CN110437805B - 一种纳米粒子掺杂型光热转化复合相变材料的制备方法 - Google Patents

一种纳米粒子掺杂型光热转化复合相变材料的制备方法 Download PDF

Info

Publication number
CN110437805B
CN110437805B CN201910678131.8A CN201910678131A CN110437805B CN 110437805 B CN110437805 B CN 110437805B CN 201910678131 A CN201910678131 A CN 201910678131A CN 110437805 B CN110437805 B CN 110437805B
Authority
CN
China
Prior art keywords
change material
cus
phase
rgo
composite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910678131.8A
Other languages
English (en)
Other versions
CN110437805A (zh
Inventor
王静静
王戈
高鸿毅
李泽超
唐兆第
梁凯彦
徐小亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201910678131.8A priority Critical patent/CN110437805B/zh
Publication of CN110437805A publication Critical patent/CN110437805A/zh
Application granted granted Critical
Publication of CN110437805B publication Critical patent/CN110437805B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种纳米粒子掺杂型光热转化复合相变材料的制备方法,属于复合相变材料领域。首先原位生长法,在氧化石墨烯表面原位生长金属硫化物(CuS)颗粒,得到rGO@CuS载体材料;改变氧化石墨烯的投入量,制备出石墨烯含量不同的rGO@CuS多孔载体材料;再采用溶液浸渍法,将rGO@CuS多孔载体材料分散于配制好的含有相变芯材的溶液中,利用石墨烯的超大比表面积吸附有机相变材料,在高于相变温度下,干燥得到纳米粒子掺杂型光热转化复合相变材料。本发明利用硫化铜的高光吸收能力和石墨烯的高导热系数,同时提高了有机相变材料的光热转换性能与导热性能,制备的复合相变材料光热转化性能优异、同时具有热能存储与释放能力,循环稳定性好、工艺简单、适合规模化生产。

Description

一种纳米粒子掺杂型光热转化复合相变材料的制备方法
技术领域
本发明属于复合相变材料领域,具体涉及一种纳米粒子掺杂型光热转化复合相变材料的制备方法。
背景技术
能源是人类一切生命活动与生产生存的基础。目前,能源危机已经成为了阻碍社会发展的巨大问题。因此,开发和利用可再生能源,对于解决环境和能源问题具有重大意义。太阳能、风能、生物能、海洋能等可再生能源已被人类广泛开发,但是这些能源都存在分散性、间歇性、波动性等缺点,导致其有效使用率低。储能技术可以将不连续、随机性较强的能量存储在适当的介质中,并在需要时释放出来,实现对能量的高效利用,解决能源供求在时间和空间上不匹配的问题。相变储能材料(Phase change materials,PCMs)是近年发展起来的一类高新技术材料,利用其相变过程中产生吸热和放热效应可进行热能储存和温度调控。目前,相变材料已在建筑节能、电力调峰、废热利用、跨季节储热和储冷、食物保鲜等诸多领域有了广泛的应用。
在能源日益枯竭的今天,如何利用太阳光的能量并且高效地将其进行转化对缓解能源危机与环境污染问题起着至关重要的作用。太阳能中仅有约40%的红外光能够对物质直接加热,可见光区与紫外光区没有直接的加热能力,因此,在相变材料储热的基础上,为了提高热能的吸收与转换能力,特殊的光热转换装置与拥有光热转换能力的材料成为如何提高热效率的研究方向。
有机类相变材料作为一种固液相变材料,具有无过冷及析出、性能稳定、无毒、无腐蚀性等优点,在储能领域受到研究者的广泛关注。然而在其相变过程中会发生固态向液态的转变,为了避免其在液相状态下的泄露,需要对其加以定形才能使用。多孔基复合相变材料作为定形相变材料的最典型代表,利用比表面积大、孔隙率高的多孔基材将相变材料吸附到孔道中,能够有效防止其在固液相变时的泄露,大大降低对容器腐蚀作用。然而,由于有机类相变芯材存在吸光性较差、导热系数低的缺点,限制了其在太阳能热能存储领域中的发展。因此,强化有机相变材料的光吸收、光热转化、热传输能力,开发一种兼具光热转化能力和热能存储与释放能力的复合相变材料对于相变储能材料的有效利用及应用推广具有重要意义。
硫化铜(CuS)是一种重要的过渡金属硫化物,作为重要的一种半导体材料,具有良好的可见光吸收、光催化活性、光致发电等性能。随着纳米技术的发展,由于量子尺寸效应、表面效应和宏观量子隧道效应,CuS纳米材料具有块体材料无法比拟的特性。石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,具有非常好的热传导性能,纯的无缺陷的单层石墨烯的导热系数高达5300W/mK,是目前为止导热系数最高的碳材料。同时,石墨烯也是一种黑色高吸收可见光的材料。基于CuS和石墨烯的以上特点,本发明利用硫化铜的高光吸收能力和石墨烯的高导热系数,有望同时提高有机相变材料的光热转换性能与导热性能。将这种石墨烯@纳米金属硫化物(rGO@CuS)复合颗粒分散到具有固-液相变性质的有机相变材料中,制备出兼具光热转化能力和热能存储与释放能力的复合相变材料的研究还未见报道。
发明内容
本发明的目的在于通过制备石墨烯@硫化铜(rGO@CuS)复合物为载体材料,开发一种新型的光热转化复合相变材料,使该材料同时具有不泄露、芯材选择多样化、光热转化能力强和传热性能优异等优势。
本发明的技术方案是:1)将氧化石墨烯粉末超声分散至乙二醇溶液中,将醋酸铜(Cu(CH3COO)2·H2O)和硫脲缓慢加入至上述溶液中,再采用水热法,制备得到rGO@CuS复合物。改变氧化石墨烯的投入量,制备出石墨烯含量不同的rGO@CuS复合物;2)采用溶液浸渍法,将rGO@CuS载体材料分散于配制好的含有相变芯材的溶液中,利用石墨烯的超大比表面积吸附有机相变材料,在高于相变温度下,干燥得到复合相变材料。
具体制备步骤为:
(1)rGO@CuS载体材料的制备:
将一定量的氧化石墨烯分散于乙二醇溶液中(两者的体积比范围为:氧化石墨烯/乙二醇=0.5-2.5mg/mL),超声分散0.5-3h,而后在室温与搅拌条件下缓慢加入Cu(CH3COO)2·H2O和硫脲(其中Cu(CH3COO)2·H2O和硫脲的摩尔比例范围为0.04-0.06)至上述溶液中;以800-1200rpm的速率搅拌30-60min后,将混合物转移到特氟隆内衬不锈钢高压反应釜中,在180-200℃下保持12-24h;待自然冷却到室温,使用乙醇溶液过滤洗涤,并去除未反应的反应物杂质;最后将得到的混合物在烘箱80-120℃放置12-72h,获得rGO@CuS载体材料;
(2)复合相变材料的制备:
将步骤(1)制备的rGO@CuS载体材料于40-200℃下抽真空2-10h,除去载体材料中的有机客体分子;再将真空处理后的载体材料分散于一定体积的含有相变材料的有机溶剂中,于40-80℃搅拌1-4h,获得均一溶液;然后将溶液置于干燥箱中,于40-120℃干燥24-72h,得到复合相变材料;相变材料和rGO@CuS载体材料的质量比为1-100:1-100。
所述的相变材料包括:多元醇类,具体包括聚乙二醇(平均分子量为1000-20000),季戊四醇、新戊二醇等;脂肪酸类,具体包括是十八酸、肉豆蔻酸、棕榈酸、癸酸、月桂酸、十五烷酸、癸二酸等;石蜡类,具体包括石蜡58等。相变芯材的选择为以上所述相变材料中的一种或几种。
所述的有机溶剂包括:乙醇、甲醇、二氯甲烷、正己烷等中的一种或几种。
本发明的优点在于:1)开发一种新型兼具光热转化与优异热传输能力的复合相变材料;2)所制备复合相变材料,具有能够有效防止芯材泄露等优势;3)用本发明提供的方法制备的复合相变材料储能密度大、循环稳定性好、工艺简单、适合规模化生产。
附图说明
图1为本发明实施案例1得到的25rGO@CuS载体材料的透射电镜照片。
图2为本发明实施案例1得到的70wt%SA/25rGO@CuS复合相变材料的X射线衍射谱图。
图3为本发明实施案例1得到的70wt%SA/25rGO@CuS复合相变材料的光热转化曲线图,显示的是70wt%SA/25rGO@CuS与纯SA的光热转换曲线图。
具体实施方式
下面结合具体的实施方式对本发明的技术方案做进一步说明。
实施案例1
(1)将25mg氧化石墨烯分散于25mL乙二醇溶液中,超声分散1h,而后在室温与搅拌条件下缓慢加入Cu(CH3COO)2·H2O(99.83mg)和TU(硫脲,0.114g)至上述溶液中。以1000rpm的搅拌速率搅拌30min后,混合物转移到特氟隆内衬不锈钢高压反应釜中,在180℃下保持12h。待自然冷却到室温,使用乙醇溶液过滤洗涤,并去除未反应的反应物等杂质。最后将得到的混合物在烘箱80℃放置12h,获得rGO@CuS载体材料。样品标记为25rGO@CuS。
(2)将步骤(1)制备的载体材料于80℃下抽真空4h,除去载体材料中的有机客体分子;再将真空处理后的载体材料(0.3g)分散于30mL的含有十八酸(SA,0.7g)的乙醇中,于80℃搅拌4h,获得均一溶液;然后将溶液置于干燥箱中,于80℃干燥24h,得到复合相变材料。样品标记为70wt%SA/25rGO@CuS。
实施案例2
(1)将25mg氧化石墨烯分散于50mL乙二醇溶液中,超声分散1h,而后在室温与搅拌条件下缓慢加入Cu(CH3COO)2·H2O(99.83mg)和TU(硫脲,0.114g)至上述溶液中。以1200rpm的搅拌速率搅拌30min后,混合物转移到特氟隆内衬不锈钢高压反应釜中,在180℃下保持12h。待自然冷却到室温,使用乙醇溶液过滤洗涤,并去除未反应的反应物等杂质。最后将得到的混合物在烘箱80℃放置12h,获得rGO@CuS载体材料。样品标记为25rGO@CuS。
(2)将步骤(1)制备的25rGO@CuS载体材料于80℃下抽真空4h,除去载体材料中的有机客体分子;再将真空处理后的载体材料(0.2g)分散于30mL的含有聚乙二醇(PEG2000,0.8g)的乙醇中,于80℃搅拌4h,获得均一溶液;然后将溶液置于干燥箱中,于80℃干燥24h,得到复合相变材料。样品标记为80wt%PEG2000/25rGO@CuS。
实施案例3
(1)将35mg氧化石墨烯分散于17.5mL乙二醇溶液中,超声分散1h,而后在室温与搅拌条件下缓慢加入Cu(CH3COO)2H2O(99.83mg)和TU(硫脲,0.114g)至上述溶液中。以1000rpm的搅拌速率搅拌30min后,混合物转移到特氟隆内衬不锈钢高压反应釜中,在180℃下保持12h。待自然冷却到室温,使用乙醇溶液过滤洗涤,并去除未反应的反应物等杂质。最后将得到的混合物在烘箱80℃放置12h,获得rGO@CuS载体材料。样品标记为35rGO@CuS。
(2)将步骤(1)制备的35rGO@CuS载体材料于80℃下抽真空4h,除去载体材料中的有机客体分子;再将真空处理后的载体材料(0.4g)分散于20mL的含有石蜡58(0.6g)的正己烷中,于60℃搅拌4h,获得均一溶液;然后将溶液置于干燥箱中,于60℃干燥36h,得到复合相变材料。样品标记为80wt%石蜡/35rGO@CuS。

Claims (7)

1.一种纳米粒子掺杂型光热转化复合相变材料的制备方法,其特征在于1)将氧化石墨烯粉末超声分散至乙二醇溶液中,将Cu(CH3COO)2·H2O和硫脲缓慢加入至上述溶液中,再采用水热法,制备得到rGO@CuS载体材料,所述水热法包括将醋酸铜和硫脲的混合物转移到特氟隆内衬不锈钢高压反应釜中,在180-200 ℃下保持12-24 h;通过改变氧化石墨烯的投入量,制备出石墨烯含量不同的rGO@CuS载体材料;2)采用溶液浸渍法,将rGO@CuS载体材料分散于配制好的含有相变材料的溶液中,利用石墨烯的超大比表面积吸附有机相变材料,在高于相变温度下,干燥得到复合相变材料。
2.如权利要求1所述纳米粒子掺杂型光热转化复合相变材料的制备方法,其特征在于具体制备步骤为:
(1)rGO@CuS载体材料的制备:
将一定量的氧化石墨烯分散于乙二醇溶液中,所述氧化石墨烯的浓度范围为0.5-2.5mg/mL,超声分散0.5-3 h,而后在室温与搅拌条件下缓慢加入Cu(CH3COO)2·H2O和硫脲至上述溶液中,其中Cu(CH3COO)2·H2O和硫脲的摩尔比例范围为0.04-0.06;以800-1200 rpm的速率搅拌30-60 min后,将混合物转移到特氟隆内衬不锈钢高压反应釜中,在180-200 ℃下保持12-24 h;待自然冷却到室温,使用乙醇溶液过滤洗涤,并去除未反应的反应物杂质;最后将得到的混合物在烘箱80-120 ℃放置12-72 h,获得rGO@CuS载体材料;
(2)复合相变材料的制备:
将步骤(1)制备的rGO@CuS载体材料于40-200 ℃下抽真空2-10 h,除去载体材料中的有机客体分子;再将真空处理后的载体材料分散于一定体积的含有相变材料的有机溶剂中,于40-80 ℃搅拌1-4 h,获得均一溶液;然后将溶液置于干燥箱中,于40-120 ℃干燥24-72 h,得到复合相变材料;相变材料和rGO@CuS载体材料的质量比为1-100:1-100。
3.如权利要求1或2所述纳米粒子掺杂型光热转化复合相变材料的制备方法,其特征在于所述的相变材料包括多元醇类、脂肪酸类、石蜡类中的一种或几种。
4.如权利要求3所述纳米粒子掺杂型光热转化复合相变材料的制备方法,其特征在于,所述多元醇类包括平均分子量为1000-20000的聚乙二醇、季戊四醇、新戊二醇。
5.如权利要求3所述纳米粒子掺杂型光热转化复合相变材料的制备方法,其特征在于,所述脂肪酸类包括十八酸、肉豆蔻酸、棕榈酸、癸酸、月桂酸、十五烷酸、癸二酸。
6.如权利要求3所述纳米粒子掺杂型光热转化复合相变材料的制备方法,其特征在于,所述石蜡类包括石蜡58。
7.如权利要求1或2所述纳米粒子掺杂型光热转化复合相变材料的制备方法,其特征在于所述的有机溶剂包括:乙醇、甲醇、二氯甲烷、正己烷中的一种或几种。
CN201910678131.8A 2019-07-25 2019-07-25 一种纳米粒子掺杂型光热转化复合相变材料的制备方法 Expired - Fee Related CN110437805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910678131.8A CN110437805B (zh) 2019-07-25 2019-07-25 一种纳米粒子掺杂型光热转化复合相变材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910678131.8A CN110437805B (zh) 2019-07-25 2019-07-25 一种纳米粒子掺杂型光热转化复合相变材料的制备方法

Publications (2)

Publication Number Publication Date
CN110437805A CN110437805A (zh) 2019-11-12
CN110437805B true CN110437805B (zh) 2020-11-13

Family

ID=68431589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910678131.8A Expired - Fee Related CN110437805B (zh) 2019-07-25 2019-07-25 一种纳米粒子掺杂型光热转化复合相变材料的制备方法

Country Status (1)

Country Link
CN (1) CN110437805B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713203B (zh) * 2019-11-20 2022-07-08 南京信息工程大学 一种CuS/炭黑复合光热转换材料及其制备方法
CN111268147A (zh) * 2020-02-19 2020-06-12 南京航空航天大学 一种液氮式机载油箱惰化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304145B1 (ko) * 2011-12-08 2013-09-05 한국기초과학지원연구원 수산화 3가철(Fe(OH)₃)이 포함된 조성물 및 그 조성물의 광열특성을 이용한 광열 및 전자기파발생 방법
CN104745149B (zh) * 2015-03-05 2018-02-09 北京科技大学 一种含碳材料金属有机骨架基复合相变材料的制备方法
CN105038720B (zh) * 2015-07-07 2018-02-23 安徽理工大学 一种可高效利用太阳能的定形相变复合材料及其制备方法
CN106190041B (zh) * 2016-07-14 2020-06-26 北京科技大学 一种3d多孔碳骨架基复合相变材料的制备方法
CN107502296B (zh) * 2017-08-21 2020-06-09 浙江工业大学 一种硫化铜-羧基化碳纳米管/石蜡光热转换相变储能复合材料的制备方法
CN107603570A (zh) * 2017-09-15 2018-01-19 中国科学院过程工程研究所 具有光热转换性能的相变储能材料及其制备方法

Also Published As

Publication number Publication date
CN110437805A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Latibari et al. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: an extensive review
Tang et al. Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials
Yang et al. Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage
Luo et al. Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage
CN106957634B (zh) 一种石墨烯介孔碳基复合相变材料的制备方法
Xi et al. 3D reduced graphene oxide aerogel supported TiO2-x for shape-stable phase change composites with high photothermal efficiency and thermal conductivity
Huang et al. Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN113786856B (zh) 一种负载金属单原子和纳米颗粒竹节状氮掺杂碳纳米管的制备方法
CN110437805B (zh) 一种纳米粒子掺杂型光热转化复合相变材料的制备方法
CN106190041B (zh) 一种3d多孔碳骨架基复合相变材料的制备方法
CN112490446A (zh) 一种Co-CNT@CF三维自支撑锂硫电池正极材料的制备方法
Shao et al. Popcorn-derived porous carbon based adipic acid composite phase change materials for direct solar energy storage systems
Li et al. Diversiform microstructure silicon carbides stabilized stearic acid as composite phase change materials
Cao et al. Fatty amine incorporated nickel foam bearing with CNTs nanoarray: A novel composite phase change material towards efficient light-to-thermal and electro-to-thermal conversion
Zhou et al. Carbon nanotube sponge encapsulated Ag-MWCNTs/PW composite phase change materials with enhanced thermal conductivity, high solar-/electric-thermal energy conversion and storage
CN102897722B (zh) 一种α-In2Se3纳米花球溶剂热合成方法
Hao et al. Composite phase change materials based on CuS-coated carbonized melamine foam/reduced graphene oxide frameworks for multiple energy conversion and storage applications
CN114400340A (zh) 氮硫共掺杂纳米碳管复合材料及其制备方法和应用
Ren et al. Enhanced thermal storage and photo-thermal conversion composite phase change materials based on MOF-derived carbon for efficient solar energy utilization
Chen et al. Enhanced light-to-thermal conversion performance of self-assembly carbon nanotube/graphene-interconnected phase change materials for thermal-electric device
Liu et al. Polyethylene glycol/melamine foam composite phase change materials modified by CdS/Ag exhibits high photothermal conversion performance
CN105314688B (zh) 一种氧化镍纳米片的制备方法及其应用
CN103252248A (zh) 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
CN111187599B (zh) 一种三维碱式氧化锰纳米棒泡沫复合相变材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201113