层涂层的制备方法
CN108468028B (zh) 一种周期性多层结构AlTiYN/AlCrSiN硬质涂层及其制备方法和应用
US20120231292A1 (en) Coated article and method for making the same
CN102383092A (zh) 涂层、具有该涂层的被覆件及该被覆件的制备方法
TW201300578A (zh) 殼體及其製備方法
CN108977781B (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN107858684B (zh) 金属-类金刚石复合涂层及其制备方法与用途以及涂层工具
US20120251746A1 (en) Device housing and method for making the same
CN111455333A (zh) 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法
CN112853281B (zh) 碳基多层薄膜及其制备方法和应用
CN113981392A (zh) 一种Ti-Al-C MAX相涂层及其低温成相制备方法
CN110484881B (zh) 一种致密二硼化钛涂层及其制备方法和应用
CN113046695A (zh) 一种钇/氧化钇复合阻氢涂层
CN103849834A (zh) 基于二硼化钛的复合刀具涂层及其制备方法
TW201237196A (en) Housing and method for making the same
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN112553580B (zh) 一种二硼化物复合涂层及其制备方法和应用
CN113174571B (zh) 一种超微晶二硼化钛复合涂层及其制备方法和应用
US8709593B2 (en) Coated article and method for making the same
CN109666912B (zh) 一种Hf/TiBx防腐蚀多层涂层的制备方法
CN102560348A (zh) 镀膜件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant